
Interpreted and Compiled

Sometimes it is useful to classify according to how the program
is treated to make a runnable object

Compiled to machine code: C, C++, Fortran, . . .

Bytecode: compile to a machine-independent code that is then
interpreted or further compiled to machine code. Java, C#, Perl,
Lua, Forth, . . .

Interpreted: Basic, HTML, . . .

1 / 159



Interpreted and Compiled

Sometimes it is useful to classify according to how the program
is treated to make a runnable object

Compiled to machine code: C, C++, Fortran, . . .

Bytecode: compile to a machine-independent code that is then
interpreted or further compiled to machine code. Java, C#, Perl,
Lua, Forth, . . .

Interpreted: Basic, HTML, . . .

2 / 159



Interpreted and Compiled

Sometimes it is useful to classify according to how the program
is treated to make a runnable object

Compiled to machine code: C, C++, Fortran, . . .

Bytecode: compile to a machine-independent code that is then
interpreted or further compiled to machine code. Java, C#, Perl,
Lua, Forth, . . .

Interpreted: Basic, HTML, . . .

3 / 159



Interpreted and Compiled

Sometimes it is useful to classify according to how the program
is treated to make a runnable object

Compiled to machine code: C, C++, Fortran, . . .

Bytecode: compile to a machine-independent code that is then
interpreted or further compiled to machine code. Java, C#, Perl,
Lua, Forth, . . .

Interpreted: Basic, HTML, . . .

4 / 159



Interpreted and Compiled
Feet

• C#: You forget precisely how to use the .NET interface and
shoot yourself in the foot. You sue Microsoft for damages

• C# (2): You copy how Java shot itself in the foot. Then you
explain to everybody who will listen how you did it better

• C# (3): You can create and shoot a gun in C#, but you
can’t shoot your foot in managed code

5 / 159



Interpreted and Compiled
Feet

• C#: You forget precisely how to use the .NET interface and
shoot yourself in the foot. You sue Microsoft for damages

• C# (2): You copy how Java shot itself in the foot. Then you
explain to everybody who will listen how you did it better

• C# (3): You can create and shoot a gun in C#, but you
can’t shoot your foot in managed code

6 / 159



Interpreted and Compiled
Feet

• C#: You forget precisely how to use the .NET interface and
shoot yourself in the foot. You sue Microsoft for damages

• C# (2): You copy how Java shot itself in the foot. Then you
explain to everybody who will listen how you did it better

• C# (3): You can create and shoot a gun in C#, but you
can’t shoot your foot in managed code

7 / 159



Interpreted and Compiled
Feet

• Lua: You come up with a decent way to shoot yourself in
the foot, but you’re unsure if it’s the optimal way to go about
it. You ask the mailing list. Someone points out that Lua
has a “shoot foot” function built in, but it’s only exposed via
the C API. The discussion devolves into a long debate
about whether various functions should be exposed, how
objects and OOP should be implemented, and whether nil
should be a valid table index

• Lua (2): You shoot yourself in the foot while watching
enviously how Scheme shoots you in the foot

8 / 159



Interpreted and Compiled
Feet

• Lua: You come up with a decent way to shoot yourself in
the foot, but you’re unsure if it’s the optimal way to go about
it. You ask the mailing list. Someone points out that Lua
has a “shoot foot” function built in, but it’s only exposed via
the C API. The discussion devolves into a long debate
about whether various functions should be exposed, how
objects and OOP should be implemented, and whether nil
should be a valid table index

• Lua (2): You shoot yourself in the foot while watching
enviously how Scheme shoots you in the foot

9 / 159



Interpreted and Compiled

Compiling to code for a specific processor produces fast
running programs, using all the facilities of the hardware (when
done properly)

Provides lots of error checking in the compilation phase

Uses the compile-run-edit cycle of development

10 / 159



Interpreted and Compiled

Compiling to code for a specific processor produces fast
running programs, using all the facilities of the hardware (when
done properly)

Provides lots of error checking in the compilation phase

Uses the compile-run-edit cycle of development

11 / 159



Interpreted and Compiled

Compiling to code for a specific processor produces fast
running programs, using all the facilities of the hardware (when
done properly)

Provides lots of error checking in the compilation phase

Uses the compile-run-edit cycle of development

12 / 159



Interpreted and Compiled

In contrast, some languages compile to a machine independent
bytecode

A kind of machine code for a standardised, virtual machine

A real machine can then interpret the bytecode to run the
program

Or compile the bytecode to native machine code and run that

13 / 159



Interpreted and Compiled

In contrast, some languages compile to a machine independent
bytecode

A kind of machine code for a standardised, virtual machine

A real machine can then interpret the bytecode to run the
program

Or compile the bytecode to native machine code and run that

14 / 159



Interpreted and Compiled

In contrast, some languages compile to a machine independent
bytecode

A kind of machine code for a standardised, virtual machine

A real machine can then interpret the bytecode to run the
program

Or compile the bytecode to native machine code and run that

15 / 159



Interpreted and Compiled

In contrast, some languages compile to a machine independent
bytecode

A kind of machine code for a standardised, virtual machine

A real machine can then interpret the bytecode to run the
program

Or compile the bytecode to native machine code and run that

16 / 159



Interpreted and Compiled

Bytecode produces more compact code and is machine
independent so allowing mobile code

Even mobile in the sense the program can move between
different processors while it is running

“Compile once and run anywhere”

Provides lots of error checking in the compilation phase

Requires a separate run-time (the virtual machine) to interpret
or further compile the code

Generally a modest overhead in loss of speed in the execution
of the bytecode

17 / 159



Interpreted and Compiled

Bytecode produces more compact code and is machine
independent so allowing mobile code

Even mobile in the sense the program can move between
different processors while it is running

“Compile once and run anywhere”

Provides lots of error checking in the compilation phase

Requires a separate run-time (the virtual machine) to interpret
or further compile the code

Generally a modest overhead in loss of speed in the execution
of the bytecode

18 / 159



Interpreted and Compiled

Bytecode produces more compact code and is machine
independent so allowing mobile code

Even mobile in the sense the program can move between
different processors while it is running

“Compile once and run anywhere”

Provides lots of error checking in the compilation phase

Requires a separate run-time (the virtual machine) to interpret
or further compile the code

Generally a modest overhead in loss of speed in the execution
of the bytecode

19 / 159



Interpreted and Compiled

Bytecode produces more compact code and is machine
independent so allowing mobile code

Even mobile in the sense the program can move between
different processors while it is running

“Compile once and run anywhere”

Provides lots of error checking in the compilation phase

Requires a separate run-time (the virtual machine) to interpret
or further compile the code

Generally a modest overhead in loss of speed in the execution
of the bytecode

20 / 159



Interpreted and Compiled

Bytecode produces more compact code and is machine
independent so allowing mobile code

Even mobile in the sense the program can move between
different processors while it is running

“Compile once and run anywhere”

Provides lots of error checking in the compilation phase

Requires a separate run-time (the virtual machine) to interpret
or further compile the code

Generally a modest overhead in loss of speed in the execution
of the bytecode

21 / 159



Interpreted and Compiled

Bytecode produces more compact code and is machine
independent so allowing mobile code

Even mobile in the sense the program can move between
different processors while it is running

“Compile once and run anywhere”

Provides lots of error checking in the compilation phase

Requires a separate run-time (the virtual machine) to interpret
or further compile the code

Generally a modest overhead in loss of speed in the execution
of the bytecode

22 / 159



Managed and Unmanaged

Closely related is the idea of a managed language

This produces code (often byte-compiled like Java and C#, but
not exclusively) that only runs under a run-time virtual machine,
not natively

The run-time then manages memory, usually including a GC,
and does security checking, e.g., on network connections

The idea that this is a “safe” language, running in a secure
sandbox, preventing all kinds of nasty things from happening:
memory overruns, execution of virus code, connecting to rogue
Web sites, and so on

23 / 159



Managed and Unmanaged

Closely related is the idea of a managed language

This produces code (often byte-compiled like Java and C#, but
not exclusively) that only runs under a run-time virtual machine,
not natively

The run-time then manages memory, usually including a GC,
and does security checking, e.g., on network connections

The idea that this is a “safe” language, running in a secure
sandbox, preventing all kinds of nasty things from happening:
memory overruns, execution of virus code, connecting to rogue
Web sites, and so on

24 / 159



Managed and Unmanaged

Closely related is the idea of a managed language

This produces code (often byte-compiled like Java and C#, but
not exclusively) that only runs under a run-time virtual machine,
not natively

The run-time then manages memory, usually including a GC,
and does security checking, e.g., on network connections

The idea that this is a “safe” language, running in a secure
sandbox, preventing all kinds of nasty things from happening:
memory overruns, execution of virus code, connecting to rogue
Web sites, and so on

25 / 159



Managed and Unmanaged

Closely related is the idea of a managed language

This produces code (often byte-compiled like Java and C#, but
not exclusively) that only runs under a run-time virtual machine,
not natively

The run-time then manages memory, usually including a GC,
and does security checking, e.g., on network connections

The idea that this is a “safe” language, running in a secure
sandbox, preventing all kinds of nasty things from happening:
memory overruns, execution of virus code, connecting to rogue
Web sites, and so on

26 / 159



Managed and Unmanaged

The idea extends to managed data, where (some or all of) the
data is managed

For example (an extension to) C++ allows objects to be
managed or unmanaged

Inaccurately and misleadingly, but to a decent approximation

managed = bytecode
unmanaged = compiled

and the word “managed” is mostly used to make “unmanaged”
sound bad by comparison

27 / 159



Managed and Unmanaged

The idea extends to managed data, where (some or all of) the
data is managed

For example (an extension to) C++ allows objects to be
managed or unmanaged

Inaccurately and misleadingly, but to a decent approximation

managed = bytecode
unmanaged = compiled

and the word “managed” is mostly used to make “unmanaged”
sound bad by comparison

28 / 159



Managed and Unmanaged

The idea extends to managed data, where (some or all of) the
data is managed

For example (an extension to) C++ allows objects to be
managed or unmanaged

Inaccurately and misleadingly, but to a decent approximation

managed = bytecode
unmanaged = compiled

and the word “managed” is mostly used to make “unmanaged”
sound bad by comparison

29 / 159



Interpreted and Compiled

Next are interpreted languages. This is good for rapid
development where you don’t want to keep waiting for the
compiler

No code as such, only source, so quite compact, but also
requires a separate run-time interpreter

Large overhead in loss of speed as each line of code has to be
interpreted before it can be executed

30 / 159



Interpreted and Compiled

Next are interpreted languages. This is good for rapid
development where you don’t want to keep waiting for the
compiler

No code as such, only source, so quite compact, but also
requires a separate run-time interpreter

Large overhead in loss of speed as each line of code has to be
interpreted before it can be executed

31 / 159



Interpreted and Compiled

Next are interpreted languages. This is good for rapid
development where you don’t want to keep waiting for the
compiler

No code as such, only source, so quite compact, but also
requires a separate run-time interpreter

Large overhead in loss of speed as each line of code has to be
interpreted before it can be executed

32 / 159



Interpreted and Compiled

Note: any given language can be compiled/interpreted/run in
any of these ways

Though languages do tend to have a preferred approach

For example, C is almost always compiled, while Basic tends to
be interpreted

33 / 159



Interpreted and Compiled

Note: any given language can be compiled/interpreted/run in
any of these ways

Though languages do tend to have a preferred approach

For example, C is almost always compiled, while Basic tends to
be interpreted

34 / 159



Interpreted and Compiled

Note: any given language can be compiled/interpreted/run in
any of these ways

Though languages do tend to have a preferred approach

For example, C is almost always compiled, while Basic tends to
be interpreted

35 / 159



Interpreted and Compiled

Java is bytecode, and has separate compile and runtime
systems

Its main objective is machine-independent code

Perl is bytecode and has an integrated compile and runtime
system

Each time a Perl program (the source text) is run it is first
compiled, then executed: this helps rapid development, as
above

Generally, the compiled form of the Perl program is not kept
around

Lua is similar to Perl in these respects

36 / 159



Interpreted and Compiled

Java is bytecode, and has separate compile and runtime
systems

Its main objective is machine-independent code

Perl is bytecode and has an integrated compile and runtime
system

Each time a Perl program (the source text) is run it is first
compiled, then executed: this helps rapid development, as
above

Generally, the compiled form of the Perl program is not kept
around

Lua is similar to Perl in these respects

37 / 159



Interpreted and Compiled

Java is bytecode, and has separate compile and runtime
systems

Its main objective is machine-independent code

Perl is bytecode and has an integrated compile and runtime
system

Each time a Perl program (the source text) is run it is first
compiled, then executed: this helps rapid development, as
above

Generally, the compiled form of the Perl program is not kept
around

Lua is similar to Perl in these respects

38 / 159



Interpreted and Compiled

Java is bytecode, and has separate compile and runtime
systems

Its main objective is machine-independent code

Perl is bytecode and has an integrated compile and runtime
system

Each time a Perl program (the source text) is run it is first
compiled, then executed: this helps rapid development, as
above

Generally, the compiled form of the Perl program is not kept
around

Lua is similar to Perl in these respects

39 / 159



Interpreted and Compiled

Java is bytecode, and has separate compile and runtime
systems

Its main objective is machine-independent code

Perl is bytecode and has an integrated compile and runtime
system

Each time a Perl program (the source text) is run it is first
compiled, then executed: this helps rapid development, as
above

Generally, the compiled form of the Perl program is not kept
around

Lua is similar to Perl in these respects

40 / 159



Interpreted and Compiled

Java is bytecode, and has separate compile and runtime
systems

Its main objective is machine-independent code

Perl is bytecode and has an integrated compile and runtime
system

Each time a Perl program (the source text) is run it is first
compiled, then executed: this helps rapid development, as
above

Generally, the compiled form of the Perl program is not kept
around

Lua is similar to Perl in these respects

41 / 159



Interpreted and Compiled

Again, a non exclusive classification: some languages can be
both interpreted and compiled, sometimes mixed within the
same program (e.g., Lisp)

There exist Java to machine code compilers and C interpreters

There are many hybrids: Cambridge CL compiles critical parts
to C (thence machine code) for extra speed, but the rest is
bytecode

This is important for targeting an application: compactness (for
small machines) can be exchanged for raw speed of the
running program. Or to allow mobility of the code

42 / 159



Interpreted and Compiled

Again, a non exclusive classification: some languages can be
both interpreted and compiled, sometimes mixed within the
same program (e.g., Lisp)

There exist Java to machine code compilers and C interpreters

There are many hybrids: Cambridge CL compiles critical parts
to C (thence machine code) for extra speed, but the rest is
bytecode

This is important for targeting an application: compactness (for
small machines) can be exchanged for raw speed of the
running program. Or to allow mobility of the code

43 / 159



Interpreted and Compiled

Again, a non exclusive classification: some languages can be
both interpreted and compiled, sometimes mixed within the
same program (e.g., Lisp)

There exist Java to machine code compilers and C interpreters

There are many hybrids: Cambridge CL compiles critical parts
to C (thence machine code) for extra speed, but the rest is
bytecode

This is important for targeting an application: compactness (for
small machines) can be exchanged for raw speed of the
running program. Or to allow mobility of the code

44 / 159



Interpreted and Compiled

Again, a non exclusive classification: some languages can be
both interpreted and compiled, sometimes mixed within the
same program (e.g., Lisp)

There exist Java to machine code compilers and C interpreters

There are many hybrids: Cambridge CL compiles critical parts
to C (thence machine code) for extra speed, but the rest is
bytecode

This is important for targeting an application: compactness (for
small machines) can be exchanged for raw speed of the
running program. Or to allow mobility of the code

45 / 159



Interpreted and Compiled

Some systems initially interpret the program but keep note of
those parts of code that are used frequently, e.g., loops

They then dynamically compile just those parts to machine
code; the Just in Time (JIT) systems, e.g., in Java, JavaScript

Others compile to interpreted bytecode, but then at runtime
compile parts of the bytecode to machine code, as above

Occasionally JIT can produce faster running code than simple
static compilation as the compilation process can be informed
by the profile information gained from running the program
(e.g., which methods are actually being called)

46 / 159



Interpreted and Compiled

Some systems initially interpret the program but keep note of
those parts of code that are used frequently, e.g., loops

They then dynamically compile just those parts to machine
code; the Just in Time (JIT) systems, e.g., in Java, JavaScript

Others compile to interpreted bytecode, but then at runtime
compile parts of the bytecode to machine code, as above

Occasionally JIT can produce faster running code than simple
static compilation as the compilation process can be informed
by the profile information gained from running the program
(e.g., which methods are actually being called)

47 / 159



Interpreted and Compiled

Some systems initially interpret the program but keep note of
those parts of code that are used frequently, e.g., loops

They then dynamically compile just those parts to machine
code; the Just in Time (JIT) systems, e.g., in Java, JavaScript

Others compile to interpreted bytecode, but then at runtime
compile parts of the bytecode to machine code, as above

Occasionally JIT can produce faster running code than simple
static compilation as the compilation process can be informed
by the profile information gained from running the program
(e.g., which methods are actually being called)

48 / 159



Interpreted and Compiled

Some systems initially interpret the program but keep note of
those parts of code that are used frequently, e.g., loops

They then dynamically compile just those parts to machine
code; the Just in Time (JIT) systems, e.g., in Java, JavaScript

Others compile to interpreted bytecode, but then at runtime
compile parts of the bytecode to machine code, as above

Occasionally JIT can produce faster running code than simple
static compilation as the compilation process can be informed
by the profile information gained from running the program
(e.g., which methods are actually being called)

49 / 159



Interpreted and Compiled

Though this does incur some overhead: compilation is not
cheap, and unless you are careful it can dominate the running
time in a short-lived program

You might argue that it doesn’t matter in a short-lived program
as it’s done soon anyway. However if you run that program
many times it does add up to a lot of extra CPU cycles (i.e.,
energy)

Long-running programs benefit a lot, though

Exercise. Look at the optimisations that modern
implementations of JavaScript use

50 / 159



Interpreted and Compiled

Though this does incur some overhead: compilation is not
cheap, and unless you are careful it can dominate the running
time in a short-lived program

You might argue that it doesn’t matter in a short-lived program
as it’s done soon anyway. However if you run that program
many times it does add up to a lot of extra CPU cycles (i.e.,
energy)

Long-running programs benefit a lot, though

Exercise. Look at the optimisations that modern
implementations of JavaScript use

51 / 159



Interpreted and Compiled

Though this does incur some overhead: compilation is not
cheap, and unless you are careful it can dominate the running
time in a short-lived program

You might argue that it doesn’t matter in a short-lived program
as it’s done soon anyway. However if you run that program
many times it does add up to a lot of extra CPU cycles (i.e.,
energy)

Long-running programs benefit a lot, though

Exercise. Look at the optimisations that modern
implementations of JavaScript use

52 / 159



Interpreted and Compiled

Though this does incur some overhead: compilation is not
cheap, and unless you are careful it can dominate the running
time in a short-lived program

You might argue that it doesn’t matter in a short-lived program
as it’s done soon anyway. However if you run that program
many times it does add up to a lot of extra CPU cycles (i.e.,
energy)

Long-running programs benefit a lot, though

Exercise. Look at the optimisations that modern
implementations of JavaScript use

53 / 159



Interpreted and Compiled

Another approach is ahead of time (AOT) compilation

This takes bytecode and further compiles it for the specific OS
and hardware at installation time

Devised mostly for users (not developers!) of apps for
low-energy devices (phones), where the repeated runtime
interpretation or JIT compilation every time the app is run is
wasted energy

Suitable compilation and optimisation is done just once, when
the app is installed

54 / 159



Interpreted and Compiled

Another approach is ahead of time (AOT) compilation

This takes bytecode and further compiles it for the specific OS
and hardware at installation time

Devised mostly for users (not developers!) of apps for
low-energy devices (phones), where the repeated runtime
interpretation or JIT compilation every time the app is run is
wasted energy

Suitable compilation and optimisation is done just once, when
the app is installed

55 / 159



Interpreted and Compiled

Another approach is ahead of time (AOT) compilation

This takes bytecode and further compiles it for the specific OS
and hardware at installation time

Devised mostly for users (not developers!) of apps for
low-energy devices (phones), where the repeated runtime
interpretation or JIT compilation every time the app is run is
wasted energy

Suitable compilation and optimisation is done just once, when
the app is installed

56 / 159



Interpreted and Compiled

Another approach is ahead of time (AOT) compilation

This takes bytecode and further compiles it for the specific OS
and hardware at installation time

Devised mostly for users (not developers!) of apps for
low-energy devices (phones), where the repeated runtime
interpretation or JIT compilation every time the app is run is
wasted energy

Suitable compilation and optimisation is done just once, when
the app is installed

57 / 159



Interpreted and Compiled

AOT gives us

• a faster running app, as there is no run-time overhead of
interpretation or compilation

• less energy used, as we don’t repeatedly use energy in
doing the same compilation every time the app is run

58 / 159



Interpreted and Compiled

AOT gives us

• a faster running app, as there is no run-time overhead of
interpretation or compilation

• less energy used, as we don’t repeatedly use energy in
doing the same compilation every time the app is run

59 / 159



Interpreted and Compiled

AOT gives us

• a faster running app, as there is no run-time overhead of
interpretation or compilation

• less energy used, as we don’t repeatedly use energy in
doing the same compilation every time the app is run

60 / 159



Interpreted and Compiled

Downsides include

• you lose the run-time information of a JIT that could
possibly produce better optimised code. However, this loss
appears to be outweighed by the gains from being able to
optimise globally the whole app, rather than JIT’s local
optimisations

• installing the app will take a lot longer if a thorough
optimising compiler is used. A user would do this just once,
though

• the compiled code takes up more space. Becoming less of
an issue as memory capacity on small devices improves

61 / 159



Interpreted and Compiled

Downsides include

• you lose the run-time information of a JIT that could
possibly produce better optimised code. However, this loss
appears to be outweighed by the gains from being able to
optimise globally the whole app, rather than JIT’s local
optimisations

• installing the app will take a lot longer if a thorough
optimising compiler is used. A user would do this just once,
though

• the compiled code takes up more space. Becoming less of
an issue as memory capacity on small devices improves

62 / 159



Interpreted and Compiled

Downsides include

• you lose the run-time information of a JIT that could
possibly produce better optimised code. However, this loss
appears to be outweighed by the gains from being able to
optimise globally the whole app, rather than JIT’s local
optimisations

• installing the app will take a lot longer if a thorough
optimising compiler is used. A user would do this just once,
though

• the compiled code takes up more space. Becoming less of
an issue as memory capacity on small devices improves

63 / 159



Interpreted and Compiled

Downsides include

• you lose the run-time information of a JIT that could
possibly produce better optimised code. However, this loss
appears to be outweighed by the gains from being able to
optimise globally the whole app, rather than JIT’s local
optimisations

• installing the app will take a lot longer if a thorough
optimising compiler is used. A user would do this just once,
though

• the compiled code takes up more space. Becoming less of
an issue as memory capacity on small devices improves

64 / 159



Interpreted and Compiled

You can also use a mixture of AOT and JIT

Android Nougat does not use AOT when installing an app

When your phone is idle it then sneakily uses AOT while you
are not looking

And it also uses JIT to tune apps as they run

65 / 159



Interpreted and Compiled

You can also use a mixture of AOT and JIT

Android Nougat does not use AOT when installing an app

When your phone is idle it then sneakily uses AOT while you
are not looking

And it also uses JIT to tune apps as they run

66 / 159



Interpreted and Compiled

You can also use a mixture of AOT and JIT

Android Nougat does not use AOT when installing an app

When your phone is idle it then sneakily uses AOT while you
are not looking

And it also uses JIT to tune apps as they run

67 / 159



Interpreted and Compiled

You can also use a mixture of AOT and JIT

Android Nougat does not use AOT when installing an app

When your phone is idle it then sneakily uses AOT while you
are not looking

And it also uses JIT to tune apps as they run

68 / 159



Interpreted and Compiled

You get the advantages of fast installation and AOT and JIT

But this makes the Android runtime very complicated!

69 / 159



Interpreted and Compiled

You get the advantages of fast installation and AOT and JIT

But this makes the Android runtime very complicated!

70 / 159



Interpreted and Compiled

Exercise. Look at several languages and determine their usual
methods of execution

Exercise. Then determine the positives and negatives of doing
it differently (e.g., compiling Java to machine code; bytecoding
C)

Exercise. Another approach is for the app store to take the
code and compile and pre-optimise it into separate codes for
each of the various kinds of hardware out there. Then it
delivers the appropriately optimised code at download time.
Find out about this

Exercise. How is using AOT different from using a classical
compiler?

71 / 159



Compilation

You may wish to think about how compilation affects
optimisation of your code

“Normal” Compilation

A compiler is given a module/file at a time and compiles it,
usually with some type information about the external functions
called (e.g., #include, or use or equivalent)

So if the code includes a call f(x+1,y/2), where f is defined
in another module, the compiler generally only has the type
signature int f(int a, int b) so it knows enough to
generate the correct code to pass the arguments and return the
value

72 / 159



Compilation

You may wish to think about how compilation affects
optimisation of your code

“Normal” Compilation

A compiler is given a module/file at a time and compiles it,
usually with some type information about the external functions
called (e.g., #include, or use or equivalent)

So if the code includes a call f(x+1,y/2), where f is defined
in another module, the compiler generally only has the type
signature int f(int a, int b) so it knows enough to
generate the correct code to pass the arguments and return the
value

73 / 159



Compilation

You may wish to think about how compilation affects
optimisation of your code

“Normal” Compilation

A compiler is given a module/file at a time and compiles it,
usually with some type information about the external functions
called (e.g., #include, or use or equivalent)

So if the code includes a call f(x+1,y/2), where f is defined
in another module, the compiler generally only has the type
signature int f(int a, int b) so it knows enough to
generate the correct code to pass the arguments and return the
value

74 / 159



Compilation

The code for f could be in a separate module, compiled at
another time or place, so the compiler has no more information
than the signature, and can make no assumptions on f

E.g., if it knew that b was unused in f, it could optimise away
the y and the division

But without knowing more about f, it can’t do anything clever
like that

75 / 159



Compilation

The code for f could be in a separate module, compiled at
another time or place, so the compiler has no more information
than the signature, and can make no assumptions on f

E.g., if it knew that b was unused in f, it could optimise away
the y and the division

But without knowing more about f, it can’t do anything clever
like that

76 / 159



Compilation

The code for f could be in a separate module, compiled at
another time or place, so the compiler has no more information
than the signature, and can make no assumptions on f

E.g., if it knew that b was unused in f, it could optimise away
the y and the division

But without knowing more about f, it can’t do anything clever
like that

77 / 159



Compilation

Total Compilation

This is quite rare in practice, usually only for small programs

The compiler is given the whole program code at once

It can now look at every detail of every function and make
optimisations such as the one above

Practically, this is clearly quite difficult for larger programs

78 / 159



Compilation

Total Compilation

This is quite rare in practice, usually only for small programs

The compiler is given the whole program code at once

It can now look at every detail of every function and make
optimisations such as the one above

Practically, this is clearly quite difficult for larger programs

79 / 159



Compilation

Total Compilation

This is quite rare in practice, usually only for small programs

The compiler is given the whole program code at once

It can now look at every detail of every function and make
optimisations such as the one above

Practically, this is clearly quite difficult for larger programs

80 / 159



Compilation

Total Compilation

This is quite rare in practice, usually only for small programs

The compiler is given the whole program code at once

It can now look at every detail of every function and make
optimisations such as the one above

Practically, this is clearly quite difficult for larger programs

81 / 159



Compilation

Link Time Optimisation (LTO)

Modules are compiled separately as normal, but in the link
phase, when all the compiled parts are joined together, the
linker can make some optimisations

Again, technically difficult, but starting to make a big difference

82 / 159



Compilation

Link Time Optimisation (LTO)

Modules are compiled separately as normal, but in the link
phase, when all the compiled parts are joined together, the
linker can make some optimisations

Again, technically difficult, but starting to make a big difference

83 / 159



Compilation

Run Time Optimisation

The runtime system monitors the program as it is running, and
make dynamic optimisations to the code using knowledge of
what is actually happening in the code

This might involve moving bits of code or data around based on
how often they are needed, to reduce memory pressure

Used to good effect in JIT compilers

84 / 159



Compilation

Run Time Optimisation

The runtime system monitors the program as it is running, and
make dynamic optimisations to the code using knowledge of
what is actually happening in the code

This might involve moving bits of code or data around based on
how often they are needed, to reduce memory pressure

Used to good effect in JIT compilers

85 / 159



Compilation

Run Time Optimisation

The runtime system monitors the program as it is running, and
make dynamic optimisations to the code using knowledge of
what is actually happening in the code

This might involve moving bits of code or data around based on
how often they are needed, to reduce memory pressure

Used to good effect in JIT compilers

86 / 159



Classifications

There are a large number of ways we can look at languages

It is important to know that these classifications exist so we can
make informed choices amongst them

The right tool for the job

We can also move knowledge between specific languages

Learning a new language is not a problem: usually a matter of
looking at a book to get the syntax

There are only a few features unique to a language: these are
the bits you should concentrate on

The rest is easy

87 / 159



Classifications

There are a large number of ways we can look at languages

It is important to know that these classifications exist so we can
make informed choices amongst them

The right tool for the job

We can also move knowledge between specific languages

Learning a new language is not a problem: usually a matter of
looking at a book to get the syntax

There are only a few features unique to a language: these are
the bits you should concentrate on

The rest is easy

88 / 159



Classifications

There are a large number of ways we can look at languages

It is important to know that these classifications exist so we can
make informed choices amongst them

The right tool for the job

We can also move knowledge between specific languages

Learning a new language is not a problem: usually a matter of
looking at a book to get the syntax

There are only a few features unique to a language: these are
the bits you should concentrate on

The rest is easy

89 / 159



Classifications

There are a large number of ways we can look at languages

It is important to know that these classifications exist so we can
make informed choices amongst them

The right tool for the job

We can also move knowledge between specific languages

Learning a new language is not a problem: usually a matter of
looking at a book to get the syntax

There are only a few features unique to a language: these are
the bits you should concentrate on

The rest is easy

90 / 159



Classifications

There are a large number of ways we can look at languages

It is important to know that these classifications exist so we can
make informed choices amongst them

The right tool for the job

We can also move knowledge between specific languages

Learning a new language is not a problem: usually a matter of
looking at a book to get the syntax

There are only a few features unique to a language: these are
the bits you should concentrate on

The rest is easy

91 / 159



Classifications

There are a large number of ways we can look at languages

It is important to know that these classifications exist so we can
make informed choices amongst them

The right tool for the job

We can also move knowledge between specific languages

Learning a new language is not a problem: usually a matter of
looking at a book to get the syntax

There are only a few features unique to a language: these are
the bits you should concentrate on

The rest is easy

92 / 159



Classifications

There are a large number of ways we can look at languages

It is important to know that these classifications exist so we can
make informed choices amongst them

The right tool for the job

We can also move knowledge between specific languages

Learning a new language is not a problem: usually a matter of
looking at a book to get the syntax

There are only a few features unique to a language: these are
the bits you should concentrate on

The rest is easy

93 / 159



Object Oriented Languages

We are now going to spend some more time looking at OO
languages as they are important and have a wide variety of
variants amongst themselves

It’s a big family

Many people have the implicit assumption that if you know Java
then you know all about OO

This is far from the truth: Java way of doing OO is just one way
of many

94 / 159



Object Oriented Languages

We are now going to spend some more time looking at OO
languages as they are important and have a wide variety of
variants amongst themselves

It’s a big family

Many people have the implicit assumption that if you know Java
then you know all about OO

This is far from the truth: Java way of doing OO is just one way
of many

95 / 159



Object Oriented Languages

We are now going to spend some more time looking at OO
languages as they are important and have a wide variety of
variants amongst themselves

It’s a big family

Many people have the implicit assumption that if you know Java
then you know all about OO

This is far from the truth: Java way of doing OO is just one way
of many

96 / 159



Object Oriented Languages

We are now going to spend some more time looking at OO
languages as they are important and have a wide variety of
variants amongst themselves

It’s a big family

Many people have the implicit assumption that if you know Java
then you know all about OO

This is far from the truth: Java way of doing OO is just one way
of many

97 / 159



Object Oriented Languages

It is sometimes said that an OO language has

“Abstraction, Encapsulation, Inheritance,
Polymorphism”

We shall see the several ways that this is wrong!

98 / 159



Object Oriented Languages

It is sometimes said that an OO language has

“Abstraction, Encapsulation, Inheritance,
Polymorphism”

We shall see the several ways that this is wrong!

99 / 159



Object Oriented Languages

Many people think that OO is about classes

And so say the first step in OO design is to map out your class
hierarchy

This is also misleading: OO is actually about objects

Classes are secondary, and sometimes not there at all!

100 / 159



Object Oriented Languages

Many people think that OO is about classes

And so say the first step in OO design is to map out your class
hierarchy

This is also misleading: OO is actually about objects

Classes are secondary, and sometimes not there at all!

101 / 159



Object Oriented Languages

Many people think that OO is about classes

And so say the first step in OO design is to map out your class
hierarchy

This is also misleading: OO is actually about objects

Classes are secondary, and sometimes not there at all!

102 / 159



Object Oriented Languages

Many people think that OO is about classes

And so say the first step in OO design is to map out your class
hierarchy

This is also misleading: OO is actually about objects

Classes are secondary, and sometimes not there at all!

103 / 159



Object Oriented Languages

It was obvious to me 20-some years ago that OOP
wasn’t a panacea. That’s the reason C++ supports
several design and programming styles.

In the first edition of “The C++ Programming
Language,” I didn’t use the phrase “object-oriented
programming” because I didn’t want to feed the hype.
One of the problems with OOP is exactly that
unscrupulous people have hyped it as a panacea.
Overselling something inevitably leads to
disappointments.

Bjarne Stroustrup, Feb 2000

104 / 159



Object Oriented Languages

Language historians put the emergence of the idea of objects
and classes in a purpose-designed language perhaps as far
back as 1962 with Simula, a discrete event simulation
language, and more definitely in 1967 with Simula 67

Simula looks like a mixture of Pascal and Java, and has been
described as “Algol plus classes”

105 / 159



Object Oriented Languages

Language historians put the emergence of the idea of objects
and classes in a purpose-designed language perhaps as far
back as 1962 with Simula, a discrete event simulation
language, and more definitely in 1967 with Simula 67

Simula looks like a mixture of Pascal and Java, and has been
described as “Algol plus classes”

106 / 159



Object Oriented Languages

Simula has constructs like objects, classes, subclasses and
virtual methods that followed through C++ directly into Java

C++ is Simula in wolf’s clothing

Bjarne Stroustrup

However, it was with Smalltalk in 1972 that the OO concept
really took off

107 / 159



Object Oriented Languages

Simula has constructs like objects, classes, subclasses and
virtual methods that followed through C++ directly into Java

C++ is Simula in wolf’s clothing

Bjarne Stroustrup

However, it was with Smalltalk in 1972 that the OO concept
really took off

108 / 159



Object Oriented Languages

Simula has constructs like objects, classes, subclasses and
virtual methods that followed through C++ directly into Java

C++ is Simula in wolf’s clothing

Bjarne Stroustrup

However, it was with Smalltalk in 1972 that the OO concept
really took off

109 / 159



Object Oriented Languages
Feet

• Simula: ?

• Smalltalk: You send the message shoot to gun, with
selectors bullet and myFoot. A window pops up saying
Gunpowder doesNotUnderstand: spark. After several
fruitless hours spent browsing the methods for Trigger,
FiringPin and IdealGas, you take the easy way out and
create ShotFoot, a subclass of Foot with an additional
instance variable bulletHole

110 / 159



Object Oriented Languages
Feet

• Simula: ?
• Smalltalk: You send the message shoot to gun, with

selectors bullet and myFoot. A window pops up saying
Gunpowder doesNotUnderstand: spark. After several
fruitless hours spent browsing the methods for Trigger,
FiringPin and IdealGas, you take the easy way out and
create ShotFoot, a subclass of Foot with an additional
instance variable bulletHole

111 / 159



Object Oriented Languages
Reflection

Smalltalk introduced metaclasses, classes that determine the
behaviour of other classes, thus enabling reflection in programs

The concept of reflection, where a language can inspect and
alter itself is dangerously close to the idea of self-modifying
programs

Self-modifying programs are dangerous and hard to
understand or control

But metaobject programming as a way to implement reflection
puts a framework on this which makes it safe to use

But still very powerful

112 / 159



Object Oriented Languages
Reflection

Smalltalk introduced metaclasses, classes that determine the
behaviour of other classes, thus enabling reflection in programs

The concept of reflection, where a language can inspect and
alter itself is dangerously close to the idea of self-modifying
programs

Self-modifying programs are dangerous and hard to
understand or control

But metaobject programming as a way to implement reflection
puts a framework on this which makes it safe to use

But still very powerful

113 / 159



Object Oriented Languages
Reflection

Smalltalk introduced metaclasses, classes that determine the
behaviour of other classes, thus enabling reflection in programs

The concept of reflection, where a language can inspect and
alter itself is dangerously close to the idea of self-modifying
programs

Self-modifying programs are dangerous and hard to
understand or control

But metaobject programming as a way to implement reflection
puts a framework on this which makes it safe to use

But still very powerful

114 / 159



Object Oriented Languages
Reflection

Smalltalk introduced metaclasses, classes that determine the
behaviour of other classes, thus enabling reflection in programs

The concept of reflection, where a language can inspect and
alter itself is dangerously close to the idea of self-modifying
programs

Self-modifying programs are dangerous and hard to
understand or control

But metaobject programming as a way to implement reflection
puts a framework on this which makes it safe to use

But still very powerful

115 / 159



Object Oriented Languages
Reflection

Smalltalk introduced metaclasses, classes that determine the
behaviour of other classes, thus enabling reflection in programs

The concept of reflection, where a language can inspect and
alter itself is dangerously close to the idea of self-modifying
programs

Self-modifying programs are dangerous and hard to
understand or control

But metaobject programming as a way to implement reflection
puts a framework on this which makes it safe to use

But still very powerful

116 / 159



Object Oriented Languages
Reflection

A related idea is reification

This is where a system can look at its own structure or
behaviour

Sometimes called introspection, and is often seen as making
certain aspects first-class objects, for example first-class
classes, or lambdas as a reification of functions

Debuggers can be viewed as reification; as can class-loaders in
Java; and eval in Lisp

Reflection is where the system can go in and modify things, too

117 / 159



Object Oriented Languages
Reflection

A related idea is reification

This is where a system can look at its own structure or
behaviour

Sometimes called introspection, and is often seen as making
certain aspects first-class objects, for example first-class
classes, or lambdas as a reification of functions

Debuggers can be viewed as reification; as can class-loaders in
Java; and eval in Lisp

Reflection is where the system can go in and modify things, too

118 / 159



Object Oriented Languages
Reflection

A related idea is reification

This is where a system can look at its own structure or
behaviour

Sometimes called introspection, and is often seen as making
certain aspects first-class objects, for example first-class
classes, or lambdas as a reification of functions

Debuggers can be viewed as reification; as can class-loaders in
Java; and eval in Lisp

Reflection is where the system can go in and modify things, too

119 / 159



Object Oriented Languages
Reflection

A related idea is reification

This is where a system can look at its own structure or
behaviour

Sometimes called introspection, and is often seen as making
certain aspects first-class objects, for example first-class
classes, or lambdas as a reification of functions

Debuggers can be viewed as reification; as can class-loaders in
Java; and eval in Lisp

Reflection is where the system can go in and modify things, too

120 / 159



Object Oriented Languages
Reflection

A related idea is reification

This is where a system can look at its own structure or
behaviour

Sometimes called introspection, and is often seen as making
certain aspects first-class objects, for example first-class
classes, or lambdas as a reification of functions

Debuggers can be viewed as reification; as can class-loaders in
Java; and eval in Lisp

Reflection is where the system can go in and modify things, too

121 / 159



Object Oriented Languages

In Smalltalk, everything is an object, including control structures
like if

And everything is mediated by messages sent between objects

Even addition is a message: 2 + 3 is the syntax that sends the
message + (with argument 3) to the object 2

There is no artificial separation of primitive objects from other
objects like in Java

This is more like 2.plus(3) in Java-like syntax

122 / 159



Object Oriented Languages

In Smalltalk, everything is an object, including control structures
like if

And everything is mediated by messages sent between objects

Even addition is a message: 2 + 3 is the syntax that sends the
message + (with argument 3) to the object 2

There is no artificial separation of primitive objects from other
objects like in Java

This is more like 2.plus(3) in Java-like syntax

123 / 159



Object Oriented Languages

In Smalltalk, everything is an object, including control structures
like if

And everything is mediated by messages sent between objects

Even addition is a message: 2 + 3 is the syntax that sends the
message + (with argument 3) to the object 2

There is no artificial separation of primitive objects from other
objects like in Java

This is more like 2.plus(3) in Java-like syntax

124 / 159



Object Oriented Languages

In Smalltalk, everything is an object, including control structures
like if

And everything is mediated by messages sent between objects

Even addition is a message: 2 + 3 is the syntax that sends the
message + (with argument 3) to the object 2

There is no artificial separation of primitive objects from other
objects like in Java

This is more like 2.plus(3) in Java-like syntax

125 / 159



Object Oriented Languages

In Smalltalk, everything is an object, including control structures
like if

And everything is mediated by messages sent between objects

Even addition is a message: 2 + 3 is the syntax that sends the
message + (with argument 3) to the object 2

There is no artificial separation of primitive objects from other
objects like in Java

This is more like 2.plus(3) in Java-like syntax

126 / 159



Object Oriented Languages

Smalltalk prompted a lot of research into OO in the 70s and 80s

And many different styles of OO were proposed including
features called prototyping and delegation, and then
Lisp-based languages featuring multiple inheritance and
metaobject protocols

But we shall start with the most familiar kind of OO: that typified
by having classes arranged in a hierarchy

127 / 159



Object Oriented Languages

Smalltalk prompted a lot of research into OO in the 70s and 80s

And many different styles of OO were proposed including
features called prototyping and delegation, and then
Lisp-based languages featuring multiple inheritance and
metaobject protocols

But we shall start with the most familiar kind of OO: that typified
by having classes arranged in a hierarchy

128 / 159



Object Oriented Languages

Smalltalk prompted a lot of research into OO in the 70s and 80s

And many different styles of OO were proposed including
features called prototyping and delegation, and then
Lisp-based languages featuring multiple inheritance and
metaobject protocols

But we shall start with the most familiar kind of OO: that typified
by having classes arranged in a hierarchy

129 / 159



Object Oriented Languages
Class Hierarchy

The class hierarchy is the relationship between classes

This can be in a graph, where a class inherits from a single
parent class; or a directed acyclic graph (DAG) when classes
can inherit from more than one parent

B C

A

D E

F

A B C

ED

F

A Graph and a DAG

130 / 159



Object Oriented Languages
Class Hierarchy

The class hierarchy is the relationship between classes

This can be in a graph, where a class inherits from a single
parent class; or a directed acyclic graph (DAG) when classes
can inherit from more than one parent

B C

A

D E

F

A B C

ED

F

A Graph and a DAG

131 / 159



Object Oriented Languages
Class Hierarchy

Both trees and DAGS have an important property: no loops

A loop would entail a class inheriting (possibly indirectly) from
itself

Thus we do not allow loops in the class hierarchy

132 / 159



Object Oriented Languages
Class Hierarchy

Both trees and DAGS have an important property: no loops

A loop would entail a class inheriting (possibly indirectly) from
itself

Thus we do not allow loops in the class hierarchy

133 / 159



Object Oriented Languages
Class Hierarchy

Both trees and DAGS have an important property: no loops

A loop would entail a class inheriting (possibly indirectly) from
itself

Thus we do not allow loops in the class hierarchy

134 / 159



Object Oriented Languages
Class Hierarchy

In some languages, e.g., Lisp and Smalltalk, classes are part of
the runtime, being objects that can be manipulated in the
program

In others, e.g., C++ and Java, classes are part of the program
design but not first-class objects in the system

Exercise. But look up java.lang.reflect

A language will have a default hierarchy of those classes that
come with the language

135 / 159



Object Oriented Languages
Class Hierarchy

In some languages, e.g., Lisp and Smalltalk, classes are part of
the runtime, being objects that can be manipulated in the
program

In others, e.g., C++ and Java, classes are part of the program
design but not first-class objects in the system

Exercise. But look up java.lang.reflect

A language will have a default hierarchy of those classes that
come with the language

136 / 159



Object Oriented Languages
Class Hierarchy

In some languages, e.g., Lisp and Smalltalk, classes are part of
the runtime, being objects that can be manipulated in the
program

In others, e.g., C++ and Java, classes are part of the program
design but not first-class objects in the system

Exercise. But look up java.lang.reflect

A language will have a default hierarchy of those classes that
come with the language

137 / 159



Object Oriented Languages
Class Hierarchy

In some languages, e.g., Lisp and Smalltalk, classes are part of
the runtime, being objects that can be manipulated in the
program

In others, e.g., C++ and Java, classes are part of the program
design but not first-class objects in the system

Exercise. But look up java.lang.reflect

A language will have a default hierarchy of those classes that
come with the language

138 / 159



Object Oriented Languages

<object>

<number>

<integer><float>

<double−float> <fpi>

2.3 42

<class>

Part of the EuLisp Class Hierarchy (simplified)

There are two hierarchies in this diagram

Dotted arrow is instance of /member of /is a; solid arrow is
inherits from/subclass/extends/subset

139 / 159



Object Oriented Languages

Every object is an instance of a class (dotted arrow), and is
sometimes called a member of that class.

E.g., the integer 42 is an instance of the class <fpi>

E.g., the class <fpi> is an instance of the class <class>

A subclass will inherit (solid arrow) from its parent superclass
(or superclasses)

It inherits both structure/attributes (how the instances are
stored in memory); and behaviour (the methods)

Of course, it may override or add to either: generally you
override methods, but add to attributes

140 / 159



Object Oriented Languages

Every object is an instance of a class (dotted arrow), and is
sometimes called a member of that class.

E.g., the integer 42 is an instance of the class <fpi>

E.g., the class <fpi> is an instance of the class <class>

A subclass will inherit (solid arrow) from its parent superclass
(or superclasses)

It inherits both structure/attributes (how the instances are
stored in memory); and behaviour (the methods)

Of course, it may override or add to either: generally you
override methods, but add to attributes

141 / 159



Object Oriented Languages

Every object is an instance of a class (dotted arrow), and is
sometimes called a member of that class.

E.g., the integer 42 is an instance of the class <fpi>

E.g., the class <fpi> is an instance of the class <class>

A subclass will inherit (solid arrow) from its parent superclass
(or superclasses)

It inherits both structure/attributes (how the instances are
stored in memory); and behaviour (the methods)

Of course, it may override or add to either: generally you
override methods, but add to attributes

142 / 159



Object Oriented Languages

Every object is an instance of a class (dotted arrow), and is
sometimes called a member of that class.

E.g., the integer 42 is an instance of the class <fpi>

E.g., the class <fpi> is an instance of the class <class>

A subclass will inherit (solid arrow) from its parent superclass
(or superclasses)

It inherits both structure/attributes (how the instances are
stored in memory); and behaviour (the methods)

Of course, it may override or add to either: generally you
override methods, but add to attributes

143 / 159



Object Oriented Languages

Every object is an instance of a class (dotted arrow), and is
sometimes called a member of that class.

E.g., the integer 42 is an instance of the class <fpi>

E.g., the class <fpi> is an instance of the class <class>

A subclass will inherit (solid arrow) from its parent superclass
(or superclasses)

It inherits both structure/attributes (how the instances are
stored in memory); and behaviour (the methods)

Of course, it may override or add to either: generally you
override methods, but add to attributes

144 / 159



Object Oriented Languages

Every object is an instance of a class (dotted arrow), and is
sometimes called a member of that class.

E.g., the integer 42 is an instance of the class <fpi>

E.g., the class <fpi> is an instance of the class <class>

A subclass will inherit (solid arrow) from its parent superclass
(or superclasses)

It inherits both structure/attributes (how the instances are
stored in memory); and behaviour (the methods)

Of course, it may override or add to either: generally you
override methods, but add to attributes

145 / 159



Object Oriented Languages

E.g., <fpi> inherits from <integer>

And <class> inherits from <object>

<object> inherits from itself

This is safe to do, as <object> has no structure or behaviour

The class <object> is an instance of the class <class>

Of course, the class <class> is an instance of itself

146 / 159



Object Oriented Languages

E.g., <fpi> inherits from <integer>

And <class> inherits from <object>

<object> inherits from itself

This is safe to do, as <object> has no structure or behaviour

The class <object> is an instance of the class <class>

Of course, the class <class> is an instance of itself

147 / 159



Object Oriented Languages

E.g., <fpi> inherits from <integer>

And <class> inherits from <object>

<object> inherits from itself

This is safe to do, as <object> has no structure or behaviour

The class <object> is an instance of the class <class>

Of course, the class <class> is an instance of itself

148 / 159



Object Oriented Languages

E.g., <fpi> inherits from <integer>

And <class> inherits from <object>

<object> inherits from itself

This is safe to do, as <object> has no structure or behaviour

The class <object> is an instance of the class <class>

Of course, the class <class> is an instance of itself

149 / 159



Object Oriented Languages

E.g., <fpi> inherits from <integer>

And <class> inherits from <object>

<object> inherits from itself

This is safe to do, as <object> has no structure or behaviour

The class <object> is an instance of the class <class>

Of course, the class <class> is an instance of itself

150 / 159



Object Oriented Languages

E.g., <fpi> inherits from <integer>

And <class> inherits from <object>

<object> inherits from itself

This is safe to do, as <object> has no structure or behaviour

The class <object> is an instance of the class <class>

Of course, the class <class> is an instance of itself

151 / 159



Object Oriented Languages

So there are two kinds of relationships between objects:
instance and inherits

And two kinds of object: classes and non-classes

We can make instances of classes, but not of non-classes

Other kinds of OO dispense with one or both of these
relationships

Or one of these kinds of object: the classes

152 / 159



Object Oriented Languages

So there are two kinds of relationships between objects:
instance and inherits

And two kinds of object: classes and non-classes

We can make instances of classes, but not of non-classes

Other kinds of OO dispense with one or both of these
relationships

Or one of these kinds of object: the classes

153 / 159



Object Oriented Languages

So there are two kinds of relationships between objects:
instance and inherits

And two kinds of object: classes and non-classes

We can make instances of classes, but not of non-classes

Other kinds of OO dispense with one or both of these
relationships

Or one of these kinds of object: the classes

154 / 159



Object Oriented Languages

So there are two kinds of relationships between objects:
instance and inherits

And two kinds of object: classes and non-classes

We can make instances of classes, but not of non-classes

Other kinds of OO dispense with one or both of these
relationships

Or one of these kinds of object: the classes

155 / 159



Object Oriented Languages

So there are two kinds of relationships between objects:
instance and inherits

And two kinds of object: classes and non-classes

We can make instances of classes, but not of non-classes

Other kinds of OO dispense with one or both of these
relationships

Or one of these kinds of object: the classes

156 / 159



Object Oriented Languages

Exercise. For Java, C++, Common Lisp, EuLisp and any others
determine their initial class hierarchy

157 / 159



Object Oriented Languages

C++ Java Smalltalk Lisp

fixed protocol metaobject protocol

Javascript

class centred object centred

object oriented

NB non−exclusive properties

delegationprototyping traits

RustSelf

Exercise. In this picture, determine which are instance links and
which are inheritance links!

158 / 159



Object Oriented Languages

C++ Java Smalltalk Lisp

fixed protocol metaobject protocol

Javascript

class centred object centred

object oriented

NB non−exclusive properties

delegationprototyping traits

RustSelf

Exercise. In this picture, determine which are instance links and
which are inheritance links!

159 / 159


