
Object Oriented Languages

There is a wide variety of things that like to be called OO

The basic idea is the use of encapsulation of state within an
object

And things like classes and inheritance are not a fundamental
part of being object oriented

Of course, these variants came about through lots of research
and experimentation and have varying levels of success

As always, it’s not a case of what is better, more what is better
for the application in hand

1 / 133



Object Oriented Languages

There is a wide variety of things that like to be called OO

The basic idea is the use of encapsulation of state within an
object

And things like classes and inheritance are not a fundamental
part of being object oriented

Of course, these variants came about through lots of research
and experimentation and have varying levels of success

As always, it’s not a case of what is better, more what is better
for the application in hand

2 / 133



Object Oriented Languages

There is a wide variety of things that like to be called OO

The basic idea is the use of encapsulation of state within an
object

And things like classes and inheritance are not a fundamental
part of being object oriented

Of course, these variants came about through lots of research
and experimentation and have varying levels of success

As always, it’s not a case of what is better, more what is better
for the application in hand

3 / 133



Object Oriented Languages

There is a wide variety of things that like to be called OO

The basic idea is the use of encapsulation of state within an
object

And things like classes and inheritance are not a fundamental
part of being object oriented

Of course, these variants came about through lots of research
and experimentation and have varying levels of success

As always, it’s not a case of what is better, more what is better
for the application in hand

4 / 133



Object Oriented Languages

There is a wide variety of things that like to be called OO

The basic idea is the use of encapsulation of state within an
object

And things like classes and inheritance are not a fundamental
part of being object oriented

Of course, these variants came about through lots of research
and experimentation and have varying levels of success

As always, it’s not a case of what is better, more what is better
for the application in hand

5 / 133



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes
• methods attached to classes or generic function objects,

shared by instances
• attributes/slots defined in classes, attached to instances

(or classes)
• single or multiple inheritance defined through the

relationships between the classes

6 / 133



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes
• methods attached to classes or generic function objects,

shared by instances
• attributes/slots defined in classes, attached to instances

(or classes)
• single or multiple inheritance defined through the

relationships between the classes

7 / 133



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes
• methods attached to classes or generic function objects,

shared by instances
• attributes/slots defined in classes, attached to instances

(or classes)
• single or multiple inheritance defined through the

relationships between the classes

8 / 133



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)

• instances of those classes
• methods attached to classes or generic function objects,

shared by instances
• attributes/slots defined in classes, attached to instances

(or classes)
• single or multiple inheritance defined through the

relationships between the classes

9 / 133



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes

• methods attached to classes or generic function objects,
shared by instances

• attributes/slots defined in classes, attached to instances
(or classes)

• single or multiple inheritance defined through the
relationships between the classes

10 / 133



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes
• methods attached to classes or generic function objects,

shared by instances

• attributes/slots defined in classes, attached to instances
(or classes)

• single or multiple inheritance defined through the
relationships between the classes

11 / 133



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes
• methods attached to classes or generic function objects,

shared by instances
• attributes/slots defined in classes, attached to instances

(or classes)

• single or multiple inheritance defined through the
relationships between the classes

12 / 133



Object Oriented Languages
Class Centred

Class Centred is by far the most well-known form of OO, and
what many people think is all of OO

Examples include C++, Java, Lisp, Smalltalk . . .

Typified by

• classes (first-class or not first-class)
• instances of those classes
• methods attached to classes or generic function objects,

shared by instances
• attributes/slots defined in classes, attached to instances

(or classes)
• single or multiple inheritance defined through the

relationships between the classes
13 / 133



Object Oriented Languages
Brief aside

There is a lot of variation on terminology that reflects the many
ways people think about OO

• For data: attribute, state, slot, member, value, element,
variant, structure

• For code: method, behaviour, action, message

Be aware of these variations!

14 / 133



Object Oriented Languages
Brief aside

There is a lot of variation on terminology that reflects the many
ways people think about OO

• For data: attribute, state, slot, member, value, element,
variant, structure

• For code: method, behaviour, action, message

Be aware of these variations!

15 / 133



Object Oriented Languages
Brief aside

There is a lot of variation on terminology that reflects the many
ways people think about OO

• For data: attribute, state, slot, member, value, element,
variant, structure

• For code: method, behaviour, action, message

Be aware of these variations!

16 / 133



Object Oriented Languages
Brief aside

There is a lot of variation on terminology that reflects the many
ways people think about OO

• For data: attribute, state, slot, member, value, element,
variant, structure

• For code: method, behaviour, action, message

Be aware of these variations!

17 / 133



Object Oriented Languages
Class Centred

Class centred languages are occasionally further divided by
how they treat methods

• object receiver: Java, C++, . . .
• generic functions: Lisp, . . .

The object receiver view of the world has a single object
receiving a message, such as a.plus(b), and chooses a
method depending on the type of a single object (a in this case)

Generic functions look more like normal functions: plus(a,b)
or (plus a b), and they choose a method depending on the
types of a and b

18 / 133



Object Oriented Languages
Class Centred

Class centred languages are occasionally further divided by
how they treat methods

• object receiver: Java, C++, . . .
• generic functions: Lisp, . . .

The object receiver view of the world has a single object
receiving a message, such as a.plus(b), and chooses a
method depending on the type of a single object (a in this case)

Generic functions look more like normal functions: plus(a,b)
or (plus a b), and they choose a method depending on the
types of a and b

19 / 133



Object Oriented Languages
Class Centred

Class centred languages are occasionally further divided by
how they treat methods

• object receiver: Java, C++, . . .
• generic functions: Lisp, . . .

The object receiver view of the world has a single object
receiving a message, such as a.plus(b), and chooses a
method depending on the type of a single object (a in this case)

Generic functions look more like normal functions: plus(a,b)
or (plus a b), and they choose a method depending on the
types of a and b

20 / 133



Object Oriented Languages
Class Centred

Note this is syntactic convenience. We could invent a syntax,
say

(a,b).plus()

to emphasise the messaging, but it’s simpler to use the function
notation for the multiple receiver case (as long as you
remember it’s a method call, not a function call)

21 / 133



Object Oriented Languages
Class Centred

In this case methods are now attached to attached to generic
functions (e.g., plus), rather than individual classes

Terminology: from Java you might be used to saying “a method
defined in a class” or “on a class” — this is not appropriate for
the generic function approach

This is because now a method can depend on multiple classes

Saying “method in a class” is OK for Java, not for Lisp

22 / 133



Object Oriented Languages
Class Centred

In this case methods are now attached to attached to generic
functions (e.g., plus), rather than individual classes

Terminology: from Java you might be used to saying “a method
defined in a class” or “on a class” — this is not appropriate for
the generic function approach

This is because now a method can depend on multiple classes

Saying “method in a class” is OK for Java, not for Lisp

23 / 133



Object Oriented Languages
Class Centred

In this case methods are now attached to attached to generic
functions (e.g., plus), rather than individual classes

Terminology: from Java you might be used to saying “a method
defined in a class” or “on a class” — this is not appropriate for
the generic function approach

This is because now a method can depend on multiple classes

Saying “method in a class” is OK for Java, not for Lisp

24 / 133



Object Oriented Languages
Class Centred

In this case methods are now attached to attached to generic
functions (e.g., plus), rather than individual classes

Terminology: from Java you might be used to saying “a method
defined in a class” or “on a class” — this is not appropriate for
the generic function approach

This is because now a method can depend on multiple classes

Saying “method in a class” is OK for Java, not for Lisp

25 / 133



Object Oriented Languages
Class Centred

Generic functions dispatch (choose a method) on the type of
one or more objects

So they are called multiple dispatch in contrast with (say) Java
that is single dispatch

Generic functions look a lot like normal functions, but are
actually collections of methods

26 / 133



Object Oriented Languages
Class Centred

Generic functions dispatch (choose a method) on the type of
one or more objects

So they are called multiple dispatch in contrast with (say) Java
that is single dispatch

Generic functions look a lot like normal functions, but are
actually collections of methods

27 / 133



Object Oriented Languages
Class Centred

Generic functions dispatch (choose a method) on the type of
one or more objects

So they are called multiple dispatch in contrast with (say) Java
that is single dispatch

Generic functions look a lot like normal functions, but are
actually collections of methods

28 / 133



Object Oriented Languages
Class Centred

(defgeneric foo (a b))

(defmethod foo ((a <number>) (b <number>)) ...)

(defmethod foo ((a <integer>) (b <integer>)) ...)

(defmethod foo ((a <number>) (b <float>)) ...)

(defmethod foo ((a <float>) (b <integer>)) ...)

...

Choosing the applicable method is more involved, but typically
is the closest match, taking arguments left-to-right to break ties
(more on this later)

29 / 133



Object Oriented Languages
Class Centred

(defgeneric foo (a b))

(defmethod foo ((a <number>) (b <number>)) ...)

(defmethod foo ((a <integer>) (b <integer>)) ...)

(defmethod foo ((a <number>) (b <float>)) ...)

(defmethod foo ((a <float>) (b <integer>)) ...)

...

Choosing the applicable method is more involved, but typically
is the closest match, taking arguments left-to-right to break ties
(more on this later)

30 / 133



General Remark

Methods, functions and generic functions are different things

Functions and methods are
different things

31 / 133



General Remark

Methods, functions and generic functions are different things

Functions and methods are
different things

32 / 133



General Remark

Languages like C do not have methods, only functions

Make sure you understand the difference between methods
and functions: calling a C function a “method” is a clear
indication that you don’t understand what you are talking about

A function is just some code

33 / 133



General Remark

Languages like C do not have methods, only functions

Make sure you understand the difference between methods
and functions: calling a C function a “method” is a clear
indication that you don’t understand what you are talking about

A function is just some code

34 / 133



General Remark

Languages like C do not have methods, only functions

Make sure you understand the difference between methods
and functions: calling a C function a “method” is a clear
indication that you don’t understand what you are talking about

A function is just some code

35 / 133



General Remark

A method comprises a function plus other class-related things
needed to make OO work, in particular a reference to the object
in question; perhaps also its class; and more as we shall see
later

A generic function comprises zero or more methods

We have also seen closures, which are different again

36 / 133



General Remark

A method comprises a function plus other class-related things
needed to make OO work, in particular a reference to the object
in question; perhaps also its class; and more as we shall see
later

A generic function comprises zero or more methods

We have also seen closures, which are different again

37 / 133



General Remark

A method comprises a function plus other class-related things
needed to make OO work, in particular a reference to the object
in question; perhaps also its class; and more as we shall see
later

A generic function comprises zero or more methods

We have also seen closures, which are different again

38 / 133



General Remark

• function: code
• method: function plus object reference
• generic function: collection of methods
• closure: function plus environment

Confusing these concepts will ensure loss of marks!

Exercise. Think about methods that use closures

39 / 133



General Remark

• function: code
• method: function plus object reference
• generic function: collection of methods
• closure: function plus environment

Confusing these concepts will ensure loss of marks!

Exercise. Think about methods that use closures

40 / 133



General Remark

• function: code
• method: function plus object reference
• generic function: collection of methods
• closure: function plus environment

Confusing these concepts will ensure loss of marks!

Exercise. Think about methods that use closures

41 / 133



General Remark

Functions just have code and arguments

function

arg arg

42 / 133



General Remark

Closures have code, arguments and environment

function

arg arg

env

43 / 133



General Remark

Methods have code, arguments, the object and a next method
list

function

arg arg object

method

method

method

next

(super)

44 / 133



General Remark

Generic functions are a collection of methods

generic

function

function

arg arg object

method

method

function

arg arg object

method

method

function

arg arg object

method

method

45 / 133



Aside

For those interested in the mechanisms: a method call
obj.meth(x,y) is often compiled into the equivalent of a
normal function call with extra “hidden” arguments

meth_class_of_obj(obj, next_method_list, x, y)

and obj is accessible within the body of the function as the
function argument this (or self, or just implicit)

Any super methods are contained in the next method list

46 / 133



Aside

While we are talking about these things, suppose we have

class Foo {

int n;

int inc(int m) { return n+m; }

}

The compiler will write a function something like

int Foo int inc int(Foo self, int m) { return self.n + m; }

(ignoring questions of call by reference or value and super
methods)

47 / 133



Aside

While we are talking about these things, suppose we have

class Foo {

int n;

int inc(int m) { return n+m; }

}

The compiler will write a function something like

int Foo int inc int(Foo self, int m) { return self.n + m; }

(ignoring questions of call by reference or value and super
methods)

48 / 133



Aside

Then method calls such as

Foo f;

f.n = 23;

y = f.inc(42);

become ordinary function calls like

y = Foo_int_inc_int(f, 42);

49 / 133



Aside

Thus, in this example, there is no runtime overhead in using
method calls

The “method lookup” is done in the compiler and the resulting
code is just as fast as calling a function

Other languages or systems might do the lookup at runtime, so
for these kinds of system, a method is slower than a function

50 / 133



Aside

Thus, in this example, there is no runtime overhead in using
method calls

The “method lookup” is done in the compiler and the resulting
code is just as fast as calling a function

Other languages or systems might do the lookup at runtime, so
for these kinds of system, a method is slower than a function

51 / 133



Aside

Thus, in this example, there is no runtime overhead in using
method calls

The “method lookup” is done in the compiler and the resulting
code is just as fast as calling a function

Other languages or systems might do the lookup at runtime, so
for these kinds of system, a method is slower than a function

52 / 133



Further Aside

A clever compiler might even inline the function call

y = f.n + 42;

to avoid the cost of the function call

53 / 133



Even Further Aside

An even better compiler might even replace this by

y = 64;

as it “knows” what the current value of f.n is

Exercise. Go to a compiler course

54 / 133



Even Further Aside

An even better compiler might even replace this by

y = 64;

as it “knows” what the current value of f.n is

Exercise. Go to a compiler course

55 / 133



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects
• slots attached to objects
• direct construction and cloning to make instances
• no default inheritance, programmer defined inheritance, if

required

56 / 133



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects
• slots attached to objects
• direct construction and cloning to make instances
• no default inheritance, programmer defined inheritance, if

required

57 / 133



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects
• slots attached to objects
• direct construction and cloning to make instances
• no default inheritance, programmer defined inheritance, if

required

58 / 133



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Self, . . .

Typified by

• objects only, no classes

• methods attached to objects
• slots attached to objects
• direct construction and cloning to make instances
• no default inheritance, programmer defined inheritance, if

required

59 / 133



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects

• slots attached to objects
• direct construction and cloning to make instances
• no default inheritance, programmer defined inheritance, if

required

60 / 133



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects
• slots attached to objects

• direct construction and cloning to make instances
• no default inheritance, programmer defined inheritance, if

required

61 / 133



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects
• slots attached to objects
• direct construction and cloning to make instances

• no default inheritance, programmer defined inheritance, if
required

62 / 133



Object Oriented Languages
Object Centred

Less well recognised than the class centred languages are the
object centred languages, but they are widely used since
JavaScript is a major example

Examples include JavaScript, Self, . . .

Typified by

• objects only, no classes
• methods attached to objects
• slots attached to objects
• direct construction and cloning to make instances
• no default inheritance, programmer defined inheritance, if

required

63 / 133



Object Oriented Languages
List Constructor in JavaScript

function list() {

this.size = 0

this.node = {next: 0, prev: 0, data: 0}

this.node.next = this.node

this.node.prev = this.node

this.push_back = function (x) {

var tmp = {next: this.node,

prev: this.node.prev,

data: x}

this.node.prev.next = tmp

this.node.prev = tmp

this.size += 1

return x

}

this.toString = list_toString

for (var i = 0; i < arguments.length; i++) {

this.push_back(arguments[i])

}

}

64 / 133



Object Oriented Languages
List Constructor in JavaScript

• list: the current object is referred to as this; other
languages use self

• this.node = {next: 0, prev: 0, data: 0}: sets
the node slot to a structure value

• this.push back: defines a method to add an item
• this.toString = list toString: another method

defined elsewhere
• for ...: code to execute when making an object

65 / 133



Object Oriented Languages
List Constructor in JavaScript

• list: the current object is referred to as this; other
languages use self

• this.node = {next: 0, prev: 0, data: 0}: sets
the node slot to a structure value

• this.push back: defines a method to add an item
• this.toString = list toString: another method

defined elsewhere
• for ...: code to execute when making an object

66 / 133



Object Oriented Languages
List Constructor in JavaScript

• list: the current object is referred to as this; other
languages use self

• this.node = {next: 0, prev: 0, data: 0}: sets
the node slot to a structure value

• this.push back: defines a method to add an item

• this.toString = list toString: another method
defined elsewhere

• for ...: code to execute when making an object

67 / 133



Object Oriented Languages
List Constructor in JavaScript

• list: the current object is referred to as this; other
languages use self

• this.node = {next: 0, prev: 0, data: 0}: sets
the node slot to a structure value

• this.push back: defines a method to add an item
• this.toString = list toString: another method

defined elsewhere

• for ...: code to execute when making an object

68 / 133



Object Oriented Languages
List Constructor in JavaScript

• list: the current object is referred to as this; other
languages use self

• this.node = {next: 0, prev: 0, data: 0}: sets
the node slot to a structure value

• this.push back: defines a method to add an item
• this.toString = list toString: another method

defined elsewhere
• for ...: code to execute when making an object

69 / 133



Object Oriented Languages
List Constructor in JavaScript

This would be used like

var l = new list("hello", 1, "world");

l.push_back(2);

var len = l.size;

Note: no class definition, only how to make an object

70 / 133



Object Oriented Languages
List Constructor in JavaScript

This would be used like

var l = new list("hello", 1, "world");

l.push_back(2);

var len = l.size;

Note: no class definition, only how to make an object

71 / 133



Object Oriented Languages

Note that object centred languages are often dynamically
typed, while class centred languages are often statically typed

But these are separate concepts that should not be confused

Some class centred languages are dynamic, e.g., Common
Lisp can redefine its classes as it is running

72 / 133



Object Oriented Languages

Note that object centred languages are often dynamically
typed, while class centred languages are often statically typed

But these are separate concepts that should not be confused

Some class centred languages are dynamic, e.g., Common
Lisp can redefine its classes as it is running

73 / 133



Object Oriented Languages

Note that object centred languages are often dynamically
typed, while class centred languages are often statically typed

But these are separate concepts that should not be confused

Some class centred languages are dynamic, e.g., Common
Lisp can redefine its classes as it is running

74 / 133



Object Oriented Languages

Class centred OO could be thought of as

two kinds of object, two kinds of link

Namely classes and non-classes, inheritance and instance

75 / 133



Object Oriented Languages

Class centred OO could be thought of as

two kinds of object, two kinds of link

Namely classes and non-classes, inheritance and instance

76 / 133



Object Oriented Languages
Prototyping

Prototyping is then

one kind of object, no links

JavaScript is a prototyping language

NB: don’t confuse this usage with languages that are used for
prototyping!

77 / 133



Object Oriented Languages
Prototyping

Prototyping is then

one kind of object, no links

JavaScript is a prototyping language

NB: don’t confuse this usage with languages that are used for
prototyping!

78 / 133



Object Oriented Languages
Prototyping

Prototyping is then

one kind of object, no links

JavaScript is a prototyping language

NB: don’t confuse this usage with languages that are used for
prototyping!

79 / 133



Object Oriented Languages
Prototyping

• an object contains its own attributes (slots) and behaviours
(methods), not a class

• attribute and behaviour lookup are both by interrogating
the object

• creating a new object is done by direct construction or by
cloning, i.e., copying an existing object: the prototype

• no inheritance in the class-centred sense, but an object
can itself call other methods as it sees fit: an object could
contain an object of another type and treat that as its
parent, calling its methods explicitly

80 / 133



Object Oriented Languages
Prototyping

• an object contains its own attributes (slots) and behaviours
(methods), not a class

• attribute and behaviour lookup are both by interrogating
the object

• creating a new object is done by direct construction or by
cloning, i.e., copying an existing object: the prototype

• no inheritance in the class-centred sense, but an object
can itself call other methods as it sees fit: an object could
contain an object of another type and treat that as its
parent, calling its methods explicitly

81 / 133



Object Oriented Languages
Prototyping

• an object contains its own attributes (slots) and behaviours
(methods), not a class

• attribute and behaviour lookup are both by interrogating
the object

• creating a new object is done by direct construction or by
cloning, i.e., copying an existing object: the prototype

• no inheritance in the class-centred sense, but an object
can itself call other methods as it sees fit: an object could
contain an object of another type and treat that as its
parent, calling its methods explicitly

82 / 133



Object Oriented Languages
Prototyping

• an object contains its own attributes (slots) and behaviours
(methods), not a class

• attribute and behaviour lookup are both by interrogating
the object

• creating a new object is done by direct construction or by
cloning, i.e., copying an existing object: the prototype

• no inheritance in the class-centred sense, but an object
can itself call other methods as it sees fit: an object could
contain an object of another type and treat that as its
parent, calling its methods explicitly

83 / 133



Object Oriented Languages
Prototyping

Though not a defining feature of prototyping, these languages
often allow dynamic addition of attributes and behaviours to
objects:

function obj() { this.one = 1; this.two = 2; }

var a = new obj(), b = new obj();

a.three = 3;

// b.three is undefined

• used in differential inheritance: clone an object then add a
new behaviour

• again, different from class-centred inheritance as the
cloned object contains all its own methods and attributes

84 / 133



Object Oriented Languages
Prototyping

Though not a defining feature of prototyping, these languages
often allow dynamic addition of attributes and behaviours to
objects:

function obj() { this.one = 1; this.two = 2; }

var a = new obj(), b = new obj();

a.three = 3;

// b.three is undefined

• used in differential inheritance: clone an object then add a
new behaviour

• again, different from class-centred inheritance as the
cloned object contains all its own methods and attributes

85 / 133



Object Oriented Languages
Prototyping

Though not a defining feature of prototyping, these languages
often allow dynamic addition of attributes and behaviours to
objects:

function obj() { this.one = 1; this.two = 2; }

var a = new obj(), b = new obj();

a.three = 3;

// b.three is undefined

• used in differential inheritance: clone an object then add a
new behaviour

• again, different from class-centred inheritance as the
cloned object contains all its own methods and attributes

86 / 133



Object Oriented Languages
Prototyping

f()

g()

obj1 obj2

A

B

obj1 obj2

f()

g()

f()

Class centred Object centred

In class-centred, obj2 gets f and g from its classes

In object centred, they are self-contained

87 / 133



Object Oriented Languages
Prototyping

• less efficient (requires runtime lookups) but more flexible

• it was developed as real code is never as simple as a tidy
class hierarchy might provide: we might want some
behaviour of a parent but not all its behaviour. Prototyping
allows us to gather together whatever we need from
wherever we want without constraint

88 / 133



Object Oriented Languages
Prototyping

• less efficient (requires runtime lookups) but more flexible
• it was developed as real code is never as simple as a tidy

class hierarchy might provide: we might want some
behaviour of a parent but not all its behaviour. Prototyping
allows us to gather together whatever we need from
wherever we want without constraint

89 / 133



Object Oriented Languages
Delegation

The next kind of OO is delegation

Delegation is

one kind of object, one kind of link

In delegation, objects have a parent object

Thus a form of inheritance, but to a parent object

Also not a defining feature, but such languages often allow you
to change your parent (and therefore your behaviour) at
runtime!

90 / 133



Object Oriented Languages
Delegation

The next kind of OO is delegation

Delegation is

one kind of object, one kind of link

In delegation, objects have a parent object

Thus a form of inheritance, but to a parent object

Also not a defining feature, but such languages often allow you
to change your parent (and therefore your behaviour) at
runtime!

91 / 133



Object Oriented Languages
Delegation

The next kind of OO is delegation

Delegation is

one kind of object, one kind of link

In delegation, objects have a parent object

Thus a form of inheritance, but to a parent object

Also not a defining feature, but such languages often allow you
to change your parent (and therefore your behaviour) at
runtime!

92 / 133



Object Oriented Languages
Delegation

The next kind of OO is delegation

Delegation is

one kind of object, one kind of link

In delegation, objects have a parent object

Thus a form of inheritance, but to a parent object

Also not a defining feature, but such languages often allow you
to change your parent (and therefore your behaviour) at
runtime!

93 / 133



Object Oriented Languages
Delegation

The next kind of OO is delegation

Delegation is

one kind of object, one kind of link

In delegation, objects have a parent object

Thus a form of inheritance, but to a parent object

Also not a defining feature, but such languages often allow you
to change your parent (and therefore your behaviour) at
runtime!

94 / 133



Object Oriented Languages
Delegation

• an object contains its own attributes, behaviours and link to
a parent

• attribute lookup is via the object
• behaviour lookup is a little like class centred: if there is an

applicable method in the object, use it, otherwise pass to
the parent (but the parent is an object, not a class)

• creating a new object is done by direct construction or
cloning

• developed as this is a natural way of working and sharing
code

Prototyping languages can mimic delegation by following an
explicit reference to a parent object

95 / 133



Object Oriented Languages
Delegation

• an object contains its own attributes, behaviours and link to
a parent

• attribute lookup is via the object

• behaviour lookup is a little like class centred: if there is an
applicable method in the object, use it, otherwise pass to
the parent (but the parent is an object, not a class)

• creating a new object is done by direct construction or
cloning

• developed as this is a natural way of working and sharing
code

Prototyping languages can mimic delegation by following an
explicit reference to a parent object

96 / 133



Object Oriented Languages
Delegation

• an object contains its own attributes, behaviours and link to
a parent

• attribute lookup is via the object
• behaviour lookup is a little like class centred: if there is an

applicable method in the object, use it, otherwise pass to
the parent (but the parent is an object, not a class)

• creating a new object is done by direct construction or
cloning

• developed as this is a natural way of working and sharing
code

Prototyping languages can mimic delegation by following an
explicit reference to a parent object

97 / 133



Object Oriented Languages
Delegation

• an object contains its own attributes, behaviours and link to
a parent

• attribute lookup is via the object
• behaviour lookup is a little like class centred: if there is an

applicable method in the object, use it, otherwise pass to
the parent (but the parent is an object, not a class)

• creating a new object is done by direct construction or
cloning

• developed as this is a natural way of working and sharing
code

Prototyping languages can mimic delegation by following an
explicit reference to a parent object

98 / 133



Object Oriented Languages
Delegation

• an object contains its own attributes, behaviours and link to
a parent

• attribute lookup is via the object
• behaviour lookup is a little like class centred: if there is an

applicable method in the object, use it, otherwise pass to
the parent (but the parent is an object, not a class)

• creating a new object is done by direct construction or
cloning

• developed as this is a natural way of working and sharing
code

Prototyping languages can mimic delegation by following an
explicit reference to a parent object

99 / 133



Object Oriented Languages
Delegation

• an object contains its own attributes, behaviours and link to
a parent

• attribute lookup is via the object
• behaviour lookup is a little like class centred: if there is an

applicable method in the object, use it, otherwise pass to
the parent (but the parent is an object, not a class)

• creating a new object is done by direct construction or
cloning

• developed as this is a natural way of working and sharing
code

Prototyping languages can mimic delegation by following an
explicit reference to a parent object

100 / 133



Object Oriented Languages
Delegation

Later versions of JavaScript support delegation by means of a
parent slot named prototype

function base() { this.one = 1; }

function derived() { this.two = 2; }

var baseobj = new base();

derived.prototype = baseobj; // set parent pointer

var a = new derived(), b = new derived();

// a.one -> 1

baseobj.one = 99;

// a.one -> 99

// b.one -> 99

All the instances in this example share the same parent

101 / 133



Object Oriented Languages
Delegation

JavaScript automatically follows the parent chain; other
prototyping languages might not

JavaScript is so dynamic as a language we can even

baseobj.three = 3;

// a.three -> 3

// b.three -> 3

So allowing global dynamic addition of behaviour: all this works
with both slots and methods; overriding works as expected

Exercise. Compare with duck typing

102 / 133



Object Oriented Languages
Delegation

JavaScript automatically follows the parent chain; other
prototyping languages might not

JavaScript is so dynamic as a language we can even

baseobj.three = 3;

// a.three -> 3

// b.three -> 3

So allowing global dynamic addition of behaviour: all this works
with both slots and methods; overriding works as expected

Exercise. Compare with duck typing

103 / 133



Object Oriented Languages
Delegation

JavaScript automatically follows the parent chain; other
prototyping languages might not

JavaScript is so dynamic as a language we can even

baseobj.three = 3;

// a.three -> 3

// b.three -> 3

So allowing global dynamic addition of behaviour: all this works
with both slots and methods; overriding works as expected

Exercise. Compare with duck typing

104 / 133



Object Oriented Languages
Traits

Classically, traits is

two kinds of object, one kind of link

The link is to a parent

Objects, as usual, plus a special kind of object called a trait

Traits encapsulate behaviours of objects: the methods can be
pulled out of the object and have a separate existence in a trait

Thus we can reuse behaviour independently of the parent
hierarchy

An object could have the behaviour (trait) of a dog while its
parent could have the behaviour of a cat

105 / 133



Object Oriented Languages
Traits

Classically, traits is

two kinds of object, one kind of link

The link is to a parent

Objects, as usual, plus a special kind of object called a trait

Traits encapsulate behaviours of objects: the methods can be
pulled out of the object and have a separate existence in a trait

Thus we can reuse behaviour independently of the parent
hierarchy

An object could have the behaviour (trait) of a dog while its
parent could have the behaviour of a cat

106 / 133



Object Oriented Languages
Traits

Classically, traits is

two kinds of object, one kind of link

The link is to a parent

Objects, as usual, plus a special kind of object called a trait

Traits encapsulate behaviours of objects: the methods can be
pulled out of the object and have a separate existence in a trait

Thus we can reuse behaviour independently of the parent
hierarchy

An object could have the behaviour (trait) of a dog while its
parent could have the behaviour of a cat

107 / 133



Object Oriented Languages
Traits

Classically, traits is

two kinds of object, one kind of link

The link is to a parent

Objects, as usual, plus a special kind of object called a trait

Traits encapsulate behaviours of objects: the methods can be
pulled out of the object and have a separate existence in a trait

Thus we can reuse behaviour independently of the parent
hierarchy

An object could have the behaviour (trait) of a dog while its
parent could have the behaviour of a cat

108 / 133



Object Oriented Languages
Traits

Classically, traits is

two kinds of object, one kind of link

The link is to a parent

Objects, as usual, plus a special kind of object called a trait

Traits encapsulate behaviours of objects: the methods can be
pulled out of the object and have a separate existence in a trait

Thus we can reuse behaviour independently of the parent
hierarchy

An object could have the behaviour (trait) of a dog while its
parent could have the behaviour of a cat

109 / 133



Object Oriented Languages
Traits

Classically, traits is

two kinds of object, one kind of link

The link is to a parent

Objects, as usual, plus a special kind of object called a trait

Traits encapsulate behaviours of objects: the methods can be
pulled out of the object and have a separate existence in a trait

Thus we can reuse behaviour independently of the parent
hierarchy

An object could have the behaviour (trait) of a dog while its
parent could have the behaviour of a cat

110 / 133



Object Oriented Languages
Traits

eat()

sleep()

wag()

Cat trait

woof()

wag()

Dog trait

parent

Felix

Spot

Tom

Tom wags like a dog, but sleeps like a cat

111 / 133



Object Oriented Languages
Traits

• an object contains its own attributes and links to a trait and
(optionally) a parent

• attribute lookup is via the object
• if there is an applicable method in the trait, use it,

otherwise pass to the parent
• creating a new object is done by direct construction or

cloning
• developed as this allows independent sharing of behaviour

112 / 133



Object Oriented Languages
Traits

• an object contains its own attributes and links to a trait and
(optionally) a parent

• attribute lookup is via the object

• if there is an applicable method in the trait, use it,
otherwise pass to the parent

• creating a new object is done by direct construction or
cloning

• developed as this allows independent sharing of behaviour

113 / 133



Object Oriented Languages
Traits

• an object contains its own attributes and links to a trait and
(optionally) a parent

• attribute lookup is via the object
• if there is an applicable method in the trait, use it,

otherwise pass to the parent

• creating a new object is done by direct construction or
cloning

• developed as this allows independent sharing of behaviour

114 / 133



Object Oriented Languages
Traits

• an object contains its own attributes and links to a trait and
(optionally) a parent

• attribute lookup is via the object
• if there is an applicable method in the trait, use it,

otherwise pass to the parent
• creating a new object is done by direct construction or

cloning

• developed as this allows independent sharing of behaviour

115 / 133



Object Oriented Languages
Traits

• an object contains its own attributes and links to a trait and
(optionally) a parent

• attribute lookup is via the object
• if there is an applicable method in the trait, use it,

otherwise pass to the parent
• creating a new object is done by direct construction or

cloning
• developed as this allows independent sharing of behaviour

116 / 133



Object Oriented Languages
Traits

Traits have recently had a resurgence in popularity

Though somewhat changed in their modern form

Thing like traits appear in Python, Perl (roles), Ruby, Rust,
Java, Go, Common Lisp

117 / 133



Object Oriented Languages
Traits

Traits have recently had a resurgence in popularity

Though somewhat changed in their modern form

Thing like traits appear in Python, Perl (roles), Ruby, Rust,
Java, Go, Common Lisp

118 / 133



Object Oriented Languages
Traits

Traits have recently had a resurgence in popularity

Though somewhat changed in their modern form

Thing like traits appear in Python, Perl (roles), Ruby, Rust,
Java, Go, Common Lisp

119 / 133



Object Oriented Languages
Traits

A trait was originally a collection of methods, but now means a
variety of things, sometimes under different names

Often it now means a collection of method signatures, i.e., just
the method names with the types of their arguments and result,
no actual code

Although some people reserve the word interface for a list of
signatures

Traits are not exclusively in object centred languages; the
parent link also optional; an object (or class) can attach to more
than one trait

120 / 133



Object Oriented Languages
Traits

A trait was originally a collection of methods, but now means a
variety of things, sometimes under different names

Often it now means a collection of method signatures, i.e., just
the method names with the types of their arguments and result,
no actual code

Although some people reserve the word interface for a list of
signatures

Traits are not exclusively in object centred languages; the
parent link also optional; an object (or class) can attach to more
than one trait

121 / 133



Object Oriented Languages
Traits

A trait was originally a collection of methods, but now means a
variety of things, sometimes under different names

Often it now means a collection of method signatures, i.e., just
the method names with the types of their arguments and result,
no actual code

Although some people reserve the word interface for a list of
signatures

Traits are not exclusively in object centred languages; the
parent link also optional; an object (or class) can attach to more
than one trait

122 / 133



Object Oriented Languages
Traits

A trait was originally a collection of methods, but now means a
variety of things, sometimes under different names

Often it now means a collection of method signatures, i.e., just
the method names with the types of their arguments and result,
no actual code

Although some people reserve the word interface for a list of
signatures

Traits are not exclusively in object centred languages; the
parent link also optional; an object (or class) can attach to more
than one trait

123 / 133



Object Oriented Languages
Traits

Java interfaces are list of signatures; Go also has interfaces

Java 8 introduced something like full traits with its default
interface methods, i.e., some code

This is like traits in Rust: generally signatures, but allows some
code to use as a default

124 / 133



Object Oriented Languages
Traits

Java interfaces are list of signatures; Go also has interfaces

Java 8 introduced something like full traits with its default
interface methods, i.e., some code

This is like traits in Rust: generally signatures, but allows some
code to use as a default

125 / 133



Object Oriented Languages
Traits

Java interfaces are list of signatures; Go also has interfaces

Java 8 introduced something like full traits with its default
interface methods, i.e., some code

This is like traits in Rust: generally signatures, but allows some
code to use as a default

126 / 133



Object Oriented Languages
Traits

Exercise. Also read about Common Lisp mixins

Exercise. Rust uses traits extensively: currently without
inheritance through parent links, but with inheritance in the
traits. Read about this

127 / 133



Object Oriented Languages

methods

slots slots

methods

objects

parent

class

class

Class Centred

128 / 133



Object Oriented Languages

slots

methods methods

slots

objects

Prototype

129 / 133



Object Oriented Languages

slots

methods methods

slots

objects

methods

slots

parent

Delegation

130 / 133



Object Oriented Languages

objects

parent

methods
slots

slots slots

trait

methods

Traits

One kind of link?

131 / 133



Object Oriented Languages

objects

parent

methods
slots

slots slots

trait

methods

Traits
One kind of link?

132 / 133



Object Oriented Languages

links

objects

1 2
0 prototyping
1 delegation trait
2 class centred

133 / 133


