
Object Oriented Languages
Method Dispatch

For simple OO systems selection of the correct method to apply
in a given circumstance (method dispatch) is fairly easy

To be definite in the following we shall assume a class centred
system

For obj.meth() we (i.e., the lookup mechanism in the
compiler or interpreter) look in the object’s class to see if there
is an applicable method; if not we look to the class’s superclass

Repeat until we find an applicable method, or we run out of
superclasses, when we report “no applicable method”

1 / 165



Object Oriented Languages
Method Dispatch

For simple OO systems selection of the correct method to apply
in a given circumstance (method dispatch) is fairly easy

To be definite in the following we shall assume a class centred
system

For obj.meth() we (i.e., the lookup mechanism in the
compiler or interpreter) look in the object’s class to see if there
is an applicable method; if not we look to the class’s superclass

Repeat until we find an applicable method, or we run out of
superclasses, when we report “no applicable method”

2 / 165



Object Oriented Languages
Method Dispatch

For simple OO systems selection of the correct method to apply
in a given circumstance (method dispatch) is fairly easy

To be definite in the following we shall assume a class centred
system

For obj.meth() we (i.e., the lookup mechanism in the
compiler or interpreter) look in the object’s class to see if there
is an applicable method; if not we look to the class’s superclass

Repeat until we find an applicable method, or we run out of
superclasses, when we report “no applicable method”

3 / 165



Object Oriented Languages
Method Dispatch

For simple OO systems selection of the correct method to apply
in a given circumstance (method dispatch) is fairly easy

To be definite in the following we shall assume a class centred
system

For obj.meth() we (i.e., the lookup mechanism in the
compiler or interpreter) look in the object’s class to see if there
is an applicable method; if not we look to the class’s superclass

Repeat until we find an applicable method, or we run out of
superclasses, when we report “no applicable method”

4 / 165



Object Oriented Languages
Method Dispatch

In this context “applicable” means “of the given name” and
suitable arguments

So obj.foo(42) looks for methods with the name foo that can
be applied to an integer

5 / 165



Object Oriented Languages
Method Dispatch

In this context “applicable” means “of the given name” and
suitable arguments

So obj.foo(42) looks for methods with the name foo that can
be applied to an integer

6 / 165



Object Oriented Languages
Aside

In some languages, mostly those with static type hierarchies,
e.g., Java and C++, the method can be determined and chosen
at compile time as the class hierarchy is determined and fixed
at compile time

Meaning no lookup overhead at runtime: the method has
already been selected by the compiler and is directly called with
no more ado

Other languages, mostly those with dynamic types, e.g.,
JavaScript and Lisp, the method can only be chosen at runtime
as the class or object relationships may change during the
running of the program

7 / 165



Object Oriented Languages
Aside

In some languages, mostly those with static type hierarchies,
e.g., Java and C++, the method can be determined and chosen
at compile time as the class hierarchy is determined and fixed
at compile time

Meaning no lookup overhead at runtime: the method has
already been selected by the compiler and is directly called with
no more ado

Other languages, mostly those with dynamic types, e.g.,
JavaScript and Lisp, the method can only be chosen at runtime
as the class or object relationships may change during the
running of the program

8 / 165



Object Oriented Languages
Aside

In some languages, mostly those with static type hierarchies,
e.g., Java and C++, the method can be determined and chosen
at compile time as the class hierarchy is determined and fixed
at compile time

Meaning no lookup overhead at runtime: the method has
already been selected by the compiler and is directly called with
no more ado

Other languages, mostly those with dynamic types, e.g.,
JavaScript and Lisp, the method can only be chosen at runtime
as the class or object relationships may change during the
running of the program

9 / 165



Object Oriented Languages
Aside

So calling a method in such languages has the extra overhead
of determining which is the correct method before before we
can execute it

Meaning it’s a bit slower to run

Good compilers/interpreters have many tricks to reduce the
dispatch overhead, e.g., method caching

This is trading dynamic behaviour against speed of execution

10 / 165



Object Oriented Languages
Aside

So calling a method in such languages has the extra overhead
of determining which is the correct method before before we
can execute it

Meaning it’s a bit slower to run

Good compilers/interpreters have many tricks to reduce the
dispatch overhead, e.g., method caching

This is trading dynamic behaviour against speed of execution

11 / 165



Object Oriented Languages
Aside

So calling a method in such languages has the extra overhead
of determining which is the correct method before before we
can execute it

Meaning it’s a bit slower to run

Good compilers/interpreters have many tricks to reduce the
dispatch overhead, e.g., method caching

This is trading dynamic behaviour against speed of execution

12 / 165



Object Oriented Languages
Aside

So calling a method in such languages has the extra overhead
of determining which is the correct method before before we
can execute it

Meaning it’s a bit slower to run

Good compilers/interpreters have many tricks to reduce the
dispatch overhead, e.g., method caching

This is trading dynamic behaviour against speed of execution

13 / 165



Object Oriented Languages
Method Dispatch

If there are generic functions or multiple inheritance we have to
work a bit harder

Essentially we make a list of all the applicable methods from
the arguments’ classes and their superclasses, sort them into
some useful order, then use the first in the list

In principle easy, but a lot of detail in reality

14 / 165



Object Oriented Languages
Method Dispatch

If there are generic functions or multiple inheritance we have to
work a bit harder

Essentially we make a list of all the applicable methods from
the arguments’ classes and their superclasses, sort them into
some useful order, then use the first in the list

In principle easy, but a lot of detail in reality

15 / 165



Object Oriented Languages
Method Dispatch

If there are generic functions or multiple inheritance we have to
work a bit harder

Essentially we make a list of all the applicable methods from
the arguments’ classes and their superclasses, sort them into
some useful order, then use the first in the list

In principle easy, but a lot of detail in reality

16 / 165



Object Oriented Languages
Method Dispatch

This needs various bits of infrastructure to work

We need to know all the superclasses of the class of an object:
the class precedence list of an argument in a method call is a
list of all the superclasses starting with the class of the
argument

This is ordered, typically with the closest classes first, i.e., if A is
a subclass of B which is a subclass of C, the list will start (A B
C ...)

So, for example, an argument of 42 might have CPL
(<fpi> <integer> <number> <object>)

17 / 165



Object Oriented Languages
Method Dispatch

This needs various bits of infrastructure to work

We need to know all the superclasses of the class of an object:
the class precedence list of an argument in a method call is a
list of all the superclasses starting with the class of the
argument

This is ordered, typically with the closest classes first, i.e., if A is
a subclass of B which is a subclass of C, the list will start (A B
C ...)

So, for example, an argument of 42 might have CPL
(<fpi> <integer> <number> <object>)

18 / 165



Object Oriented Languages
Method Dispatch

This needs various bits of infrastructure to work

We need to know all the superclasses of the class of an object:
the class precedence list of an argument in a method call is a
list of all the superclasses starting with the class of the
argument

This is ordered, typically with the closest classes first, i.e., if A is
a subclass of B which is a subclass of C, the list will start (A B
C ...)

So, for example, an argument of 42 might have CPL
(<fpi> <integer> <number> <object>)

19 / 165



Object Oriented Languages
Method Dispatch

This needs various bits of infrastructure to work

We need to know all the superclasses of the class of an object:
the class precedence list of an argument in a method call is a
list of all the superclasses starting with the class of the
argument

This is ordered, typically with the closest classes first, i.e., if A is
a subclass of B which is a subclass of C, the list will start (A B
C ...)

So, for example, an argument of 42 might have CPL
(<fpi> <integer> <number> <object>)

20 / 165



Object Oriented Languages
Method Dispatch

There will be need to make some choices in the case of
multiple inheritance, where there is no clear “closer” class: if A
inherits directly from both B and C, do we want (A B C ...) or
(A C B ...)?

More on this in a moment

21 / 165



Object Oriented Languages
Method Dispatch

There will be need to make some choices in the case of
multiple inheritance, where there is no clear “closer” class: if A
inherits directly from both B and C, do we want (A B C ...) or
(A C B ...)?

More on this in a moment

22 / 165



Object Oriented Languages
Method Dispatch

If we call a generic function on arguments (a1,a2, . . .) we first
need to find those methods on the GF that it makes sense to
consider

A method is applicable to a call with arguments (a1,a2, . . .) if it
is defined for classes (A1,A2, . . .) where for each i , the class of
ai is a subclass of Ai

So a method with domain (<integer> <number>) is
applicable to a call with arguments (23 42) as these
arguments have classes (<integer> <integer>)

But not to a call with arguments (4.0 99) as 4.0 has class
<double-float> which is not a subclass of <integer>

23 / 165



Object Oriented Languages
Method Dispatch

If we call a generic function on arguments (a1,a2, . . .) we first
need to find those methods on the GF that it makes sense to
consider

A method is applicable to a call with arguments (a1,a2, . . .) if it
is defined for classes (A1,A2, . . .) where for each i , the class of
ai is a subclass of Ai

So a method with domain (<integer> <number>) is
applicable to a call with arguments (23 42) as these
arguments have classes (<integer> <integer>)

But not to a call with arguments (4.0 99) as 4.0 has class
<double-float> which is not a subclass of <integer>

24 / 165



Object Oriented Languages
Method Dispatch

If we call a generic function on arguments (a1,a2, . . .) we first
need to find those methods on the GF that it makes sense to
consider

A method is applicable to a call with arguments (a1,a2, . . .) if it
is defined for classes (A1,A2, . . .) where for each i , the class of
ai is a subclass of Ai

So a method with domain (<integer> <number>) is
applicable to a call with arguments (23 42) as these
arguments have classes (<integer> <integer>)

But not to a call with arguments (4.0 99) as 4.0 has class
<double-float> which is not a subclass of <integer>

25 / 165



Object Oriented Languages
Method Dispatch

If we call a generic function on arguments (a1,a2, . . .) we first
need to find those methods on the GF that it makes sense to
consider

A method is applicable to a call with arguments (a1,a2, . . .) if it
is defined for classes (A1,A2, . . .) where for each i , the class of
ai is a subclass of Ai

So a method with domain (<integer> <number>) is
applicable to a call with arguments (23 42) as these
arguments have classes (<integer> <integer>)

But not to a call with arguments (4.0 99) as 4.0 has class
<double-float> which is not a subclass of <integer>

26 / 165



Object Oriented Languages
Method Dispatch

A method with domain (A1,A2, . . . ,An) is more specific than a
method with domain (B1,B2, . . . ,Bn) for the arguments
(a1,a2, . . . ,an) if

1. they are both applicable and
2. there is an k with Ai = Bi for i < k , but
3. Ak appears before Bk in the CPL for argument ak

27 / 165



Object Oriented Languages
Method Dispatch

In simpler terms, one method is more specific than another if
the class in the first place they differ is more specific

This is a kind of alphabetical ordering, where the alphabet is
specified by the CPL

In a normal alphabetic order, we put “can” before “cat” as this is
determined by the first place the words differ: namely “n”
comes before “t”

We naturally extend to, say, “cat1” before “cat3” as “1” comes
before “3”. But now there is more than one alphabetic order in
play

Or even “c♥9” before “c♣1” if “♥” is before “♣”. Each character
position has its own alphabet

28 / 165



Object Oriented Languages
Method Dispatch

In simpler terms, one method is more specific than another if
the class in the first place they differ is more specific

This is a kind of alphabetical ordering, where the alphabet is
specified by the CPL

In a normal alphabetic order, we put “can” before “cat” as this is
determined by the first place the words differ: namely “n”
comes before “t”

We naturally extend to, say, “cat1” before “cat3” as “1” comes
before “3”. But now there is more than one alphabetic order in
play

Or even “c♥9” before “c♣1” if “♥” is before “♣”. Each character
position has its own alphabet

29 / 165



Object Oriented Languages
Method Dispatch

In simpler terms, one method is more specific than another if
the class in the first place they differ is more specific

This is a kind of alphabetical ordering, where the alphabet is
specified by the CPL

In a normal alphabetic order, we put “can” before “cat” as this is
determined by the first place the words differ: namely “n”
comes before “t”

We naturally extend to, say, “cat1” before “cat3” as “1” comes
before “3”. But now there is more than one alphabetic order in
play

Or even “c♥9” before “c♣1” if “♥” is before “♣”. Each character
position has its own alphabet

30 / 165



Object Oriented Languages
Method Dispatch

In simpler terms, one method is more specific than another if
the class in the first place they differ is more specific

This is a kind of alphabetical ordering, where the alphabet is
specified by the CPL

In a normal alphabetic order, we put “can” before “cat” as this is
determined by the first place the words differ: namely “n”
comes before “t”

We naturally extend to, say, “cat1” before “cat3” as “1” comes
before “3”. But now there is more than one alphabetic order in
play

Or even “c♥9” before “c♣1” if “♥” is before “♣”. Each character
position has its own alphabet

31 / 165



Object Oriented Languages
Method Dispatch

In simpler terms, one method is more specific than another if
the class in the first place they differ is more specific

This is a kind of alphabetical ordering, where the alphabet is
specified by the CPL

In a normal alphabetic order, we put “can” before “cat” as this is
determined by the first place the words differ: namely “n”
comes before “t”

We naturally extend to, say, “cat1” before “cat3” as “1” comes
before “3”. But now there is more than one alphabetic order in
play

Or even “c♥9” before “c♣1” if “♥” is before “♣”. Each character
position has its own alphabet

32 / 165



Object Oriented Languages
Method Dispatch

This is the situation for method ordering: each argument
position has its own “alphabet”, with order specified by the CPL
for the object in that position

Example. Calling a method with arguments (1 1.0) of classes
<fpi> and <double-float>

The CPL for the first argument is (<fpi> <integer>
<number> <object>)

The CPL for the second argument is (<double-float>
<float> <number> <object>)

33 / 165



Object Oriented Languages
Method Dispatch

This is the situation for method ordering: each argument
position has its own “alphabet”, with order specified by the CPL
for the object in that position

Example. Calling a method with arguments (1 1.0) of classes
<fpi> and <double-float>

The CPL for the first argument is (<fpi> <integer>
<number> <object>)

The CPL for the second argument is (<double-float>
<float> <number> <object>)

34 / 165



Object Oriented Languages
Method Dispatch

This is the situation for method ordering: each argument
position has its own “alphabet”, with order specified by the CPL
for the object in that position

Example. Calling a method with arguments (1 1.0) of classes
<fpi> and <double-float>

The CPL for the first argument is (<fpi> <integer>
<number> <object>)

The CPL for the second argument is (<double-float>
<float> <number> <object>)

35 / 165



Object Oriented Languages
Method Dispatch

This is the situation for method ordering: each argument
position has its own “alphabet”, with order specified by the CPL
for the object in that position

Example. Calling a method with arguments (1 1.0) of classes
<fpi> and <double-float>

The CPL for the first argument is (<fpi> <integer>
<number> <object>)

The CPL for the second argument is (<double-float>
<float> <number> <object>)

36 / 165



Object Oriented Languages
Method Dispatch

A method with domain (<integer> <float>) is more specific
than one with domain (<integer> <number>)

A method with domain (<fpi> <object>) is more specific
than one with domain (<integer> <double-float>)

Just as “cup” is before “dog”: even though the second argument
is very unspecific, the first argument prevails

A method with domain (<float> <float>) is not applicable
unless the language allows automatic coercion of types: a huge
extra complication

37 / 165



Object Oriented Languages
Method Dispatch

A method with domain (<integer> <float>) is more specific
than one with domain (<integer> <number>)

A method with domain (<fpi> <object>) is more specific
than one with domain (<integer> <double-float>)

Just as “cup” is before “dog”: even though the second argument
is very unspecific, the first argument prevails

A method with domain (<float> <float>) is not applicable
unless the language allows automatic coercion of types: a huge
extra complication

38 / 165



Object Oriented Languages
Method Dispatch

A method with domain (<integer> <float>) is more specific
than one with domain (<integer> <number>)

A method with domain (<fpi> <object>) is more specific
than one with domain (<integer> <double-float>)

Just as “cup” is before “dog”: even though the second argument
is very unspecific, the first argument prevails

A method with domain (<float> <float>) is not applicable
unless the language allows automatic coercion of types: a huge
extra complication

39 / 165



Object Oriented Languages
Method Dispatch

A method with domain (<integer> <float>) is more specific
than one with domain (<integer> <number>)

A method with domain (<fpi> <object>) is more specific
than one with domain (<integer> <double-float>)

Just as “cup” is before “dog”: even though the second argument
is very unspecific, the first argument prevails

A method with domain (<float> <float>) is not applicable
unless the language allows automatic coercion of types: a huge
extra complication

40 / 165



Object Oriented Languages
Method Dispatch

So the way to choose a method for a given set of arguments is

1. find all the applicable methods
2. find the CPLs for each argument
3. sort the methods in decreasing order of specificity

according to the CPLs of the arguments
4. take the first (most specific) in the list

The sorted method list is useful for when we want to be more
inventive on using methods

Note this reduces to what we expect in an object-receiver
language that has only a single object dispatch on

41 / 165



Object Oriented Languages
Method Dispatch

So the way to choose a method for a given set of arguments is

1. find all the applicable methods
2. find the CPLs for each argument
3. sort the methods in decreasing order of specificity

according to the CPLs of the arguments
4. take the first (most specific) in the list

The sorted method list is useful for when we want to be more
inventive on using methods

Note this reduces to what we expect in an object-receiver
language that has only a single object dispatch on

42 / 165



Object Oriented Languages
Method Dispatch

So the way to choose a method for a given set of arguments is

1. find all the applicable methods
2. find the CPLs for each argument
3. sort the methods in decreasing order of specificity

according to the CPLs of the arguments
4. take the first (most specific) in the list

The sorted method list is useful for when we want to be more
inventive on using methods

Note this reduces to what we expect in an object-receiver
language that has only a single object dispatch on

43 / 165



Object Oriented Languages
Method Dispatch

This dispatch calculation will be done either at compile time (for
a fixed class hierarchy) meaning no run-time overhead

Or at run-time, meaning some considerable execution overhead

If clever tricks are not employed

For example, a lot of effort has been put into JavaScript on
precisely this point

44 / 165



Object Oriented Languages
Method Dispatch

This dispatch calculation will be done either at compile time (for
a fixed class hierarchy) meaning no run-time overhead

Or at run-time, meaning some considerable execution overhead

If clever tricks are not employed

For example, a lot of effort has been put into JavaScript on
precisely this point

45 / 165



Object Oriented Languages
Method Dispatch

This dispatch calculation will be done either at compile time (for
a fixed class hierarchy) meaning no run-time overhead

Or at run-time, meaning some considerable execution overhead

If clever tricks are not employed

For example, a lot of effort has been put into JavaScript on
precisely this point

46 / 165



Object Oriented Languages
Method Dispatch

This dispatch calculation will be done either at compile time (for
a fixed class hierarchy) meaning no run-time overhead

Or at run-time, meaning some considerable execution overhead

If clever tricks are not employed

For example, a lot of effort has been put into JavaScript on
precisely this point

47 / 165



Object Oriented Languages
Method Composition

Now, we usually want more specific methods to override (aka
specialise) less specific methods, but sometimes we want
method composition

Suppose we have a Java class B that extends (is derived from;
is a subclass of) A

When making an instance of B, a constructor method for B does
not replace (override) the constructor method for A, but both are
called: first A’s then B’s

In this case, a more specific method does not override a less
specific one, but is composed with it

48 / 165



Object Oriented Languages
Method Composition

Now, we usually want more specific methods to override (aka
specialise) less specific methods, but sometimes we want
method composition

Suppose we have a Java class B that extends (is derived from;
is a subclass of) A

When making an instance of B, a constructor method for B does
not replace (override) the constructor method for A, but both are
called: first A’s then B’s

In this case, a more specific method does not override a less
specific one, but is composed with it

49 / 165



Object Oriented Languages
Method Composition

Now, we usually want more specific methods to override (aka
specialise) less specific methods, but sometimes we want
method composition

Suppose we have a Java class B that extends (is derived from;
is a subclass of) A

When making an instance of B, a constructor method for B does
not replace (override) the constructor method for A, but both are
called: first A’s then B’s

In this case, a more specific method does not override a less
specific one, but is composed with it

50 / 165



Object Oriented Languages
Method Composition

Now, we usually want more specific methods to override (aka
specialise) less specific methods, but sometimes we want
method composition

Suppose we have a Java class B that extends (is derived from;
is a subclass of) A

When making an instance of B, a constructor method for B does
not replace (override) the constructor method for A, but both are
called: first A’s then B’s

In this case, a more specific method does not override a less
specific one, but is composed with it

51 / 165



Object Oriented Languages
Method Composition

Similarly C++ has destructors that get called when an object is
deleted, and they are called in the opposite order, B’s then A’s

In these cases the composition is to run both methods, in an
appropriate order

52 / 165



Object Oriented Languages
Method Composition

Similarly C++ has destructors that get called when an object is
deleted, and they are called in the opposite order, B’s then A’s

In these cases the composition is to run both methods, in an
appropriate order

53 / 165



Object Oriented Languages
Method Composition

Other languages allow other kinds of composition for general
methods

• The super keyword in Smalltalk and Java allows a method
to call the next most specific method: this is why we need
the complete sorted applicable method list

• call-next-method in Lisp is similar
• Common Lisp also has before, after and around

composition: they call it method combination. These add a
method to a generic function that runs before, or after, or
instead of the existing method

• Some languages allow arbitrary user-defined method
composition: we shall talk about metaobject protocols soon

54 / 165



Object Oriented Languages
Method Composition

Other languages allow other kinds of composition for general
methods

• The super keyword in Smalltalk and Java allows a method
to call the next most specific method: this is why we need
the complete sorted applicable method list

• call-next-method in Lisp is similar
• Common Lisp also has before, after and around

composition: they call it method combination. These add a
method to a generic function that runs before, or after, or
instead of the existing method

• Some languages allow arbitrary user-defined method
composition: we shall talk about metaobject protocols soon

55 / 165



Object Oriented Languages
Method Composition

Other languages allow other kinds of composition for general
methods

• The super keyword in Smalltalk and Java allows a method
to call the next most specific method: this is why we need
the complete sorted applicable method list

• call-next-method in Lisp is similar

• Common Lisp also has before, after and around
composition: they call it method combination. These add a
method to a generic function that runs before, or after, or
instead of the existing method

• Some languages allow arbitrary user-defined method
composition: we shall talk about metaobject protocols soon

56 / 165



Object Oriented Languages
Method Composition

Other languages allow other kinds of composition for general
methods

• The super keyword in Smalltalk and Java allows a method
to call the next most specific method: this is why we need
the complete sorted applicable method list

• call-next-method in Lisp is similar
• Common Lisp also has before, after and around

composition: they call it method combination. These add a
method to a generic function that runs before, or after, or
instead of the existing method

• Some languages allow arbitrary user-defined method
composition: we shall talk about metaobject protocols soon

57 / 165



Object Oriented Languages
Method Composition

Other languages allow other kinds of composition for general
methods

• The super keyword in Smalltalk and Java allows a method
to call the next most specific method: this is why we need
the complete sorted applicable method list

• call-next-method in Lisp is similar
• Common Lisp also has before, after and around

composition: they call it method combination. These add a
method to a generic function that runs before, or after, or
instead of the existing method

• Some languages allow arbitrary user-defined method
composition: we shall talk about metaobject protocols soon

58 / 165



Object Oriented Languages
Method Composition

This another reason is why methods are different from
functions: methods need to know about other applicable
methods, while functions live in isolation

59 / 165



Object Oriented Languages
Multiple Inheritance

We have yet to tackle one more question: method selection
when we have multiple inheritance in the class hierarchy

This applies to both single and multiple dispatch method calls

The basic idea of MI is that you can inherit behaviour or
structure from more than one parent

But when you have more than one parent, how do you order the
superclasses when determining the CPL?

60 / 165



Object Oriented Languages
Multiple Inheritance

We have yet to tackle one more question: method selection
when we have multiple inheritance in the class hierarchy

This applies to both single and multiple dispatch method calls

The basic idea of MI is that you can inherit behaviour or
structure from more than one parent

But when you have more than one parent, how do you order the
superclasses when determining the CPL?

61 / 165



Object Oriented Languages
Multiple Inheritance

We have yet to tackle one more question: method selection
when we have multiple inheritance in the class hierarchy

This applies to both single and multiple dispatch method calls

The basic idea of MI is that you can inherit behaviour or
structure from more than one parent

But when you have more than one parent, how do you order the
superclasses when determining the CPL?

62 / 165



Object Oriented Languages
Multiple Inheritance

We have yet to tackle one more question: method selection
when we have multiple inheritance in the class hierarchy

This applies to both single and multiple dispatch method calls

The basic idea of MI is that you can inherit behaviour or
structure from more than one parent

But when you have more than one parent, how do you order the
superclasses when determining the CPL?

63 / 165



Object Oriented Languages
Multiple Inheritance

B C

A

D

A method is called with argument in class A: should the CPL be
(A B C D) or (A C B D)?

Or something else entirely?

In simple cases, the choice can be made by looking at how the
classes were defined

64 / 165



Object Oriented Languages
Multiple Inheritance

B C

A

D

A method is called with argument in class A: should the CPL be
(A B C D) or (A C B D)?

Or something else entirely?

In simple cases, the choice can be made by looking at how the
classes were defined

65 / 165



Object Oriented Languages
Multiple Inheritance

B C

A

D

A method is called with argument in class A: should the CPL be
(A B C D) or (A C B D)?

Or something else entirely?

In simple cases, the choice can be made by looking at how the
classes were defined

66 / 165



Object Oriented Languages
Multiple Inheritance

B C

A

D

A method is called with argument in class A: should the CPL be
(A B C D) or (A C B D)?

Or something else entirely?

In simple cases, the choice can be made by looking at how the
classes were defined

67 / 165



Object Oriented Languages
Multiple Inheritance

If the definition was

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass A (B C) ...)

the CPL might be (A B C D)

On the other hand, for

(defclass A (C B) ...)

the CPL might be (A C B D)

This makes the resolution of B versus C consistent with the
(perhaps unconscious) choice of the programmer

68 / 165



Object Oriented Languages
Multiple Inheritance

If the definition was

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass A (B C) ...)

the CPL might be (A B C D)

On the other hand, for

(defclass A (C B) ...)

the CPL might be (A C B D)

This makes the resolution of B versus C consistent with the
(perhaps unconscious) choice of the programmer

69 / 165



Object Oriented Languages
Multiple Inheritance

But what about D and E in

(defclass F () ...)

(defclass E (F) ...)

(defclass D (F) ...)

(defclass B (D) ...)

(defclass C (E) ...)

(defclass A (B C) ...)

70 / 165



Object Oriented Languages

B C

A

D E

F

There is no disambiguating defclass to guide us

We might want D before E as B is before C

Or not

And do we want D before or after C?

71 / 165



Object Oriented Languages

B C

A

D E

F

There is no disambiguating defclass to guide us

We might want D before E as B is before C

Or not

And do we want D before or after C?

72 / 165



Object Oriented Languages

B C

A

D E

F

There is no disambiguating defclass to guide us

We might want D before E as B is before C

Or not

And do we want D before or after C?

73 / 165



Object Oriented Languages

B C

A

D E

F

There is no disambiguating defclass to guide us

We might want D before E as B is before C

Or not

And do we want D before or after C?

74 / 165



Object Oriented Languages

The class definitions do not help here, so we need a little more
help

We have two dimensions: left-right and up-down, and different
people have different ideas on which should be used to resolve
the order

75 / 165



Object Oriented Languages

The class definitions do not help here, so we need a little more
help

We have two dimensions: left-right and up-down, and different
people have different ideas on which should be used to resolve
the order

76 / 165



Object Oriented Languages
Multiple Inheritance

Varieties of Lisp made different choices, of course

FLAVORS: do a depth-first traversal of the graph, keep the
leftmost of any duplicates

The traversal is A B D F C E F, which becomes the CPL (A
B D F C E)

LOOPS: do a depth-first traversal of the graph, keep the
rightmost of any duplicates

The same traversal becomes the CPL (A B D C E F)

77 / 165



Object Oriented Languages
Multiple Inheritance

Varieties of Lisp made different choices, of course

FLAVORS: do a depth-first traversal of the graph, keep the
leftmost of any duplicates

The traversal is A B D F C E F, which becomes the CPL (A
B D F C E)

LOOPS: do a depth-first traversal of the graph, keep the
rightmost of any duplicates

The same traversal becomes the CPL (A B D C E F)

78 / 165



Object Oriented Languages
Multiple Inheritance

Varieties of Lisp made different choices, of course

FLAVORS: do a depth-first traversal of the graph, keep the
leftmost of any duplicates

The traversal is A B D F C E F, which becomes the CPL (A
B D F C E)

LOOPS: do a depth-first traversal of the graph, keep the
rightmost of any duplicates

The same traversal becomes the CPL (A B D C E F)

79 / 165



Object Oriented Languages
Multiple Inheritance

Varieties of Lisp made different choices, of course

FLAVORS: do a depth-first traversal of the graph, keep the
leftmost of any duplicates

The traversal is A B D F C E F, which becomes the CPL (A
B D F C E)

LOOPS: do a depth-first traversal of the graph, keep the
rightmost of any duplicates

The same traversal becomes the CPL (A B D C E F)

80 / 165



Object Oriented Languages
Multiple Inheritance

Varieties of Lisp made different choices, of course

FLAVORS: do a depth-first traversal of the graph, keep the
leftmost of any duplicates

The traversal is A B D F C E F, which becomes the CPL (A
B D F C E)

LOOPS: do a depth-first traversal of the graph, keep the
rightmost of any duplicates

The same traversal becomes the CPL (A B D C E F)

81 / 165



Object Oriented Languages
Multiple Inheritance

1

2

3

4

5

6

1

2

3

4

5

6

FLAVORS LOOPS

1

2

3

4

5

6

A

B C

D E

F

Classes Depth first

traversal orderorder

The position of each class in the linearised CPL

82 / 165



Object Oriented Languages
Multiple Inheritance

Neither are satisfactory, producing unstable behaviour in
complicated hierarchies: small changes in the class definitions
can cause large changes in the CPLs produced

The solution adopted by Common Lisp is more complex, but
has a more stable behaviour

It tries to keep the CPL locally consistent, using the order in the
class definitions

Exercise. Look it up and try it on the examples above

83 / 165



Object Oriented Languages
Multiple Inheritance

Neither are satisfactory, producing unstable behaviour in
complicated hierarchies: small changes in the class definitions
can cause large changes in the CPLs produced

The solution adopted by Common Lisp is more complex, but
has a more stable behaviour

It tries to keep the CPL locally consistent, using the order in the
class definitions

Exercise. Look it up and try it on the examples above

84 / 165



Object Oriented Languages
Multiple Inheritance

Neither are satisfactory, producing unstable behaviour in
complicated hierarchies: small changes in the class definitions
can cause large changes in the CPLs produced

The solution adopted by Common Lisp is more complex, but
has a more stable behaviour

It tries to keep the CPL locally consistent, using the order in the
class definitions

Exercise. Look it up and try it on the examples above

85 / 165



Object Oriented Languages
Multiple Inheritance

Neither are satisfactory, producing unstable behaviour in
complicated hierarchies: small changes in the class definitions
can cause large changes in the CPLs produced

The solution adopted by Common Lisp is more complex, but
has a more stable behaviour

It tries to keep the CPL locally consistent, using the order in the
class definitions

Exercise. Look it up and try it on the examples above

86 / 165



Object Oriented Languages
Multiple Inheritance

Exercise. Think about

(defclass D () ...)

(defclass B (D) ...)

(defclass C (D) ...)

(defclass BC (B C) ...)

(defclass CB (C B) ...)

(defclass A (BC CB) ...)
A

D

B C

BC CB

87 / 165



Object Oriented Languages
Multiple Inheritance

Other languages do other things. In C++

class D { ... }

class B: public D { ... }

class C: public D { ... }

class A: public B, public C { ... }

has the additional peculiarity that class A contains two copies of
D, one via B and one via C

This is because occasionally we want two copies

An IOstream inherits from both Istream and Ostream, which
both inherit from Stream: we might want separate file pointers
for input and output

88 / 165



Object Oriented Languages
Multiple Inheritance

Other languages do other things. In C++

class D { ... }

class B: public D { ... }

class C: public D { ... }

class A: public B, public C { ... }

has the additional peculiarity that class A contains two copies of
D, one via B and one via C

This is because occasionally we want two copies

An IOstream inherits from both Istream and Ostream, which
both inherit from Stream: we might want separate file pointers
for input and output

89 / 165



Object Oriented Languages
Multiple Inheritance

Other languages do other things. In C++

class D { ... }

class B: public D { ... }

class C: public D { ... }

class A: public B, public C { ... }

has the additional peculiarity that class A contains two copies of
D, one via B and one via C

This is because occasionally we want two copies

An IOstream inherits from both Istream and Ostream, which
both inherit from Stream: we might want separate file pointers
for input and output

90 / 165



Object Oriented Languages
Multiple Inheritance

If we want only a single copy, C++ requires virtual inheritance

class B: public virtual D { ... }

class C: public virtual D { ... }

class A: public B, public C { ... }

Now the single copy of D is inherited by A

This is the most common usage, so should have been the
default!

Exercise. Find out how C++ (and other MI languages) address
the CPL linearisation issue

91 / 165



Object Oriented Languages
Multiple Inheritance

If we want only a single copy, C++ requires virtual inheritance

class B: public virtual D { ... }

class C: public virtual D { ... }

class A: public B, public C { ... }

Now the single copy of D is inherited by A

This is the most common usage, so should have been the
default!

Exercise. Find out how C++ (and other MI languages) address
the CPL linearisation issue

92 / 165



Object Oriented Languages
Multiple Inheritance

If we want only a single copy, C++ requires virtual inheritance

class B: public virtual D { ... }

class C: public virtual D { ... }

class A: public B, public C { ... }

Now the single copy of D is inherited by A

This is the most common usage, so should have been the
default!

Exercise. Find out how C++ (and other MI languages) address
the CPL linearisation issue

93 / 165



Object Oriented Languages
Multiple Inheritance

If we want only a single copy, C++ requires virtual inheritance

class B: public virtual D { ... }

class C: public virtual D { ... }

class A: public B, public C { ... }

Now the single copy of D is inherited by A

This is the most common usage, so should have been the
default!

Exercise. Find out how C++ (and other MI languages) address
the CPL linearisation issue

94 / 165



Object Oriented Languages
Multiple Inheritance

Java avoids the complexities of MI by only supporting interfaces

This is a very limited version of MI where no behaviour is
inherited, but just requires the class to implement the required
behaviour somehow

An interface is a list of method names, but no implementation,
i.e., no code to go with the names

95 / 165



Object Oriented Languages
Multiple Inheritance

Java avoids the complexities of MI by only supporting interfaces

This is a very limited version of MI where no behaviour is
inherited, but just requires the class to implement the required
behaviour somehow

An interface is a list of method names, but no implementation,
i.e., no code to go with the names

96 / 165



Object Oriented Languages
Multiple Inheritance

Java avoids the complexities of MI by only supporting interfaces

This is a very limited version of MI where no behaviour is
inherited, but just requires the class to implement the required
behaviour somehow

An interface is a list of method names, but no implementation,
i.e., no code to go with the names

97 / 165



Object Oriented Languages
Multiple Inheritance

So, for example the interface (not class) Istream might name
methods like read and get file position

And the interface Ostream might name methods like write
and get file position

And then we might have

class IOstream extends Stream

implements Istream, Ostream {

...

}

The class IOstream must implement (directly or inherited from
Stream) all the methods mentioned in the definitions of
interfaces Istream and Ostream

98 / 165



Object Oriented Languages
Multiple Inheritance

So, for example the interface (not class) Istream might name
methods like read and get file position

And the interface Ostream might name methods like write
and get file position

And then we might have

class IOstream extends Stream

implements Istream, Ostream {

...

}

The class IOstream must implement (directly or inherited from
Stream) all the methods mentioned in the definitions of
interfaces Istream and Ostream

99 / 165



Object Oriented Languages
Multiple Inheritance

So, for example the interface (not class) Istream might name
methods like read and get file position

And the interface Ostream might name methods like write
and get file position

And then we might have

class IOstream extends Stream

implements Istream, Ostream {

...

}

The class IOstream must implement (directly or inherited from
Stream) all the methods mentioned in the definitions of
interfaces Istream and Ostream

100 / 165



Object Oriented Languages
Multiple Inheritance

So, for example the interface (not class) Istream might name
methods like read and get file position

And the interface Ostream might name methods like write
and get file position

And then we might have

class IOstream extends Stream

implements Istream, Ostream {

...

}

The class IOstream must implement (directly or inherited from
Stream) all the methods mentioned in the definitions of
interfaces Istream and Ostream

101 / 165



Object Oriented Languages
Multiple Inheritance

So, for this example, IOstream must implement read, write
and get file position

A class can derive from multiple interfaces, but not multiple
classes

There is no possibility of inheriting multiple methods of the
same name, as the class can still only inherit a method from at
most one parent class—and nothing from the interfaces

There is no problem with being told more than once that a class
needs to implement a method of a given name

102 / 165



Object Oriented Languages
Multiple Inheritance

So, for this example, IOstream must implement read, write
and get file position

A class can derive from multiple interfaces, but not multiple
classes

There is no possibility of inheriting multiple methods of the
same name, as the class can still only inherit a method from at
most one parent class—and nothing from the interfaces

There is no problem with being told more than once that a class
needs to implement a method of a given name

103 / 165



Object Oriented Languages
Multiple Inheritance

So, for this example, IOstream must implement read, write
and get file position

A class can derive from multiple interfaces, but not multiple
classes

There is no possibility of inheriting multiple methods of the
same name, as the class can still only inherit a method from at
most one parent class—and nothing from the interfaces

There is no problem with being told more than once that a class
needs to implement a method of a given name

104 / 165



Object Oriented Languages
Multiple Inheritance

So, for this example, IOstream must implement read, write
and get file position

A class can derive from multiple interfaces, but not multiple
classes

There is no possibility of inheriting multiple methods of the
same name, as the class can still only inherit a method from at
most one parent class—and nothing from the interfaces

There is no problem with being told more than once that a class
needs to implement a method of a given name

105 / 165



Object Oriented Languages
Multiple Inheritance

An interface is more like a list of requirements of a class than
inheriting things

Interfaces provide all of the MI functionality that most people
need

Exercise. Go (Golang) also has interfaces. Read about them

106 / 165



Object Oriented Languages
Multiple Inheritance

An interface is more like a list of requirements of a class than
inheriting things

Interfaces provide all of the MI functionality that most people
need

Exercise. Go (Golang) also has interfaces. Read about them

107 / 165



Object Oriented Languages
Multiple Inheritance

An interface is more like a list of requirements of a class than
inheriting things

Interfaces provide all of the MI functionality that most people
need

Exercise. Go (Golang) also has interfaces. Read about them

108 / 165



Object Oriented Languages
Multiple Inheritance

Lisp and other languages like Perl and Python have a similar
concept called a mixin

The name was taken in analogy with an ice-cream shop where
you can buy mixin flavours for your ice-cream

A mixin defines only behaviour (methods), not attributes (slots),
that is to be mixed into another class

They are abstract in the Java sense that you can’t make direct
instances of them

Mixins, unlike interfaces, can implement methods

109 / 165



Object Oriented Languages
Multiple Inheritance

Lisp and other languages like Perl and Python have a similar
concept called a mixin

The name was taken in analogy with an ice-cream shop where
you can buy mixin flavours for your ice-cream

A mixin defines only behaviour (methods), not attributes (slots),
that is to be mixed into another class

They are abstract in the Java sense that you can’t make direct
instances of them

Mixins, unlike interfaces, can implement methods

110 / 165



Object Oriented Languages
Multiple Inheritance

Lisp and other languages like Perl and Python have a similar
concept called a mixin

The name was taken in analogy with an ice-cream shop where
you can buy mixin flavours for your ice-cream

A mixin defines only behaviour (methods), not attributes (slots),
that is to be mixed into another class

They are abstract in the Java sense that you can’t make direct
instances of them

Mixins, unlike interfaces, can implement methods

111 / 165



Object Oriented Languages
Multiple Inheritance

Lisp and other languages like Perl and Python have a similar
concept called a mixin

The name was taken in analogy with an ice-cream shop where
you can buy mixin flavours for your ice-cream

A mixin defines only behaviour (methods), not attributes (slots),
that is to be mixed into another class

They are abstract in the Java sense that you can’t make direct
instances of them

Mixins, unlike interfaces, can implement methods

112 / 165



Object Oriented Languages
Multiple Inheritance

Lisp and other languages like Perl and Python have a similar
concept called a mixin

The name was taken in analogy with an ice-cream shop where
you can buy mixin flavours for your ice-cream

A mixin defines only behaviour (methods), not attributes (slots),
that is to be mixed into another class

They are abstract in the Java sense that you can’t make direct
instances of them

Mixins, unlike interfaces, can implement methods

113 / 165



Object Oriented Languages
Multiple Inheritance

In Common Lisp’s CLOS mixins are just a style of
programming: it supports full MI, too

Other languages have explicit mixin mechanisms

Exercise. Compare traits and mixins

114 / 165



Object Oriented Languages
Multiple Inheritance

In Common Lisp’s CLOS mixins are just a style of
programming: it supports full MI, too

Other languages have explicit mixin mechanisms

Exercise. Compare traits and mixins

115 / 165



Object Oriented Languages
Multiple Inheritance

In Common Lisp’s CLOS mixins are just a style of
programming: it supports full MI, too

Other languages have explicit mixin mechanisms

Exercise. Compare traits and mixins

116 / 165



Object Oriented Languages
Multiple Inheritance

Some people say MI is too complex, hard to implement
properly and produces unexpected results, so you should not
have it or use it

If you want multiple behaviours, you can use SI with class
composition

An IOstream should be a new, independent class, containing
instances of Istream and Ostream

Not inheriting

117 / 165



Object Oriented Languages
Multiple Inheritance

Some people say MI is too complex, hard to implement
properly and produces unexpected results, so you should not
have it or use it

If you want multiple behaviours, you can use SI with class
composition

An IOstream should be a new, independent class, containing
instances of Istream and Ostream

Not inheriting

118 / 165



Object Oriented Languages
Multiple Inheritance

Some people say MI is too complex, hard to implement
properly and produces unexpected results, so you should not
have it or use it

If you want multiple behaviours, you can use SI with class
composition

An IOstream should be a new, independent class, containing
instances of Istream and Ostream

Not inheriting

119 / 165



Object Oriented Languages
Multiple Inheritance

Some people say MI is too complex, hard to implement
properly and produces unexpected results, so you should not
have it or use it

If you want multiple behaviours, you can use SI with class
composition

An IOstream should be a new, independent class, containing
instances of Istream and Ostream

Not inheriting

120 / 165



Object Oriented Languages
Multiple Inheritance

class IOStream: public Istream, public Ostream { ... }

becomes

class IOStream: { public: Istream i; Ostream o; ... }

And we need to write str.i.ptr or str.o.ptr as appropriate
to get the stream pointers

This can be used by SI languages, too, such as Java

Exercise. See anonymous structures in C11 and similar
languages that help a little in this regard by allowing
unambiguous abbreviations of nested structure accesses

121 / 165



Object Oriented Languages
Multiple Inheritance

class IOStream: public Istream, public Ostream { ... }

becomes

class IOStream: { public: Istream i; Ostream o; ... }

And we need to write str.i.ptr or str.o.ptr as appropriate
to get the stream pointers

This can be used by SI languages, too, such as Java

Exercise. See anonymous structures in C11 and similar
languages that help a little in this regard by allowing
unambiguous abbreviations of nested structure accesses

122 / 165



Object Oriented Languages
Multiple Inheritance

class IOStream: public Istream, public Ostream { ... }

becomes

class IOStream: { public: Istream i; Ostream o; ... }

And we need to write str.i.ptr or str.o.ptr as appropriate
to get the stream pointers

This can be used by SI languages, too, such as Java

Exercise. See anonymous structures in C11 and similar
languages that help a little in this regard by allowing
unambiguous abbreviations of nested structure accesses

123 / 165



Object Oriented Languages
Multiple Inheritance

class IOStream: public Istream, public Ostream { ... }

becomes

class IOStream: { public: Istream i; Ostream o; ... }

And we need to write str.i.ptr or str.o.ptr as appropriate
to get the stream pointers

This can be used by SI languages, too, such as Java

Exercise. See anonymous structures in C11 and similar
languages that help a little in this regard by allowing
unambiguous abbreviations of nested structure accesses

124 / 165



Object Oriented Languages
Multiple Inheritance

We lose the convenience of inheritance and automatic method
selection, but such people argue the inheritance is too
problematic to use anyway

So this becomes much more like prototyping OO

125 / 165



Object Oriented Languages
Multiple Inheritance

We lose the convenience of inheritance and automatic method
selection, but such people argue the inheritance is too
problematic to use anyway

So this becomes much more like prototyping OO

126 / 165



Object Oriented Languages
Inheritance

We can now see the options if we have a language without
inheritance:

• use differential inheritance (clone and add or change
behaviour)

• composition
• live with it

127 / 165



Object Oriented Languages
Inheritance

We can now see the options if we have a language without
inheritance:

• use differential inheritance (clone and add or change
behaviour)

• composition
• live with it

128 / 165



Object Oriented Languages
Inheritance

We can now see the options if we have a language without
inheritance:

• use differential inheritance (clone and add or change
behaviour)

• composition

• live with it

129 / 165



Object Oriented Languages
Inheritance

We can now see the options if we have a language without
inheritance:

• use differential inheritance (clone and add or change
behaviour)

• composition
• live with it

130 / 165



Object Oriented Languages
Metaobject Protocols

With all these variants of OO, why should we be content with
just one kind of OO within a language?

Just because a language designer has said this language
should have that kind of OO, should we be stuck with it?

A metaobject protocol (MOP) is a means by which we describe
what kind of object protocol we want

131 / 165



Object Oriented Languages
Metaobject Protocols

With all these variants of OO, why should we be content with
just one kind of OO within a language?

Just because a language designer has said this language
should have that kind of OO, should we be stuck with it?

A metaobject protocol (MOP) is a means by which we describe
what kind of object protocol we want

132 / 165



Object Oriented Languages
Metaobject Protocols

With all these variants of OO, why should we be content with
just one kind of OO within a language?

Just because a language designer has said this language
should have that kind of OO, should we be stuck with it?

A metaobject protocol (MOP) is a means by which we describe
what kind of object protocol we want

133 / 165



Object Oriented Languages
Metaobject Protocols

The metaobject protocol exposes the internal mechanisms of
how objects are structured, how methods are chosen, how
properties are inherited (if we have inheritance) and so on

Early experiments with MOPs in Simula were developed in
Smalltalk and led to CLOS: the Common Lisp Object System, a
fully reflective object system

Recall: reflective means a system can look at itself and even
change itself

134 / 165



Object Oriented Languages
Metaobject Protocols

The metaobject protocol exposes the internal mechanisms of
how objects are structured, how methods are chosen, how
properties are inherited (if we have inheritance) and so on

Early experiments with MOPs in Simula were developed in
Smalltalk and led to CLOS: the Common Lisp Object System, a
fully reflective object system

Recall: reflective means a system can look at itself and even
change itself

135 / 165



Object Oriented Languages
Metaobject Protocols

The metaobject protocol exposes the internal mechanisms of
how objects are structured, how methods are chosen, how
properties are inherited (if we have inheritance) and so on

Early experiments with MOPs in Simula were developed in
Smalltalk and led to CLOS: the Common Lisp Object System, a
fully reflective object system

Recall: reflective means a system can look at itself and even
change itself

136 / 165



Object Oriented Languages
Metaobject Protocols

And the best way to describe an OO system?

Using itself!

In CLOS (as in other MOP languages) there are

• classes that describe the structure and behaviour of
classes

• methods that describe how objects should be created and
initialised

• methods that describe how methods are looked up
• methods that describe how methods should be inherited or

overridden or combined
• and so on for all aspects of an OO system

137 / 165



Object Oriented Languages
Metaobject Protocols

And the best way to describe an OO system?

Using itself!

In CLOS (as in other MOP languages) there are

• classes that describe the structure and behaviour of
classes

• methods that describe how objects should be created and
initialised

• methods that describe how methods are looked up
• methods that describe how methods should be inherited or

overridden or combined
• and so on for all aspects of an OO system

138 / 165



Object Oriented Languages
Metaobject Protocols

And the best way to describe an OO system?

Using itself!

In CLOS (as in other MOP languages) there are

• classes that describe the structure and behaviour of
classes

• methods that describe how objects should be created and
initialised

• methods that describe how methods are looked up
• methods that describe how methods should be inherited or

overridden or combined
• and so on for all aspects of an OO system

139 / 165



Object Oriented Languages
Metaobject Protocols

Exercise. Think about the bootstrap problem of a MOP

140 / 165



Object Oriented Languages
Metaobject Protocols

We shall take examples from Telos, the EuLisp Object System,
as it is much simpler than CLOS

There are standard classes and methods that describe
standard structure, inheritance, method selection and so on

These implement OO behaviour as you might expect from other
languages

The class <simple-class> and its methods describe these
standard things

It is a subclass of the topmost (abstract) class <class>

141 / 165



Object Oriented Languages
Metaobject Protocols

We shall take examples from Telos, the EuLisp Object System,
as it is much simpler than CLOS

There are standard classes and methods that describe
standard structure, inheritance, method selection and so on

These implement OO behaviour as you might expect from other
languages

The class <simple-class> and its methods describe these
standard things

It is a subclass of the topmost (abstract) class <class>

142 / 165



Object Oriented Languages
Metaobject Protocols

We shall take examples from Telos, the EuLisp Object System,
as it is much simpler than CLOS

There are standard classes and methods that describe
standard structure, inheritance, method selection and so on

These implement OO behaviour as you might expect from other
languages

The class <simple-class> and its methods describe these
standard things

It is a subclass of the topmost (abstract) class <class>

143 / 165



Object Oriented Languages
Metaobject Protocols

We shall take examples from Telos, the EuLisp Object System,
as it is much simpler than CLOS

There are standard classes and methods that describe
standard structure, inheritance, method selection and so on

These implement OO behaviour as you might expect from other
languages

The class <simple-class> and its methods describe these
standard things

It is a subclass of the topmost (abstract) class <class>

144 / 165



Object Oriented Languages
Metaobject Protocols

We shall take examples from Telos, the EuLisp Object System,
as it is much simpler than CLOS

There are standard classes and methods that describe
standard structure, inheritance, method selection and so on

These implement OO behaviour as you might expect from other
languages

The class <simple-class> and its methods describe these
standard things

It is a subclass of the topmost (abstract) class <class>

145 / 165



Object Oriented Languages
Metaobject Protocols

Previously we saw:

<object>

<number>

<integer><float>

<double−float> <fpi>

2.3 42

<class>

Part of the EuLisp Class Hierarchy (simplified)

Dotted arrow is instance of /member of /is a; solid arrow is
inherits from/subclass/extends/subset

146 / 165



Object Oriented Languages
Metaobject Protocols

<object>

<number>

<integer><float>

<double−float> <fpi>

2.3 42

<simple−class>

<class>

<method>

<simple−method>

<slot>

<local−slot>

a method a slot

Part of the EuLisp Class Hierarchy (not so simplified)

Dotted arrow is instance of or member of or is a; solid arrow is
inherits from or subclass or extends

147 / 165



Object Oriented Languages
Metaobject Protocols

If we want different behaviours we can create new classes that
implement those behaviours

Classes are instances of subclasses of the class <class>

Thus the class <string> is an instance of <simple-class>

Just as strings are instances of <string>

148 / 165



Object Oriented Languages
Metaobject Protocols

If we want different behaviours we can create new classes that
implement those behaviours

Classes are instances of subclasses of the class <class>

Thus the class <string> is an instance of <simple-class>

Just as strings are instances of <string>

149 / 165



Object Oriented Languages
Metaobject Protocols

If we want different behaviours we can create new classes that
implement those behaviours

Classes are instances of subclasses of the class <class>

Thus the class <string> is an instance of <simple-class>

Just as strings are instances of <string>

150 / 165



Object Oriented Languages
Metaobject Protocols

If we want different behaviours we can create new classes that
implement those behaviours

Classes are instances of subclasses of the class <class>

Thus the class <string> is an instance of <simple-class>

Just as strings are instances of <string>

151 / 165



Object Oriented Languages
Metaobject Protocols

Making a new class:

(defclass <myclass> () ... class: <simple-class>)

using the class: keyword to indicate this is an instance of
simple-class (the default)

Or (defclass <myclass> (<simple-class>) ...
class: <simple-class>)

if you want to inherit simple-class’s default structure and
behaviour

152 / 165



Object Oriented Languages
Metaobject Protocols

Making a new class:

(defclass <myclass> () ... class: <simple-class>)

using the class: keyword to indicate this is an instance of
simple-class (the default)

Or (defclass <myclass> (<simple-class>) ...
class: <simple-class>)

if you want to inherit simple-class’s default structure and
behaviour

153 / 165



Object Oriented Languages
Metaobject Protocols

Then we can add methods to the generic functions that
comprise the metaobject protocol to implement our new
functionality

We can now define classes that have this new functionality by

(defclass <weirdobject> () ... class: <myclass>)

(make <weirdobject> ...)

154 / 165



Object Oriented Languages
Metaobject Protocols

Then we can add methods to the generic functions that
comprise the metaobject protocol to implement our new
functionality

We can now define classes that have this new functionality by

(defclass <weirdobject> () ... class: <myclass>)

(make <weirdobject> ...)

155 / 165



Object Oriented Languages
Metaobject Protocols

Methods: how do we find the right method to apply?

We need to find the class precedence list for an argument

So Telos provides a generic function
compute-class-precedence-list

There is a method on this for <simple-class> that does the
standard thing with CPLs, as described previously

You can add a method yourself if you want to something
different, e.g., reverse the order, or omit some classes, or add
some strange kind of multiple inheritance, etc.

156 / 165



Object Oriented Languages
Metaobject Protocols

Methods: how do we find the right method to apply?

We need to find the class precedence list for an argument

So Telos provides a generic function
compute-class-precedence-list

There is a method on this for <simple-class> that does the
standard thing with CPLs, as described previously

You can add a method yourself if you want to something
different, e.g., reverse the order, or omit some classes, or add
some strange kind of multiple inheritance, etc.

157 / 165



Object Oriented Languages
Metaobject Protocols

Methods: how do we find the right method to apply?

We need to find the class precedence list for an argument

So Telos provides a generic function
compute-class-precedence-list

There is a method on this for <simple-class> that does the
standard thing with CPLs, as described previously

You can add a method yourself if you want to something
different, e.g., reverse the order, or omit some classes, or add
some strange kind of multiple inheritance, etc.

158 / 165



Object Oriented Languages
Metaobject Protocols

Methods: how do we find the right method to apply?

We need to find the class precedence list for an argument

So Telos provides a generic function
compute-class-precedence-list

There is a method on this for <simple-class> that does the
standard thing with CPLs, as described previously

You can add a method yourself if you want to something
different, e.g., reverse the order, or omit some classes, or add
some strange kind of multiple inheritance, etc.

159 / 165



Object Oriented Languages
Metaobject Protocols

Methods: how do we find the right method to apply?

We need to find the class precedence list for an argument

So Telos provides a generic function
compute-class-precedence-list

There is a method on this for <simple-class> that does the
standard thing with CPLs, as described previously

You can add a method yourself if you want to something
different, e.g., reverse the order, or omit some classes, or add
some strange kind of multiple inheritance, etc.

160 / 165



Object Oriented Languages
Metaobject Protocols

We need to take the CPL and choose a method (or methods)
from it

The generic function compute-method-lookup-function is
used for this

The standard method returns a function that simply picks the
first on the list

Method combination can be implemented by specialising
compute-method-lookup-function

And so on

161 / 165



Object Oriented Languages
Metaobject Protocols

We need to take the CPL and choose a method (or methods)
from it

The generic function compute-method-lookup-function is
used for this

The standard method returns a function that simply picks the
first on the list

Method combination can be implemented by specialising
compute-method-lookup-function

And so on

162 / 165



Object Oriented Languages
Metaobject Protocols

We need to take the CPL and choose a method (or methods)
from it

The generic function compute-method-lookup-function is
used for this

The standard method returns a function that simply picks the
first on the list

Method combination can be implemented by specialising
compute-method-lookup-function

And so on

163 / 165



Object Oriented Languages
Metaobject Protocols

We need to take the CPL and choose a method (or methods)
from it

The generic function compute-method-lookup-function is
used for this

The standard method returns a function that simply picks the
first on the list

Method combination can be implemented by specialising
compute-method-lookup-function

And so on

164 / 165



Object Oriented Languages
Metaobject Protocols

We need to take the CPL and choose a method (or methods)
from it

The generic function compute-method-lookup-function is
used for this

The standard method returns a function that simply picks the
first on the list

Method combination can be implemented by specialising
compute-method-lookup-function

And so on

165 / 165


