
Object Oriented Languages
Metaobject Protocols

Structure: how are values to be stored in an object?

Most objects are implemented as vectors with the object
accessors implemented as simple vector references

The generic function compute-and-ensure-slot-accessors
describes how slots are accessed

The standard method does a simple vector access

So if you want slots that live on disk rather than in memory, or
count the number of times they are accessed, add a method
here

1 / 125



Object Oriented Languages
Metaobject Protocols

Structure: how are values to be stored in an object?

Most objects are implemented as vectors with the object
accessors implemented as simple vector references

The generic function compute-and-ensure-slot-accessors
describes how slots are accessed

The standard method does a simple vector access

So if you want slots that live on disk rather than in memory, or
count the number of times they are accessed, add a method
here

2 / 125



Object Oriented Languages
Metaobject Protocols

Structure: how are values to be stored in an object?

Most objects are implemented as vectors with the object
accessors implemented as simple vector references

The generic function compute-and-ensure-slot-accessors
describes how slots are accessed

The standard method does a simple vector access

So if you want slots that live on disk rather than in memory, or
count the number of times they are accessed, add a method
here

3 / 125



Object Oriented Languages
Metaobject Protocols

Structure: how are values to be stored in an object?

Most objects are implemented as vectors with the object
accessors implemented as simple vector references

The generic function compute-and-ensure-slot-accessors
describes how slots are accessed

The standard method does a simple vector access

So if you want slots that live on disk rather than in memory, or
count the number of times they are accessed, add a method
here

4 / 125



Object Oriented Languages
Metaobject Protocols

Structure: how are values to be stored in an object?

Most objects are implemented as vectors with the object
accessors implemented as simple vector references

The generic function compute-and-ensure-slot-accessors
describes how slots are accessed

The standard method does a simple vector access

So if you want slots that live on disk rather than in memory, or
count the number of times they are accessed, add a method
here

5 / 125



Object Oriented Languages
Metaobject Protocols

Classes: The generic functions allocate and initialize
describe how objects are created

So if you want to have an object that lives outside the normal
class hierarchy, or has a different structure, add methods here

And so on

6 / 125



Object Oriented Languages
Metaobject Protocols

Classes: The generic functions allocate and initialize
describe how objects are created

So if you want to have an object that lives outside the normal
class hierarchy, or has a different structure, add methods here

And so on

7 / 125



Object Oriented Languages
Metaobject Protocols

Classes: The generic functions allocate and initialize
describe how objects are created

So if you want to have an object that lives outside the normal
class hierarchy, or has a different structure, add methods here

And so on

8 / 125



Object Oriented Languages
Metaobject Protocols

There are standard methods everywhere, of course, that do the
“usual” things, i.e., they implement the behaviour you would
expect from a normal OO language

For example, a method on initialize that fills in a newly
allocated object

9 / 125



Object Oriented Languages
Metaobject Protocols

There are standard methods everywhere, of course, that do the
“usual” things, i.e., they implement the behaviour you would
expect from a normal OO language

For example, a method on initialize that fills in a newly
allocated object

10 / 125



(defmethod initialize ((cl <class>) keywords)

(call-next-method)

(let ((direct-supers (class-direct-superclasses cl))

(direct-slotds (find-keyword :direct-slots keywords ()))

(direct-inits (find-keyword :direct-keywords keywords ())))

(unless (compatible-superclasses-p cl direct-supers)

(error "incompatible superclasses:~%~s can not be a subclass of ~%~s"

cl direct-supers))

(setf (class-precedence-list cl)

(compute-class-precedence-list cl direct-supers))

(setf (class-keywords cl)

(compute-keywords cl direct-inits

(compute-inherited-keywords cl direct-supers)))

(let* ((inherited-slotds (compute-inherited-slots cl direct-supers))

(effective-slotds

(compute-and-ensure-slot-accessors

cl (compute-slots cl direct-slotds inherited-slotds)

inherited-slotds)))

(setf (class-slots cl) effective-slotds)

(setf (class-instance-length cl) (length effective-slotds)))

(mapcar #’(lambda (super)

(add-subclass super cl)) direct-supers))

cl)

11 / 125



Object Oriented Languages
Metaobject Protocols

Exercise. Investigate the Metaobject class in Java

Exercise. Investigate Joose, the JavaScript Metaobject system

Exercise. Investigate Moose, the Perl Metaobject system

12 / 125



Object Oriented Languages
Metaobject Protocols

Metaobject protocols are very powerful and so are easy to
abuse

And easy to misuse accidentally

But they do allow you to do exactly what you want in an OO
system

You are not limited by the language, only your imagination

13 / 125



Object Oriented Languages
Metaobject Protocols

Metaobject protocols are very powerful and so are easy to
abuse

And easy to misuse accidentally

But they do allow you to do exactly what you want in an OO
system

You are not limited by the language, only your imagination

14 / 125



Object Oriented Languages
Metaobject Protocols

Metaobject protocols are very powerful and so are easy to
abuse

And easy to misuse accidentally

But they do allow you to do exactly what you want in an OO
system

You are not limited by the language, only your imagination

15 / 125



Object Oriented Languages
Metaobject Protocols

Metaobject protocols are very powerful and so are easy to
abuse

And easy to misuse accidentally

But they do allow you to do exactly what you want in an OO
system

You are not limited by the language, only your imagination

16 / 125



Object Oriented Languages
End of OO

Object Oriented languages and OO concepts are widely used

There are a large number of ways of doing OO

From no classes and no inheritance all the way to MOPs

You need to able to make a choice!

17 / 125



Object Oriented Languages
End of OO

Object Oriented languages and OO concepts are widely used

There are a large number of ways of doing OO

From no classes and no inheritance all the way to MOPs

You need to able to make a choice!

18 / 125



Object Oriented Languages
End of OO

Object Oriented languages and OO concepts are widely used

There are a large number of ways of doing OO

From no classes and no inheritance all the way to MOPs

You need to able to make a choice!

19 / 125



Object Oriented Languages
End of OO

Object Oriented languages and OO concepts are widely used

There are a large number of ways of doing OO

From no classes and no inheritance all the way to MOPs

You need to able to make a choice!

20 / 125



Object Oriented Languages
End of OO

Object-oriented programming is an exceptionally bad
idea which could only have originated in California
Edsger Dijkstra

21 / 125



End of Languages

There are many languages out there, both general purpose and
specialist

It’s not a case that one language is better than another, more
that one is better for the problem in hand

Be aware and learn the concepts, they are transferable
between many languages

Pick the right tool for the job

22 / 125



End of Languages

There are many languages out there, both general purpose and
specialist

It’s not a case that one language is better than another, more
that one is better for the problem in hand

Be aware and learn the concepts, they are transferable
between many languages

Pick the right tool for the job

23 / 125



End of Languages

There are many languages out there, both general purpose and
specialist

It’s not a case that one language is better than another, more
that one is better for the problem in hand

Be aware and learn the concepts, they are transferable
between many languages

Pick the right tool for the job

24 / 125



End of Languages

There are many languages out there, both general purpose and
specialist

It’s not a case that one language is better than another, more
that one is better for the problem in hand

Be aware and learn the concepts, they are transferable
between many languages

Pick the right tool for the job

25 / 125


