Styles

So far you may be aware of a few styles of programming:



Styles

So far you may be aware of a few styles of programming:

¢ Object Oriented style programming: Java and others,
where you structure your code about objects (and classes)



Styles

So far you may be aware of a few styles of programming:

¢ Object Oriented style programming: Java and others,
where you structure your code about objects (and classes)

e Procedural style: C, Python and others, where you
structure about procedures (functions)



Styles

So far you may be aware of a few styles of programming:

¢ Object Oriented style programming: Java and others,
where you structure your code about objects (and classes)

e Procedural style: C, Python and others, where you
structure about procedures (functions)

e Functional Style: Haskell and others, where you structure
about higher order functions in a tightly controlled manner



Styles

So far you may be aware of a few styles of programming:

¢ Object Oriented style programming: Java and others,
where you structure your code about objects (and classes)

e Procedural style: C, Python and others, where you
structure about procedures (functions)

e Functional Style: Haskell and others, where you structure
about higher order functions in a tightly controlled manner

¢ Declarative style: Prolog and ASP (and Haskell), where

you structure about the things you want to be true or want
to happen



Styles

So far you may be aware of a few styles of programming:

¢ Object Oriented style programming: Java and others,
where you structure your code about objects (and classes)

e Procedural style: C, Python and others, where you
structure about procedures (functions)

e Functional Style: Haskell and others, where you structure
about higher order functions in a tightly controlled manner

¢ Declarative style: Prolog and ASP (and Haskell), where
you structure about the things you want to be true or want
to happen

e No style: unstructured things like assembly language,
where there is no support for structuring



Styles

You will have spent a lot of time on procedural and object
oriented



Styles

You will have spent a lot of time on procedural and object
oriented

The declarative and functional should be covered in other Units
at some point



Styles

You will have spent a lot of time on procedural and object
oriented

The declarative and functional should be covered in other Units
at some point

But the point is there are many styles of programming



Styles

A “style” is an approach to programming or an aspect of the
design of a programming language that is meant to make it
easier for you to write correct programs



Styles

A “style” is an approach to programming or an aspect of the
design of a programming language that is meant to make it
easier for you to write correct programs

It is easy to write small programs in a slapdash manner: you
can get away with it as you can hold the whole program in your
head



Styles

A “style” is an approach to programming or an aspect of the
design of a programming language that is meant to make it
easier for you to write correct programs

It is easy to write small programs in a slapdash manner: you
can get away with it as you can hold the whole program in your
head

When projects get large you cannot do this



Styles

The code gets too large for you to remember all the details



Styles

The code gets too large for you to remember all the details

Or there are multiple people working on the code



Styles

The code gets too large for you to remember all the details
Or there are multiple people working on the code

So styles are invented to direct the way you write code so to
make large systems written by many programmers possible



Styles

They encapsulate detail into blobs to help you keep a grasp on
what is happening in your program



Styles

They encapsulate detail into blobs to help you keep a grasp on
what is happening in your program

You then think “at a higher level” using blobs



Styles
They encapsulate detail into blobs to help you keep a grasp on
what is happening in your program
You then think “at a higher level” using blobs

Those blobs might be objects, modules, functions or other
things



Styles
They encapsulate detail into blobs to help you keep a grasp on
what is happening in your program
You then think “at a higher level” using blobs

Those blobs might be objects, modules, functions or other
things

Roughly speaking, the nature of the blobs is what distinguishes
between the various styles



Styles
They encapsulate detail into blobs to help you keep a grasp on
what is happening in your program
You then think “at a higher level” using blobs

Those blobs might be objects, modules, functions or other
things

Roughly speaking, the nature of the blobs is what distinguishes
between the various styles

But they all strive to make programming simpler and to control
complexity



Styles
They encapsulate detail into blobs to help you keep a grasp on
what is happening in your program
You then think “at a higher level” using blobs

Those blobs might be objects, modules, functions or other
things

Roughly speaking, the nature of the blobs is what distinguishes
between the various styles

But they all strive to make programming simpler and to control
complexity

And make writing correct programs easier



Styles

If we had perfect programmers, then none of this structuring
would be strictly necessary



Styles

If we had perfect programmers, then none of this structuring
would be strictly necessary

Structure is a way of helping 3rd rate programmers to
produce 2nd rate quality code

James Davenport (probably)



Styles

If we had perfect programmers, then none of this structuring
would be strictly necessary

Structure is a way of helping 3rd rate programmers to
produce 2nd rate quality code

James Davenport (probably)

Programmers make mistakes. So how can a programming
language help the programmer to make fewer mistakes?



Styles

Debugging is twice as hard as writing the code in the
first place. Therefore, if you write the code as cleverly
as possible, you are, by definition, not smart enough to
debug it

Brian Kernighan
The errors you can spot easily are not the ones you
need to worry about

Anon
Programmers should be lazy and stupid

Me



Styles

Programming languages themselves do have a role to play in
making things easier for the programmer



Styles

Programming languages themselves do have a role to play in
making things easier for the programmer

Or harder, if they are bad things or habits



Styles

Programming languages themselves do have a role to play in
making things easier for the programmer

Or harder, if they are bad things or habits

Unfortunately, there is no single programming language that
does everything well



Styles

There are still people out there that think their favourite
programming language is perfect and try to support it by saying
that “it's the programmer’s fault” or “they weren’t using the
correct features” when something goes wrong



Styles

There are still people out there that think their favourite
programming language is perfect and try to support it by saying
that “it's the programmer’s fault” or “they weren’t using the
correct features” when something goes wrong

For examples, see C and memory management; and C++ and
almost any feature



Styles

There are still people out there that think their favourite
programming language is perfect and try to support it by saying
that “it's the programmer’s fault” or “they weren’t using the
correct features” when something goes wrong

For examples, see C and memory management; and C++ and
almost any feature

In 2010, the iPhone 4 had problems with reception. Apple’s
response was essentially “you are holding it incorrectly”



Styles

If you have a hammer, everything looks like a nail
If you have Java, everything looks object oriented

Anonymous



Styles

One thing to remember before we start: programming styles
are not exclusive



Styles

One thing to remember before we start: programming styles
are not exclusive

You can write in a procedural style in Java



Styles
One thing to remember before we start: programming styles
are not exclusive

You can write in a procedural style in Java
—though Java makes it hard to do so easily



Styles

One thing to remember before we start: programming styles
are not exclusive

You can write in a procedural style in Java
—though Java makes it hard to do so easily

You can write in an OO style in C



Styles

One thing to remember before we start: programming styles
are not exclusive

You can write in a procedural style in Java
—though Java makes it hard to do so easily

You can write in an OO style in C
—though C doesn’t really provide the constructs for you to
do so easily



Styles

One thing to remember before we start: programming styles
are not exclusive

You can write in a procedural style in Java
—though Java makes it hard to do so easily

You can write in an OO style in C
—though C doesn’t really provide the constructs for you to
do so easily

Though it may still be worthwhile to structure your C code
around OO ideas



Styles

One thing to remember before we start: programming styles
are not exclusive

You can write in a procedural style in Java
—though Java makes it hard to do so easily

You can write in an OO style in C
—though C doesn’t really provide the constructs for you to
do so easily

Though it may still be worthwhile to structure your C code
around OO ideas

Both Java and Python (and many others) have OO and
procedural aspects



Styles

Some languages support certain styles



Styles
Some languages support certain styles

Java was designed from scratch to be OO (to the extent of
making it hard not to use objects)



Styles
Some languages support certain styles

Java was designed from scratch to be OO (to the extent of
making it hard not to use objects)

Other languages allow you to use a style, but you have to do
the twiddly bits yourself



Styles
Some languages support certain styles

Java was designed from scratch to be OO (to the extent of
making it hard not to use objects)

Other languages allow you to use a style, but you have to do
the twiddly bits yourself

You can program OO in C, but you have to do the “method”
lookup yourself, i.e., pick the code for the right “method”
yourself in your program



Styles
Some languages support certain styles

Java was designed from scratch to be OO (to the extent of
making it hard not to use objects)

Other languages allow you to use a style, but you have to do
the twiddly bits yourself

You can program OO in C, but you have to do the “method”
lookup yourself, i.e., pick the code for the right “method”
yourself in your program

Sometimes this is good as it allows you to optimise for the
problem in hand



Styles
Some languages support certain styles

Java was designed from scratch to be OO (to the extent of
making it hard not to use objects)

Other languages allow you to use a style, but you have to do
the twiddly bits yourself

You can program OO in C, but you have to do the “method”
lookup yourself, i.e., pick the code for the right “method”
yourself in your program

Sometimes this is good as it allows you to optimise for the
problem in hand

Java provides a general mechanism (that you don’t see) for
method lookup that has to work for all kinds of situations



Styles

From the other direction, some problems lend themselves
better to a certain style



Styles

From the other direction, some problems lend themselves
better to a certain style

For example, a GUI application with windows and click boxes
would be naturally OO



Styles

From the other direction, some problems lend themselves
better to a certain style

For example, a GUI application with windows and click boxes
would be naturally OO

For a heavily numerical application, such as a weather
forecasting, objects would be just a hindrance to coding



Styles

So some problems naturally suggest a choice of language to
use to implement them



Styles

So some problems naturally suggest a choice of language to
use to implement them

Others problems are near impossible to program regardless of
style



Styles

So some problems naturally suggest a choice of language to
use to implement them

Others problems are near impossible to program regardless of
style

Part of being a Computer Scientist is knowing these styles and
knowing which languages support them



Styles

So some problems naturally suggest a choice of language to
use to implement them

Others problems are near impossible to program regardless of
style

Part of being a Computer Scientist is knowing these styles and
knowing which languages support them

And then picking a style for a problem, then a language that
supports that style



Smaltalk

®Forth

‘ =X

Commen Lisp

Scheme

PrologEflang
PLIL

Speedcoding

N Haskell BASIC

Fortran
s 1S

Ruby.

Objective-C

Javascript
Simula

cLu
ALGOL 68

Ada

Object Pascal ool

Modula-3
& Modula-2

Programming Languages Influence Network




Language Families

From
https://exploringdata.github.io/vis/
programming-languages-influence-network/

an interactive, zoomable map of languages


https://exploringdata.github.io/vis/programming-languages-influence-network/
https://exploringdata.github.io/vis/programming-languages-influence-network/

Language Families

Out there in the real world there are very many programming
languages



Language Families

Out there in the real world there are very many programming
languages

How many are actually useful is a difficult question



Language Families

Out there in the real world there are very many programming
languages

How many are actually useful is a difficult question

Creating new languages is easy these days (go to a compilers
unit!)



Language Families

Out there in the real world there are very many programming
languages

How many are actually useful is a difficult question

Creating new languages is easy these days (go to a compilers
unit!)

But designing a good and useful new language is much harder



Language Families

Out there in the real world there are very many programming
languages

How many are actually useful is a difficult question

Creating new languages is easy these days (go to a compilers
unit!)

But designing a good and useful new language is much harder

And almost always unnecessary



Language Families

Most “new” languages are modest variants on existing
languages, often emphasising some features of interest to the
language designer



Language Families

Most “new” languages are modest variants on existing
languages, often emphasising some features of interest to the
language designer

Very few have a radical new idea or approach



Language Families

Most “new” languages are modest variants on existing
languages, often emphasising some features of interest to the
language designer

Very few have a radical new idea or approach

Thus languages tend to fall into families, where members of the
same family have many features in common



Language Families

You may have already seen (or will soon see)

C: procedural

Haskell, Lisp: functional

Prolog, ASP: logic

Python: procedural and scripting
Java: object oriented

e etc.

Families are not clearly separated: they are fuzzy at the edges



Language Families

Feet

¢ C: you shoot yourself in the foot



Language Families

Feet

¢ C: you shoot yourself in the foot

e Lisp: You shoot yourself in the appendage which holds the
gun with which you shoot yourself in the appendage which
holds the gun with which you shoot yourself in the
appendage which holds. . .



Language Families

Feet

¢ C: you shoot yourself in the foot

e Lisp: You shoot yourself in the appendage which holds the
gun with which you shoot yourself in the appendage which
holds the gun with which you shoot yourself in the
appendage which holds. . .

* Prolog: You tell your program you want to be shot in the
foot. The program figures out how to do it, but the syntax
doesn’t allow it to explain



Language Families

Feet

C: you shoot yourself in the foot

Lisp: You shoot yourself in the appendage which holds the
gun with which you shoot yourself in the appendage which
holds the gun with which you shoot yourself in the
appendage which holds. . .

Prolog: You tell your program you want to be shot in the
foot. The program figures out how to do it, but the syntax
doesn’t allow it to explain

Python: You try to shoot yourself in the foot but you just
keep hitting the whitespace between your toes



Language Families

Feet

¢ Java: You locate the Gun class, but discover that the Bullet
class is abstract, so you extend it and write the missing
part of the implementation. Then you implement the
ShootAble interface for your foot, and recompile the Foot
class. The interface lets the bullet call the doDamage
method on the Foot, so the Foot can damage itself in the
most effective way. Now you run the program, and call the
doShoot method on the instance of the Gun class. First the
Gun creates an instance of Bullet, which calls the doFire
method on the Gun. The Gun calls the hit(Bullet) method
on the Foot, and the instance of Bullet is passed to the
Foot. But this causes an lllegalHitByBullet exception to be
thrown, and you die



Language Families

There are many many many programming languages



Language Families

There are many many many programming languages

Some are used widely, but you don’t realise (Cobol, Fortran)



Language Families

There are many many many programming languages
Some are used widely, but you don’t realise (Cobol, Fortran)

Some are not used much at all, but have been important
influences on other languages (APL, Snobol, Algol)



Language Families

Feet

e Cobol: USEing a COLT 45 HANDGUN, AIM gun at
LEG.FOQOT, THEN place ARM.HAND.FINGER on
HANDGUN.TRIGGER and SQUEEZE. THEN return

HANDGUN to HOLSTER. CHECK whether shoelace
needs to be retied



Language Families

Feet

e Cobol: USEing a COLT 45 HANDGUN, AIM gun at
LEG.FOOT, THEN place ARM.HAND.FINGER on
HANDGUN.TRIGGER and SQUEEZE. THEN return
HANDGUN to HOLSTER. CHECK whether shoelace
needs to be retied

e Fortran: You shoot yourself in each toe, iteratively, until you
run out of toes, then you read in the next foot and repeat. If
you run out of bullets, you continue anyway because you
have no exception-handling facility



Language Families

Feet

e Cobol: USEing a COLT 45 HANDGUN, AIM gun at
LEG.FOOT, THEN place ARM.HAND.FINGER on
HANDGUN.TRIGGER and SQUEEZE. THEN return
HANDGUN to HOLSTER. CHECK whether shoelace
needs to be retied

e Fortran: You shoot yourself in each toe, iteratively, until you
run out of toes, then you read in the next foot and repeat. If
you run out of bullets, you continue anyway because you
have no exception-handling facility

e APL: You hear a gunshot and there’s a hole in your foot,
but you don’t remember enough linear algebra to
understand what happened.



Language Families

Feet

Cobol: USEing a COLT 45 HANDGUN, AIM gun at
LEG.FOOT, THEN place ARM.HAND.FINGER on
HANDGUN.TRIGGER and SQUEEZE. THEN return
HANDGUN to HOLSTER. CHECK whether shoelace
needs to be retied

Fortran: You shoot yourself in each toe, iteratively, until you
run out of toes, then you read in the next foot and repeat. If
you run out of bullets, you continue anyway because you
have no exception-handling facility

APL: You hear a gunshot and there’s a hole in your foot,
but you don’t remember enough linear algebra to
understand what happened.

Snobol: If you succeed, shoot yourself in the left foot. If
you fail, shoot yourself in the right foot



Language Families

Feet

Continuing Exercise go and read further around these (and
other) languages to discover why they have these descriptions



Language Families

Feet

Continuing Exercise go and read further around these (and
other) languages to discover why they have these descriptions

Exercise for advanced students: make up jokes for the missing
ones and funnier versions for existing ones



Language Families

There are hundreds of languages out there



Language Families

There are hundreds of languages out there

How do we choose which to use?



Language Families

There are hundreds of languages out there
How do we choose which to use?

Sometimes we are told by the boss, or have to fit with an
existing project



Language Families

There are hundreds of languages out there
How do we choose which to use?

Sometimes we are told by the boss, or have to fit with an
existing project

Sometimes we only have a restricted choice



Language Families

If we have any choice we need to have some criteria to guide
the choice



Language Families

If we have any choice we need to have some criteria to guide
the choice

We need to able to



Language Families

If we have any choice we need to have some criteria to guide
the choice

We need to able to

e identify and assess characteristics of a given language



Language Families

If we have any choice we need to have some criteria to guide
the choice

We need to able to

e identify and assess characteristics of a given language
e recognise similarities between languages



Language Families

If we have any choice we need to have some criteria to guide
the choice

We need to able to

e identify and assess characteristics of a given language
e recognise similarities between languages
e recognise if a feature is unique to a language



Language Families

If we have any choice we need to have some criteria to guide
the choice

We need to able to

identify and assess characteristics of a given language
e recognise similarities between languages
e recognise if a feature is unique to a language

e take concepts from one language to another (learn one,
learn ’em all)



Language Families

“If you can’t say it you can’t think it” (Orwell/Wittgenstein)



Language Families

“If you can’t say it you can’t think it” (Orwell/Wittgenstein)

Having more concepts allows more flexibility: for example, if
there is no array construct in the language, you are restricted in
what you can do easily



Language Families

“If you can’t say it you can’t think it” (Orwell/Wittgenstein)

Having more concepts allows more flexibility: for example, if
there is no array construct in the language, you are restricted in
what you can do easily

“Those who cannot remember the past are condemned to
repeat it” (George Santayana)



Language Families

“If you can’t say it you can’t think it” (Orwell/Wittgenstein)

Having more concepts allows more flexibility: for example, if
there is no array construct in the language, you are restricted in
what you can do easily

“Those who cannot remember the past are condemned to
repeat it” (George Santayana)

Avoid re-implementation and old mistakes: wise people learn
from the mistakes of others



Language Families

So to help think about concepts we classify language into
families



Language Families

So to help think about concepts we classify language into
families

But it is important to remember that families are not exclusive,
a language can sit comfortably in more than one family



Aside

One of the many places where we will need to think about
terminology is vectors and arrays



Aside

One of the many places where we will need to think about
terminology is vectors and arrays

Sometimes people use these works interchangeably, to mean
the same thing



Aside

One of the many places where we will need to think about
terminology is vectors and arrays

Sometimes people use these works interchangeably, to mean
the same thing

Sometimes, not, e.g., array is fixed size, vector is variable sized



Aside

One of the many places where we will need to think about
terminology is vectors and arrays

Sometimes people use these works interchangeably, to mean
the same thing

Sometimes, not, e.g., array is fixed size, vector is variable sized

Or a vectoris 1D, an array is > 1D



Aside

One of the many places where we will need to think about
terminology is vectors and arrays

Sometimes people use these works interchangeably, to mean
the same thing

Sometimes, not, e.g., array is fixed size, vector is variable sized
Or a vectoris 1D, an array is > 1D

And sometimes people use “list” where others would use
“vector”



Aside

One of the many places where we will need to think about
terminology is vectors and arrays

Sometimes people use these works interchangeably, to mean
the same thing

Sometimes, not, e.g., array is fixed size, vector is variable sized
Or a vectoris 1D, an array is > 1D

And sometimes people use “list” where others would use
“vector”

There are many place in CS where people use different words
for the same things; or the same word for different things. Be
aware of such variations!



