Comparative Programming Languages
CM20318
Russell Bradford
2023/24
1. Dataflow Languages
Purpose: concurrent or stream programming
Examples: SISAL, Strand, spreadsheets
Notable features: data driven computation
2. Dataflow Languages
Normally you think of a program as a sequence of operations to be done on some data
A dataflow language takes the view that the data should be the things of interest, and so the data drives the computations
For example in x = y + z the addition can only be done when y and z have values
3. Dataflow Languages
So within
y = 1;
x = y + z;
z = 2;
the addition can only be executed after the assignments to both y and z, regardless of the order these statements happen to be written
4. Dataflow Languages
This may sound weird, but this is precisely how spreadsheets work
Values propagate across cells by executing those rules that apply at any given point in time
Regardless of the actual layout of the cells
5. Dataflow Languages
Outside spreadsheets there has not been a wide uptake of this approach, though it should be noted that event-driven programming is closely related
There has been some experimentation in the area of parallel programming: note that applicable computations can be executed in parallel
Exercise Deep Learning in AI has been called a dataflow approach. Read about this
6. Dataflow Languages
Feet
· Excel: You don’t need to shoot yourself in the foot because a macro virus has already done so
7. Markup Languages
Purpose: description of objects; often, but not exclusively, documents
Examples: HTML, XML, SGML, CSS, nroff, LaTeX, …
Notable features: use of notation, e.g., within a document, to describe elements of the document (often, but not exclusively, visual layout); generally not “executed” in the usual sense
8. Markup Languages
· HTML: HyperText Markup Language
· XML: Extensible Markup Language
· SGML: Standard Generalized Markup Language
· CSS: Cascading Style Sheets
· nroff: new roff (roff: runoff)
· LaTeX: Lamport’s TeX (TeX: from “technology”)
9. Markup Languages
Feet
· HTML: You cut a bullethole in your foot with nothing more than a small penknife, but you realize that to make it look convincing, you need to be using Dreamweaver
· XML: You can’t actually shoot yourself in the foot; all you can do is describe the gun in painful detail
· nroff:
· troff -ms -Hdrwp | lpr -Pwp2 & .*place
bullet in footer .B .NR FT +3i .in 4 .bu Shoot!
.br .sp .in -4 .br .bp NR HD -2i .*
· CSS: Everyone can now shoot themselves in the foot, but all their feet come out looking identical and attached to their ears
10. Markup Languages
Very widely used
· HTML was originally used to describe the content (“this is a section title”) and appearance (“use a big and bold font”) of Web pages. Usually poorly
· These days the accepted approach is to use HTML to describe the content, and use CSS to describe the appearance
· XML is used to markup the meaning of (say) text. Currently seen as the cure to all “Web 2.0” scenarios. Usually incorrectly
11. Markup Languages
HTML
<html>
<head>
<title>CM20318</title>
<link rel="stylesheet" type="text/css" href="notes.css">
</head>
<body>
<h2>CM20318: Comparative Programming Languages</h2>

<h4>Unit Catalogue</h4>

CM20318
<p>
12. Markup Languages
CSS
body {
 font-family: Arial;
 background: white url("bg.png") repeat-y;
}

tt {
 font-size: larger;
}

.warn {
 color: red;
}
13. Markup Languages
XML
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"/>
 <SOAP-ENV:Body>
 <m:OrderItemResponse xmlns:m="Some-URI">
 <OrderNumber>561381</OrderNumber>
 </m:OrderItemResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
SOAP is a standard data encoding for transfer of data between Web services that uses XML
14. Markup Languages
HTML
HTML and XML are both derivatives of a more general language, SGML
HTML is ubiquitous
Unfortunately, its design ignored a lot of useful earlier work on hypertexts
HTML/CSS is about display of documents
Where we should mean ”display” in the general sense; including “audio display” for the vision-impaired
15. Markup Languages
XML
XML is about identifying information within documents
XML is widely used in Web 2.0 and Web services as data communication protocols
Specifications exists for:
· MathML: mathematics
· OFX: Open Financial Exchange, financial data
· XUL: XML User-interface Language, a language for describing user interfaces
· AML: Astronomical Markup Language, for controlling astronomical instruments.
16. Markup Languages
XML
· RSS: Really Simple Syndication
· WML: Wireless Markup Language
· SVG: Scalable Vector Graphics
· MusicXML: music notation
· VoiceXML: Voice Extensible Markup Language
· PDML: Product Data Markup Language
· ODF: Open Document Format
· SMIL: Synchronized Multimedia Integration Language
· Gastro Intestinal Markup Language
· And hundreds of others
17. Markup Languages
Originally designed to be text based and therefore easily debugged by sight, common usage of HTML and XML is so complicated this is no longer possible
Being text based is now a disadvantage as it is hard for computers to parse quickly and accurately
Not many humans read or write HTML these days
XML has been adopted widely for Web applications, often without proper consideration of the alternatives, such as JSON (JavaScript Object Notation) or Google’s Protocol Buffers
Exercise These are examples of the many serialisation languages: read about these
18. Markup Languages
Also, increasingly XML is being used to store information, which it is very ill suited to do
Use a database to store information!
If you ever have a project that uses an “XML database”, walk away in disgust
19. Object Oriented Languages
Purpose: general programming
Examples: Java, C++, Objective C, C#, JavaScript, Eiffel, Swift …, and many other languages with objects of some kind
Notable features: use of objects as a means to control complexity
The concept of objects is so persuasive that there are a large number of languages (Python, Haskell, etc.) that are not usually thought of as OO languages but incorporate objects in some way
20. Object Oriented Languages
Feet
· C++: You accidentally create a dozen clones of yourself and shoot them all in the foot. Emergency medical assistance is impossible since you can’t tell which are bitwise copies and which are just pointing at others and saying, “That’s me, over there.”
· C++ (2): “C makes it easy to shoot yourself in the foot; C++ makes it harder, but when you do, it blows away your whole leg” (Bjarne Stroustrup)
Note that C++ is now such a large language (“many featured”) that group projects using it often start by deciding on which subset of the language they are going to use
21. Object Oriented Languages
Feet
· Objective C: You write a protocol for shooting yourself in the foot so that all people can get shot in their feet
· C#: You can’t figure out a different way to shoot yourself in the foot so you end up copying Java
· Eiffel: You take out a contract on your foot. The precondition is that there’s a bullet in the gun; the postcondition is that there’s a hole in your foot
22. Object Oriented Languages
Feet
· Swift: You try to shoot yourself in the foot with the ultra-modern Swift gun, but you discover the gun has no trigger. Instead, it’s designed to shoot automatically only when pointed safely at its intended target, with any type of bullet. Occasionally it explodes in your hand and takes off your arm
Swift is Objective-C without the C
Craig Federighi (Apple)
23. Object Oriented Languages
We are going to look at OO in depth later
Warning: when you are talking to people and they use the word “object”, take care to make it clear if they are using the word in the OO sense, or in the generic (meaning just some “thing”) sense
24. Actor Languages
Related to OO is the concept of an Actor
An actor is an entity or object (sometimes as in the OO sense, sometimes not) that communicates with other actors purely by means of messages
25. Actor Languages
When an actor receives a message it may
· do some computation and modify its internal state
· send some messages to other actors
· create some new actors
And it might do any or all of these things in any order or at the same time in parallel
A kind of dataflow on objects
26. Actor Languages
Purpose: general programming, simulation, concurrent systems
Examples: Pony, Erlang, Elixir (compiles to Erlang bytecode), Scala, but often added into a language by means of a library
Notable features: use of actors passing messages to structure systems
27. Actor Languages
The idea of actors was to decouple computation from communication, allowing a natural way of having asynchronous communication between computations
And to have an inherently concurrent way of programming that allows a huge amount of parallelism in the execution
A system could have thousand or millions of actors and the language runtime will schedule them as it sees fit on the available hardware
But this means that such runtimes are incredibly complicated to make efficient
Exercise A popular use of actors is in Multi-Agent Systems. Read about these
28. Language Families
And so on
We could go on with more families (symbolic languages, probabilistic languages, etc.), but instead we shall change tack slightly to look more at the features that languages may support
So: we have looked at what languages might to; we turn to how they might do it
29. Other Classifications
There are many other classifications that cut across the families we have described
Some more important than others
· Declarative and Imperative
· Parallel or Sequential
· GC and non-GC
· Strongly typed, weakly typed, statically typed, dynamically typed and untyped
· Area of application: numeric, symbolic, business process, graphical, database, …
· Interpreted and Compiled (byte code interpreted etc.)
· and so on
30. Declarative and Imperative
Imperative: the program describes the actions to be taken
Examples: C, Java, Lisp, Fortran, …
Notable features: program code is essentially “do this; then this; then this”, with loops and functions, maybe sequential, maybe parallel and with all the things you are used to to control the flow of execution
31. Declarative and Imperative
Declarative: the program is a description of what we want, with little or no explicit direction on how to do it, or no particular control flow
Examples: Prolog, ASP (Answer Set Programming), Haskell, Mathematica (pattern matching part), SQL (Structured Query Language), configuration languages …
Notable features: the system itself determines how to progress a computation
For example, an SQL engine must find the best way of finding the records that fit the query
32. Declarative and Imperative
Terminology alert: some people say declarative languages are those languages where programs can be regarded as theorems with computations as the proofs of the theorems
This would include functional programming and probably all other languages so is not such a helpful view for separating languages into different classifications
33. Declarative and Imperative
Feet
· Mathematica: You try to shoot yourself in the foot and then have to figure out why it didn’t work
· Mathematica (2): Your code to shoot yourself in the foot actually shoots someone else in the foot, but you think it works because you still feel pain
· SQL: You cut your foot off, send it out to a service bureau and when it returns, it has a hole in it but will no longer fit the attachment at the end of your leg
34. Declarative and Imperative
Imperative languages are clearly very widely used
Declarative languages are also very widely used
This is because SQL is hugely widely used (it’s in your browser; it’s in your phone!)
35. Declarative and Imperative
One important subset of declarative languages are the logic languages such as Prolog and ASP
Here the computations are definitely proofs of theorems
At a stretch, markup languages can be though of as declarative
Programmers often have difficulty thinking in a declarative way, unless the problem is already declarative
But declarative languages are naturally parallel as they don’t describe sequences of operations
36. Declarative and Imperative
In a declarative language the system determines how to progress a computation
An SQL example. A database contains a table Exams
	Name
	Course
	Mark

	Smith
	C++ Prog
	65

	Jones
	C++ Prog
	85

	Brown
	Java Prog
	35

	Smith
	Java Prog
	88

SQL query:
select Name, Mark from Exams where Course = ’C++ Prog’ and Mark > 50;
37. Declarative and Imperative
It returns something like
	Name
	Mark

	Jones
	85

	Smith
	65

The point being we did not instruct the SQL engine on how to find those results: it can choose any method it likes
E.g., iterating through the table testing for Course then Mark
Or, testing for Mark then Course
A sophisticated SQL engine will make a judgement and choose the most efficient search
38. Declarative and Imperative
“Declarative” means you can use it without knowing what it’s doing. All too often, it means you can’t tell what it’s doing, either.
Anon
