Comparative Programming Languages
CM20318
Russell Bradford
2023/24
1. Types
So:
· Manifest: allows for a simpler compiler as it doesn’t have to work so hard. Requires the programmer to think explicitly about the types
· Mixed: the programmer thinks about types, but a lot of the hard work is done by the compiler. The code is moderately explicit about types
· Implicit: allows for simpler code, but requires a much more complex compiler to do the type inference. Possibly the code is harder to understand by the programmer (less “documentation” in code)
A trade-off of compiler speed against coding speed
2. Types
Python allows optional type declarations for variables:
def double(n: int):
 return n+n
Though this is purely documentary and not checked by the runtime: double(3.14) -> 6.28 and double(’ha’) -> ’haha’
3. Types
Such documentary type declarations (also called type hints)
· make the code easier to understand for the programmers
· makes the code easier to refactor
· helps IDEs (e.g., autocompletion)
· helps the programmer (not the compiler) catch bugs
Exercise There are several static type checkers for Python (Mypy, Pytype, Pyright, Pyre, …). Why do these exist?
4. Types
Exercise Read about Hindley-Milner type systems
Exercise Elements of type inference is being adopted by some traditional explicitly typed languages. Why? Read about auto in C++, var in C# and var in Java
Exercise Think about type inference in the presence of automatic type coercions (weak typing)
5. Types
Static types are often further divided:
· Monomorphic/Lexical: variables have a single, definite type, so you can type-check purely on the variables
· int f(int x) { ... y = x; ... }
· A very common approach
6. Types
Polymorphism
· Polymorphic: types can be shown by type variables, e.g.,
· push: a * [a] -> [a]
· or
· template <class T>
List<T> push(T x, List<T> l)
7. Types
Polymorphism
Or
public static <T> List<T> push(T x, List<T> l)
or
func push[T](x T, l []T) []T
where a and T are variables that stand for types, not values
So push is a function that takes a value of some type, a list of values of the same type and returns a list of values of that type
8. Types
Polymorphism
The idea of polymorphism seems to originate as far back as 1967 (Christopher Strachey)
Polymorphic (“many shaped”) functions are notionally functions that work on many types
That is, you could give it an argument of type A or an argument of type B and the function would (a) work and (b) do the “same thing” to the argument regardless of the actual type of the argument, e.g., push, above
The function push works the same on lists of integers and lists of strings
9. Types
Polymorphism
In other circumstances, if you defined a function to take a value of one type and you gave it a value of another type, that would be an error
After all, this is one of the reasons types are used: to catch the cases where you use a value of the wrong type
10. Types
Polymorphism
Polymorphism is where a function (or method) can be called on more than one type, e.g., push doesn’t care what it’s a list of, as all lists are built the same way
Polymorphism is really about presenting a single API to the programmer and it works on more than one type
But the word “polymorphic” has expanded to mean something more complicated
11. Types
Overloading
The concept of overloading has been around for a long time
Some languages (e.g., Java, C++, but not C) allow:
int f(int x) { return -x; }
double f(double x) { return 2.0*x; }
Multiple different functions with the same name
The compiler can distinguish which f we mean by the argument types: f(2) means the int function; while f(2.0) means the double function
12. Types
Overloading
And for f(x) the compiler looks at the declared type for x to see which f to use
And different chunks of code are compiled for each function
13. Types
Overloading
Aside: another reason why we need to be careful to distinguish between, say, 2 and 2.0
Exercise Think about the call f(3/2)
14. Types
Overloading
The function bodies can be completely different: it’s almost incidental that the functions have the same name
Though it would be sensible programming to have all instances of f do the same kind of thing on their arguments
Overloading does not prevent you making the various fs do wildly different things: but doing this would only make understanding your code harder
15. Types
Overloading
So the type of the argument determines what happens:
f(2) is compiled as a call to the first
f(2.0) is compiled as a call to the second
In fact, in a typical implementation, the compiler internally renames (“name mangling”) the two functions as (something like) f_int and f_double, so giving them distinct names
16. Types
Overloading
It then (in effect) rewrites your code and replaces f everywhere as appropriate
It writes “normal” functions
int f_int(int x) return -x; and
double f_double(double x) return 2.0*x; ,
and then
f(2) is replaced f_int(2)
f(2.0) is replaced by f_double(2.0)
It then compiles this “rewritten” code
17. Types
Overloading
Overloading is very widespread and appears in a limited way in lots of languages: common functions like + are often overloaded
18. Aside on Operators
Remember that operators like + and are just convenient syntax for the expected underlying functions or methods and otherwise are not particularly special
You can write 1 + 2 rather than having to write add(1, 2) or (add 1 2) or (1).__add__(2)
Many languages overload operators, so, for example, allowing int+int and double+double values, sometimes strings, too
19. Aside on Operators
Some languages allow mixed types, too: int+double and double+int, as in 1 + 2.3
These can all refer to different underlying functions. E.g., int+double would likely coerce its first argument to a double before doing a double+double add. This is different from what double+int needs to do
20. Aside on Operators
OCaml doesn’t overload +, but uses + for integer addition and +. for float addition
BCPL, being untyped, didn’t support float arithmetic for a long time (as the hardware of the time didn’t either!), but later added it with non-overloaded operators like #+ and #*
A strongly typed language might overload int+int and double+double but not int+double or double+int, disallowing implicit coercion
Exercise Some languages (e.g., C++, Rust, Python) allow you to define your own methods on operators, while others don’t (e.g., Java). Investigate
21. Types
Overloading/Polymorphism
So overloading is a way of having different chunks of code use the same function name
The polymorphism we saw earlier is different from overloading
E.g., length to return the length of a list
Here, the same function code works on many types of list
There is just one chunk of code that works on multiple types
length [2] (list of integers) runs the same code as
length ["hello" "world"] (list of strings)
length doesn’t care about the types of its arguments
22. Types
Overloading/Polymorphism
Beware of overloading disguised as polymorphism:
template <class T> // T is a type variable
T f(T x) { return -x; }
in C++ defining a function f taking a value of type T and returning a value of type T, for all types T. Similarly:
// T any type that implements negation
fn f<T>(x: T) -> T where T: Neg<Output=T> { -x }
in Rust.
Both allow us to call f(2) and f(2.0) etc.
23. Types
Overloading/Polymorphism
The programmer writes code just once, defining a function that will work on many types T. Superficially this looks like polymorphism: we can call f(2) and f(2.0) and the “same” code gets executed
But not really. The compiler simply writes for itself the code for the individual int and double versions and compiles those (or does the equivalent)
\uncover<+->int f(int x) { return -x; }
double f(double x) { return -x; }
24. Types
Overloading/Polymorphism
This approach is called monomorphization: replacing something apparently polymorphic with multiple monomorphic bits of code
And this is actually overloading f as the underlying code to negate an integer is different from the code to negate a floating point value
And it would do the usual internal renaming
\uncover<.->int f_int(int x) { return -x; }
double f_double(double x) { return -x; }
Exercise Make sure you understand why negation of integers is different code to negation of floating point
25. Types
Overloading/Polymorphism
Be aware that some people classify overloading as a particular kind of polymorphism, even though overloading uses different pieces of code for each type
For them, the fact that two functions have the same name is enough to call it polymorphism
Perhaps they are thinking of overloading the name, rather than overloading the function?
They call it ad hoc polymorphism, in contrast with true polymorphism, parametric polymorphism
	overloading
	
	ad hoc polymorphism

	polymorphism
	
	parametric polymorphism

26. Types
Overloading Return Types
Many languages only support overloading on function argument types, while conceivably you could overload on return types:
int f(int n) { ... }
double f(int n) { ... }
where we distinguish using the return type
This is much rarer
27. Types
Overloading Return Types
For example
int f(int n) { ... }
double f(int n) { ... }
int g(int n) { ... }
int g(double n) { ... }
where we overload g in the normal way
What should we do with g(f(1))?
Overloading both argument types and return types is tricky: so we pick just one, and overloading arguments is generally more useful
28. Types
Overloading Return Types
Java and C++ don’t support overloading on return types: so you can’t have both int foo(int) and double foo(int)
You can have both int foo(int) and double foo(double) by virtue of the different argument types
Exercise Language with more sophisticated type systems, such as Rust and Haskell, do allow a form of overloading on return types. Read about this
29. Types
Overloading/Polymorphism
Monomorphization is not the only way a language might choose to implement polymorphism
Exercise See generics in Java: this uses Type Erasure (which is actually parametric polymorphism)
Exercise See generics in Go: this uses a partial monomorphization technique called GCShape stenciling with Dictionaries
30. Types
Overloading/Polymorphism
Exercise Swift is superficially similar to other languages, e.g.,
func min<T: Comparable>(x: T, y: T) -> T {
 return y < x ? y : x
}
but again, it does something different. Read about Generic Specialization (which is kind of dynamic)
Exercise And read about C#’s approach to monomorphization: Lazy Monomorphisation
31. Types
Advanced Exercise Compare these monomorphization techniques
Exercise Find out what overloading your favourite languages support, e.g., overloading based on numbers of arguments to a function: int f(int a) and int f(int a, int b)
32. Types
Subtype Polymorphism
Next we have subtype polymorphism which is the kind of polymorphism that arises when we define a function on a type and apply it to an instance of a subtype
Almost always seen in the context of classes, rather than just general types
Some languages do support subtypes, as opposed to subclasses, e.g., positive integers as a subtype of all integers, but this is not common
33. Types
Subtype Polymorphism
For example if you have a class Animal with a subclass Cat
A method defined on Animal will work on an instance of Cat even though they are not the same types
To emphasise this point: Cat and Animal are different classes, as you can’t use them interchangeably
So this looks like a kind of polymorphism: a method working on multiple types
But subtype polymorphism — something every OO programmer relies on every day — is not actually different from the kinds of polymorphism we have seen already
34. Types
Subtype Polymorphism
Suppose we have classes
class Animal {
 bool alive() { ... }
 bool sleepy() { return false; }
}

class Cat extends Animal {
 bool sleepy() { return true; }
}
where Cat inherits the alive method but overrides the sleepy method
35. Types
Subtype Polymorphism
The alive method is parametric polymorphic: the same method works on more than one type, namely Animal and Cat
The sleepy method is ad-hoc polymorphic (overloaded) as we have two different bits of code with the same name, sleepy
Thus “subtype polymorphic” is actually just a shorthand for “either ad-hoc or parametric polymorphic”
36. Types
Subtype Polymorphism
While talking about subtype polymorphism we should mention the Liskov substitution principle
A principle that outlines the behaviour we should expect from subtyping
Suppose S is a subtype of T. Then whenever we need an instance of type T we can use an instance of type S, and our code should still operate correctly
If this holds, instances of S really are instances of T, but perhaps with a few additional properties
Methods for Animal should work on Cats
37. Types
Subtype Polymorphism
This is most people’s belief on how subtypes work: so why is it worth mentioning?
Because some versions of inheritance and some uses of inheritance violate this principle
Some examples later, when we talk about class composition
38. Types
Note that the ideas of polymorphism and overloading are not reliant on OO: in fact they both predate OO
As previously mentioned, a large number of languages overload the arithmetic functions like + and , though most only in a fixed way
Lisp has always had parametric polymorphism (length of a list, etc.)
39. Types
Hacker Exercise C “supports” polymorphism using void *. Read about this
Exercise Ada supports subtyping, e.g., integer ranges, such as “integers 0…10” as a subtype of all integers. Read about this
Exercise We can also have polymorphic datatypes, e.g., list in Lisp, struct Pair<T>(T, T) in Rust, Java, and so on. Read about these, and determine whether they are parametric or ad-hoc
