Interpreted and Compiled

Sometimes it is useful to classify according to how the program
is treated to make a runnable object, as this affects (a) the code
development and (b) how the code is delivered

Interpreted and Compiled

Sometimes it is useful to classify according to how the program
is treated to make a runnable object, as this affects (a) the code
development and (b) how the code is delivered

Compiled to native machine code and executed directly: C,
C++, Fortran, ...

Interpreted and Compiled

Sometimes it is useful to classify according to how the program
is treated to make a runnable object, as this affects (a) the code
development and (b) how the code is delivered

Compiled to native machine code and executed directly: C,
C++, Fortran, ...

Bytecode: compile to a machine-independent code that is then
interpreted or further compiled to machine code to execute.
Java, Python, C#, Perl, Lua, Forth, Clisp ...

Interpreted and Compiled

Sometimes it is useful to classify according to how the program
is treated to make a runnable object, as this affects (a) the code
development and (b) how the code is delivered

Compiled to native machine code and executed directly: C,
C++, Fortran, ...

Bytecode: compile to a machine-independent code that is then
interpreted or further compiled to machine code to execute.
Java, Python, C#, Perl, Lua, Forth, Clisp ...

Interpreted: Basic, HTML, ...

Interpreted and Compiled

Feet

e C#: You forget precisely how to use the .NET interface and
shoot yourself in the foot. You sue Microsoft for damages

Interpreted and Compiled

Feet

e C#: You forget precisely how to use the .NET interface and
shoot yourself in the foot. You sue Microsoft for damages

e C# (2): You copy how Java shot itself in the foot. Then you
explain to everybody who will listen how you did it better

Interpreted and Compiled

Feet

e C#: You forget precisely how to use the .NET interface and
shoot yourself in the foot. You sue Microsoft for damages

e C# (2): You copy how Java shot itself in the foot. Then you
explain to everybody who will listen how you did it better

e C# (3): You can create and shoot a gun in C#, but you
can’t shoot your foot in managed code

Interpreted and Compiled

Feet

e Lua: You come up with a decent way to shoot yourself in
the foot, but you’re unsure if it's the optimal way to go about
it. You ask the mailing list. Someone points out that Lua
has a “shoot foot” function built in, but it’s only exposed via
the C API. The discussion devolves into a long debate
about whether various functions should be exposed, how
objects and OOP should be implemented, and whether nil
should be a valid table index

Interpreted and Compiled

Feet

e Lua: You come up with a decent way to shoot yourself in
the foot, but you’re unsure if it's the optimal way to go about
it. You ask the mailing list. Someone points out that Lua
has a “shoot foot” function built in, but it’s only exposed via
the C API. The discussion devolves into a long debate
about whether various functions should be exposed, how
objects and OOP should be implemented, and whether nil
should be a valid table index

e Lua (2): You shoot yourself in the foot while watching
enviously how Scheme shoots you in the foot

Interpreted and Compiled

Compiling to native machine code for a specific processor
produces fast running programs, using all the facilities of the
hardware (when done properly)

Interpreted and Compiled

Compiling to native machine code for a specific processor
produces fast running programs, using all the facilities of the
hardware (when done properly)

Provides lots of error checking in the compilation phase

Interpreted and Compiled

Compiling to native machine code for a specific processor
produces fast running programs, using all the facilities of the
hardware (when done properly)

Provides lots of error checking in the compilation phase

Uses the compile-run-edit cycle of development

Interpreted and Compiled

Compiling to native machine code for a specific processor
produces fast running programs, using all the facilities of the
hardware (when done properly)

Provides lots of error checking in the compilation phase
Uses the compile-run-edit cycle of development

Some programmers regard this cycle as “slow” as they keep
having to wait for the compiler to do its thing, probably spitting
out errors they have to fix. So this is less preferred for rapid
prototyping of code

Interpreted and Compiled

But even compile-run-edit can support moderately fast
development

Interpreted and Compiled

But even compile-run-edit can support moderately fast
development

Most systems support modules (or equivalent) that can be
separately compiled, giving

(a) faster compilation times
(b) error checking on small units of code

Interpreted and Compiled

But even compile-run-edit can support moderately fast
development

Most systems support modules (or equivalent) that can be
separately compiled, giving

(a) faster compilation times
(b) error checking on small units of code

Only when all the modules compile would we need to link them
into a working executable to test

Interpreted and Compiled

And the programmer has to produce a fairly complete outline of
their code that passes the compiler checks before they can do
atestrun

Interpreted and Compiled

And the programmer has to produce a fairly complete outline of
their code that passes the compiler checks before they can do
atestrun

Compared to interpreting, where bits of code can be
incomplete, or even function definitions missing and it can still
run (a bit)

Interpreted and Compiled

And the programmer has to produce a fairly complete outline of
their code that passes the compiler checks before they can do
atestrun

Compared to interpreting, where bits of code can be
incomplete, or even function definitions missing and it can still
run (a bit)

For coders whose testing process is “try it and see”, a compiler
is a hindrance

Interpreted and Compiled

And the programmer has to produce a fairly complete outline of
their code that passes the compiler checks before they can do
atestrun

Compared to interpreting, where bits of code can be
incomplete, or even function definitions missing and it can still
run (a bit)

For coders whose testing process is “try it and see”, a compiler
is a hindrance

Other people are happy to wait for a compiler as it does a lot of
checking and produces fast running code

Interpreted and Compiled

But also:

Interpreted and Compiled

But also:

An interpreter typically finds just one error per run

Interpreted and Compiled

But also:
An interpreter typically finds just one error per run

And maybe takes a long time to hit an error; if at all

Interpreted and Compiled

But also:
An interpreter typically finds just one error per run
And maybe takes a long time to hit an error; if at all

Compilers can find several errors per compile

Interpreted and Compiled

But also:

An interpreter typically finds just one error per run
And maybe takes a long time to hit an error; if at all
Compilers can find several errors per compile

So the arguments for rapid development time are not at all clear

Interpreted and Compiled

“Rapid development” is just another way of saying “Get-
ting it wrong quickly”

Anon
... also called the “run-crash-modify” code cycle

Anon

Interpreted and Compiled

Exercise Consider this C code:

#include <stdio.h>

int main(void)
{
int sum = O;
for (int i = 0; i < 100; i++) {
sum += i;

}

printf ("%d\n", sum);
return 0;

}

Compile using optimisation (-02) and look at the machine code
it produces. Then remove the printf line and repeat. Do the
same with other languages of your choice.

Interpreted and Compiled

Other remarks on interpreted languages:

Interpreted and Compiled

Other remarks on interpreted languages:

You have portable, compact code — the source

Interpreted and Compiled

Other remarks on interpreted languages:
You have portable, compact code — the source

But you need an interpreter for each architecture you want to
run on

Interpreted and Compiled

Other remarks on interpreted languages:
You have portable, compact code — the source

But you need an interpreter for each architecture you want to
run on

And the interpreter occupies memory space itself

Interpreted and Compiled

Other remarks on interpreted languages:
You have portable, compact code — the source

But you need an interpreter for each architecture you want to
run on

And the interpreter occupies memory space itself

So not really that portable or compact

Interpreted and Compiled

Other remarks on interpreted languages:
You have portable, compact code — the source

But you need an interpreter for each architecture you want to
run on

And the interpreter occupies memory space itself
So not really that portable or compact

Secrecy of code is poor: you can’t stop people reading your
intellectual property

Interpreted and Compiled

Other remarks on interpreted languages:
You have portable, compact code — the source

But you need an interpreter for each architecture you want to
run on

And the interpreter occupies memory space itself
So not really that portable or compact

Secrecy of code is poor: you can’t stop people reading your
intellectual property

Exercise Are there any major interpreted languages these
days?

Interpreted and Compiled

In contrast, some languages compile to a machine independent
bytecode

Interpreted and Compiled

In contrast, some languages compile to a machine independent
bytecode

A kind of machine code for a standardised, virtual machine

Interpreted and Compiled

In contrast, some languages compile to a machine independent
bytecode

A kind of machine code for a standardised, virtual machine

A real machine can then use a runtime system to interpret the
bytecode and execute the program

Interpreted and Compiled

In contrast, some languages compile to a machine independent
bytecode

A kind of machine code for a standardised, virtual machine

A real machine can then use a runtime system to interpret the
bytecode and execute the program

Or further compile the bytecode to native machine code and
run that

Interpreted and Compiled

In contrast, some languages compile to a machine independent
bytecode

A kind of machine code for a standardised, virtual machine

A real machine can then use a runtime system to interpret the
bytecode and execute the program

Or further compile the bytecode to native machine code and
run that

Or a mixture of the two!

Interpreted and Compiled

Bytecode produces more compact compiled code: a single
bytecode instruction might correspond to a large number of
machine code instructions and so is sometimes suitable for
small memory machines

Interpreted and Compiled

Bytecode produces more compact compiled code: a single
bytecode instruction might correspond to a large number of
machine code instructions and so is sometimes suitable for
small memory machines

For example, Forth is used in embedded controllers

Interpreted and Compiled

Bytecode produces more compact compiled code: a single
bytecode instruction might correspond to a large number of
machine code instructions and so is sometimes suitable for
small memory machines

For example, Forth is used in embedded controllers

This is good as long as the runtime that executes the bytecode
is not too large

Interpreted and Compiled

Bytecode produces more compact compiled code: a single
bytecode instruction might correspond to a large number of
machine code instructions and so is sometimes suitable for
small memory machines

For example, Forth is used in embedded controllers

This is good as long as the runtime that executes the bytecode
is not too large

For example, Java has a large and complex runtime

Interpreted and Compiled

The bytecode is machine independent so allowing mobile code,
working across different architectures and different operating
systems

Interpreted and Compiled

The bytecode is machine independent so allowing mobile code,
working across different architectures and different operating
systems

“Compile once and run anywhere”

Interpreted and Compiled

The bytecode is machine independent so allowing mobile code,
working across different architectures and different operating
systems

“Compile once and run anywhere”

Even mobile in the sense the program can move between
different processors while it is running

Interpreted and Compiled

A bytecode compiler is a compiler, so it can provide lots of error
checking in the compilation phase, so tends to be “slow”
development

Interpreted and Compiled

A bytecode compiler is a compiler, so it can provide lots of error
checking in the compilation phase, so tends to be “slow”
development

Generally a modest overhead in loss of speed in the execution
of the bytecode, though claims are often made that a good VM
and compiler could eliminate this overhead

Interpreted and Compiled

A bytecode compiler is a compiler, so it can provide lots of error
checking in the compilation phase, so tends to be “slow”
development

Generally a modest overhead in loss of speed in the execution
of the bytecode, though claims are often made that a good VM
and compiler could eliminate this overhead

Note that Go (native compiler) and Python (bytecode) have
deliberately fast compilers (omitting some analysis and
optimisation) to mitigate the perceived compiler overhead

Interpreted and Compiled

A bytecode compiler can’t take advantage of specifics of the
hardware it runs on, though the VM might be able to

Interpreted and Compiled

A bytecode compiler can’t take advantage of specifics of the
hardware it runs on, though the VM might be able to

The VM can do a lot of optimisations

Interpreted and Compiled

A bytecode compiler can’t take advantage of specifics of the
hardware it runs on, though the VM might be able to

The VM can do a lot of optimisations

For example, Java compilers generally don’t do a lot of
optimisation, they regard optimisation as the job of the VM

Interpreted and Compiled

A bytecode compiler can’t take advantage of specifics of the
hardware it runs on, though the VM might be able to

The VM can do a lot of optimisations

For example, Java compilers generally don’t do a lot of
optimisation, they regard optimisation as the job of the VM

So Java VMs tend to be huge, complicated things

Interpreted and Compiled

A bytecode compiler can’t take advantage of specifics of the
hardware it runs on, though the VM might be able to

The VM can do a lot of optimisations

For example, Java compilers generally don’t do a lot of
optimisation, they regard optimisation as the job of the VM

So Java VMs tend to be huge, complicated things

These days, a typical Java compiler starts by interpreting the
bytecode and then compiles the heavily-used sections of code
as it runs your program

Interpreted and Compiled

A bytecode compiler can’t take advantage of specifics of the
hardware it runs on, though the VM might be able to

The VM can do a lot of optimisations

For example, Java compilers generally don’t do a lot of
optimisation, they regard optimisation as the job of the VM

So Java VMs tend to be huge, complicated things

These days, a typical Java compiler starts by interpreting the
bytecode and then compiles the heavily-used sections of code
as it runs your program

Exercise Read about JIT compilation and its advantages and
disadvantages

Interpreted and Compiled

The platform independence of a VM is not actually used much
in real life

Interpreted and Compiled

The platform independence of a VM is not actually used much
in real life

Maybe Java is not as platform independent as you might think;
or it's not worth the testing, or the marketing to target more than
one architecture?

Interpreted and Compiled

Exercise Read about the bytecodes for Java, Python, C#, Perl
(Parrot), Pascal (P-code), Forth, Lua, Clisp and others and
discover how they are generated and how they are executed

Exercise WASM, the new-ish way of executing code in a Web
browser, is a bytecode. It is designed for streaming: it can be
further compiled (and even executed) while still being
downloaded. Read about it

Exercise There are more architectures supported by C/C++
than are supported by a Java VM. Discuss

Interpreted and Compiled

Note: any given language can be compiled/interpreted/run in
any of these ways

Interpreted and Compiled

Note: any given language can be compiled/interpreted/run in
any of these ways

Though languages do tend to have a preferred approach

Interpreted and Compiled

Note: any given language can be compiled/interpreted/run in
any of these ways

Though languages do tend to have a preferred approach

For example, C is almost always compiled, Java is bytecoded,
while Basic tends to be interpreted

Interpreted and Compiled

Note: any given language can be compiled/interpreted/run in
any of these ways

Though languages do tend to have a preferred approach

For example, C is almost always compiled, Java is bytecoded,
while Basic tends to be interpreted

But there are C interpreters and Java to machine code
compilers

Interpreted and Compiled

Exercise Look at several languages and determine their usual
methods of execution

Exercise Then determine the positives and negatives of doing
it differently (e.g., compiling Java to machine code; bytecoding
C)

Interpreted and Compiled

Where Java has been called “compile once, run anywhere”, C
is sometimes called “compile anywhere, run anywhere”

Interpreted and Compiled

Where Java has been called “compile once, run anywhere”, C
is sometimes called “compile anywhere, run anywhere”

C can be thought as a “high level assembly language” that is
mostly machine independent

Interpreted and Compiled

Where Java has been called “compile once, run anywhere”, C
is sometimes called “compile anywhere, run anywhere”

C can be thought as a “high level assembly language” that is
mostly machine independent

And is often the first language to be supported on new
architectures, so is widely available

Interpreted and Compiled

Where Java has been called “compile once, run anywhere”, C
is sometimes called “compile anywhere, run anywhere”

C can be thought as a “high level assembly language” that is
mostly machine independent

And is often the first language to be supported on new
architectures, so is widely available

It's usually the first supported language as operating systems
are often written in C

Interpreted and Compiled

Where Java has been called “compile once, run anywhere”, C
is sometimes called “compile anywhere, run anywhere”

C can be thought as a “high level assembly language” that is
mostly machine independent

And is often the first language to be supported on new
architectures, so is widely available

It's usually the first supported language as operating systems
are often written in C

Java — Write once, problems everywhere
Anon

Interpreted and Compiled

Other compilers leverage existing frameworks

Interpreted and Compiled

Other compilers leverage existing frameworks

TypeScript and CoffeeScript are both “more sophisticated”
languages that compile to JavaScript

Interpreted and Compiled

Other compilers leverage existing frameworks

TypeScript and CoffeeScript are both “more sophisticated”
languages that compile to JavaScript

Note carefully: the output from the compiler is JavaScript,
which is then executed in the normal way

Interpreted and Compiled

Other compilers leverage existing frameworks

TypeScript and CoffeeScript are both “more sophisticated”
languages that compile to JavaScript

Note carefully: the output from the compiler is JavaScript,
which is then executed in the normal way

This is source-to-source compilation and such compilers are
called transpilers

Interpreted and Compiled

“Transpiling” turns out to be another vague concept when you
look at it carefully

Interpreted and Compiled

“Transpiling” turns out to be another vague concept when you
look at it carefully

Even though, say, the clang compiler converts C to LLVM, the
Low Level Virtual Machine language, this is not generally
regarded as transpiling, as LLVM is a kind of
machine-independent assembly language

Interpreted and Compiled

“Transpiling” turns out to be another vague concept when you
look at it carefully

Even though, say, the clang compiler converts C to LLVM, the
Low Level Virtual Machine language, this is not generally
regarded as transpiling, as LLVM is a kind of
machine-independent assembly language

Perhaps better to say: transpilation is source to source
compilation at the same level of abstraction, typically a high
level language to a high level language

Interpreted and Compiled

“Transpiling” turns out to be another vague concept when you
look at it carefully

Even though, say, the clang compiler converts C to LLVM, the
Low Level Virtual Machine language, this is not generally
regarded as transpiling, as LLVM is a kind of
machine-independent assembly language

Perhaps better to say: transpilation is source to source
compilation at the same level of abstraction, typically a high
level language to a high level language

Assembly language to assembly language transpilers also exist

Interpreted and Compiled

This approach allows the language designer to create a new or
“better” language without needing a lot of the bothersome parts
of a full compiler that take a lot of work to implement and
optimise

Interpreted and Compiled

This approach allows the language designer to create a new or
“better” language without needing a lot of the bothersome parts
of a full compiler that take a lot of work to implement and
optimise

For example, TypeScript has static compile time type checking
and classes

Interpreted and Compiled

This approach allows the language designer to create a new or
“better” language without needing a lot of the bothersome parts
of a full compiler that take a lot of work to implement and
optimise

For example, TypeScript has static compile time type checking
and classes

Thus allowing programmers to write code in a higher level and
better structured way that still runs in a browser

Interpreted and Compiled

This approach allows the language designer to create a new or
“better” language without needing a lot of the bothersome parts
of a full compiler that take a lot of work to implement and
optimise

For example, TypeScript has static compile time type checking
and classes

Thus allowing programmers to write code in a higher level and
better structured way that still runs in a browser

And allows TypeScript to use all the hard work the JavaScript
implementors have done in making JavaScript run quickly

Interpreted and Compiled

A transpiler is a compiler, so it can do the usual things a
compiler might do

Interpreted and Compiled

A transpiler is a compiler, so it can do the usual things a
compiler might do

A transpiler might

Interpreted and Compiled

A transpiler is a compiler, so it can do the usual things a
compiler might do

A transpiler might

¢ do the usual syntax and other checking of the source
language

Interpreted and Compiled

A transpiler is a compiler, so it can do the usual things a
compiler might do

A transpiler might

¢ do the usual syntax and other checking of the source
language

e do type checking — so the target could have weaker type
system

Interpreted and Compiled

A transpiler is a compiler, so it can do the usual things a
compiler might do

A transpiler might

¢ do the usual syntax and other checking of the source
language

e do type checking — so the target could have weaker type
system

* do optimisations — less likely, as that’s something you
want from the target language compiler

Interpreted and Compiled

Note the source and target languages can be very different!

Interpreted and Compiled

Note the source and target languages can be very different!

An accidental benefit is that you get easy integration of your
source language with the with target language and its libraries

Interpreted and Compiled

For example, consider this Typescript code:

// typed variables
function add(a: number, b: number): number {
return a + b;

}

// classes
class Thing {
private value: number;
constructor(n: number) {
this.value = n;
}
toString(): string {
return ‘${this.valuel}‘;

3

Interpreted and Compiled

This might compile to JavaScript

// typed variables
function add(a, b) {
return a + b;
}
// classes
var Thing = /** @class */ (function () {
function Thing(n) {
this.value = n;

}

Thing.prototype.toString = function () {
return "" + this.value;

+;

return Thing;

3}

Interpreted and Compiled

The Typescript transpiler can do type checking, while a
JavaScript compiler can’t

Interpreted and Compiled

The Typescript transpiler can do type checking, while a
JavaScript compiler can’t

But has had the benefit of being typechecked in the
transpilation process

Interpreted and Compiled

The Typescript transpiler can do type checking, while a
JavaScript compiler can’t

But has had the benefit of being typechecked in the
transpilation process

Exercise The Typescript code function add(a: number,
b: number) has type information that could be used to
generate code that is better optimised than the transpiled
JavaScript function add(a, b). Think about this

Interpreted and Compiled

Typescript is quite close to JavaScript, so the output code from
the transpiler is fairly simple and human-readable

Interpreted and Compiled

Typescript is quite close to JavaScript, so the output code from
the transpiler is fairly simple and human-readable

Exercise Transpiling languages that are far apart can produce
very complex code. Experiment with transpiling Python to C, or
Lisp to C, or Haskell to C, or whatever

Interpreted and Compiled

Typescript is quite close to JavaScript, so the output code from
the transpiler is fairly simple and human-readable

Exercise Transpiling languages that are far apart can produce
very complex code. Experiment with transpiling Python to C, or
Lisp to C, or Haskell to C, or whatever

Exercise Conway’s Life is Turing Complete: you can build a
“computer” out of gliders etc. There is even a compiler from C
to Life. Read about this

Interpreted and Compiled

C is a popular target language, as C compilers are widely
available and have been heavily optimised

Interpreted and Compiled

C is a popular target language, as C compilers are widely
available and have been heavily optimised

Exercise Read about Kyoto Common Lisp that compiles to C

Exercise Read about Cambridge Common Lisp that compiles
to C (speed), mixed with bytecode (compact)

Exercise The original C++ compiler was a transpiler to C. Read
about this

Interpreted and Compiled

Similarly, given the widespread availability of Java, the Java
virtual machine is a popular target

Interpreted and Compiled

Similarly, given the widespread availability of Java, the Java
virtual machine is a popular target

It is debatable whether we should call these transpilers, but
they are exploiting existing infrastructure in a similar way

Interpreted and Compiled

Similarly, given the widespread availability of Java, the Java
virtual machine is a popular target

It is debatable whether we should call these transpilers, but
they are exploiting existing infrastructure in a similar way

Exercise Read about Clojure, a Lisp that compiles to Java
bytecode (and JavaScript and .NET)

Exercise Read about Scala, a functional language that
compiles to Java bytecode (and JavaScript and native code)

Interpreted and Compiled

Exercise Read about Kotlin, a statically and implicitly typed OO
language that compiles to Java bytecode (and JavaScript and
native code). Currently one of Google’s preferred languages for
Android app development

Exercise Read about Groovy, a scripting language that
compiles to Java bytecode

Exercise Read about GraalVM that compiles Python,
JavaScript, Ruby, R, LLVM and more to the Java VM

Interpreted and Compiled

And JavaScript; these have the advantage the result can run in
a browser

Interpreted and Compiled

And JavaScript; these have the advantage the result can run in
a browser

Exercise Read about Dart, a C# style language that compiles
to JavaScript

Exercise Read about EIm, a functional language that compiles
to JavaScript

Exercise Read about Nim, a implicitly typed “multi-paradigm”
language that compiles to JavaScript (and C, C++, Objective C)

Interpreted and Compiled

A closely related topic is: does this language run natively, or
does it need a runtime?

Interpreted and Compiled

A closely related topic is: does this language run natively, or
does it need a runtime?

For example, C compiles all the way down to native machine
code and a C program requires little else to run: access to the
OS kernel and systems libraries, but nothing more than that

Interpreted and Compiled

A closely related topic is: does this language run natively, or
does it need a runtime?

For example, C compiles all the way down to native machine
code and a C program requires little else to run: access to the
OS kernel and systems libraries, but nothing more than that

Sometimes this is described as “running on the bare metal”

Interpreted and Compiled

A closely related topic is: does this language run natively, or
does it need a runtime?

For example, C compiles all the way down to native machine
code and a C program requires little else to run: access to the
OS kernel and systems libraries, but nothing more than that

Sometimes this is described as “running on the bare metal”

While Java compiles to a bytecode that need to be itself
interpreted or further compiled

Interpreted and Compiled

So Java requires a runtime infrastructure

Interpreted and Compiled

So Java requires a runtime infrastructure

A program to run your program

Interpreted and Compiled

So Java requires a runtime infrastructure
A program to run your program

You don’t directly run your bytecompiled Java program, but you
actually are running the java runtime program which loads and
executes your program

Interpreted and Compiled

So Java requires a runtime infrastructure
A program to run your program

You don’t directly run your bytecompiled Java program, but you
actually are running the java runtime program which loads and
executes your program

This runtime infrastructure includes other support the language
needs, like a garbage collector

Interpreted and Compiled

So Java requires a runtime infrastructure
A program to run your program

You don’t directly run your bytecompiled Java program, but you
actually are running the java runtime program which loads and
executes your program

This runtime infrastructure includes other support the language
needs, like a garbage collector

Exercise There were some experiments to build hardware to
execute Java bytecode. Read about this

Interpreted and Compiled

Similarly, Python needs a VM to execute its bytecode

Interpreted and Compiled

Similarly, Python needs a VM to execute its bytecode

Go and Erlang need support for their thread mechanisms; and
so on

Interpreted and Compiled

Similarly, Python needs a VM to execute its bytecode

Go and Erlang need support for their thread mechanisms; and
so on

Native machine code is good for low-level applications, like
operating systems, or on embedded systems, where runtime
languages would be a cumbersome overhead

Interpreted and Compiled

Similarly, Python needs a VM to execute its bytecode

Go and Erlang need support for their thread mechanisms; and
so on

Native machine code is good for low-level applications, like
operating systems, or on embedded systems, where runtime
languages would be a cumbersome overhead

On the other hand, runtimes provide useful programming
features (like GC and lightweight threads)

Interpreted and Compiled

So, again, your problem to solve should lead you to pick the
right kind of approach

Interpreted and Compiled

So, again, your problem to solve should lead you to pick the
right kind of approach

Must the program have as few dependencies as possible or use
as few resources as possible?

Interpreted and Compiled

So, again, your problem to solve should lead you to pick the
right kind of approach

Must the program have as few dependencies as possible or use
as few resources as possible?

Or are we less concerned with size and brute performance and
are happy to employ a large, many featured infrastructure?

Interpreted and Compiled

Exercise Many people think C is a simple language. Have a
look at https:
//www.nayuki.io/page/summary-of-c-cpp-integer-rules

Exercise Then look at how C (and similar other languages)
treat undefined behaviour

Exercise And Implementation defined behaviour

https://www.nayuki.io/page/summary-of-c-cpp-integer-rules
https://www.nayuki.io/page/summary-of-c-cpp-integer-rules

Bits and Pieces

Now for a brief run-though of some assorted smaller bits and
pieces

Bits and Pieces

Now for a brief run-though of some assorted smaller bits and
pieces

Covering some features that you might like to consider when
choosing a programming language

Bits and Pieces

Compile/Run or Read-Eval-Print Loop

Bits and Pieces

Compile/Run or Read-Eval-Print Loop

REP: the systems reads a line, evaluates it, then prints the
result

Bits and Pieces

Compile/Run or Read-Eval-Print Loop

REP: the systems reads a line, evaluates it, then prints the
result

Interactive, good for beginners to get an immediate feel for what
is happening and good for quick code hacking

Bits and Pieces

Compile/Run or Read-Eval-Print Loop

REP: the systems reads a line, evaluates it, then prints the
result

Interactive, good for beginners to get an immediate feel for what
is happening and good for quick code hacking

Examples: Python, Haskell, Lisp

Bits and Pieces

Compile and Run: good for catching errors, good for optimising
code, good for large bodies of code

Bits and Pieces

Compile and Run: good for catching errors, good for optimising
code, good for large bodies of code

Examples: C, Java, C++, Python, Haskell, Lisp

Bits and Pieces

Expressions/Statements

Expression Based or Statement Based

Bits and Pieces

Expressions/Statements

Expression Based or Statement Based

Statement based: the code is a sequence of statements to be
executed

Bits and Pieces

Expressions/Statements

Expression Based or Statement Based

Statement based: the code is a sequence of statements to be
executed

Statements can contain expressions to be evaluated

Bits and Pieces

Expressions/Statements

Expression Based or Statement Based

Statement based: the code is a sequence of statements to be
executed

Statements can contain expressions to be evaluated

if (x > 10) {

y =x+ 2
}
else {

y =x + 3;

}

Bits and Pieces

Expressions/Statements

Expression Based or Statement Based

Statement based: the code is a sequence of statements to be
executed

Statements can contain expressions to be evaluated

if (x > 10) {

y =x+ 2
}
else {

y =x + 3;
}

Examples: C, Java, C++

Bits and Pieces

Expressions/Statements

Expression based: the code is a sequence of expressions to be
evaluated

Bits and Pieces

Expressions/Statements

Expression based: the code is a sequence of expressions to be
evaluated

y=x+ if (x > 10) { 2 } else { 3 };

Bits and Pieces

Expressions/Statements

Expression based: the code is a sequence of expressions to be
evaluated

y=x+ if (x > 10) { 2 } else { 3 };

Examples: Lisp, Rust

Bits and Pieces

Expressions/Statements

Expression based: the code is a sequence of expressions to be
evaluated

y=x+ if (x > 10) { 2 } else { 3 };

Examples: Lisp, Rust

The value can be ignored if you don’t need it, making it
effectively a statement

Bits and Pieces

Expressions/Statements

In C we have statements

int inc(int n) {
if (n > 0) {
return n + 1;
}
else {
return n - 1;
¥
}

if is a statement

Bits and Pieces

Expressions/Statements

While Rust has expressions

fn inc(n: i32) -> 132 {
ifn >0 {
n+1
}
else {
n-1
}
}

Bits and Pieces

Expressions/Statements

While Rust has expressions

fn inc(n: i32) -> 132 {
ifn >0 {
n+1
}
else {
n-1
}
}

if is an expression that returns a value

The function body is an expression that returns a value

Bits and Pieces

Expressions/Statements

Expression-based is more flexible, more general, and possibly
less wordy than statement-based, but some people claim it is a
bit harder to read

Bits and Pieces

Expressions/Statements

Expression-based is more flexible, more general, and possibly
less wordy than statement-based, but some people claim it is a
bit harder to read

Though others claim that expressions are easier to read

Bits and Pieces

Expressions/Statements

Expression-based is more flexible, more general, and possibly
less wordy than statement-based, but some people claim it is a
bit harder to read

Though others claim that expressions are easier to read

Exercise What would you expect the assignment expression
“x = 42”to return?

Exercise Read about how ; might be a statement terminator or
a expression separator

Bits and Pieces

Expressions/Statements

Note that C has y

x + (x>10) ? 2 : 3;

and Pythonhasy = x + 2 if (x>10) else 3

for the if case, but are otherwise mostly statement languages

Bits and Pieces

Multiple values

Multiple value return
Functions that return more than one value:

fn sumdiff(a, b) {

return a+b, a-b;
}
x, y = sumdiff (4,5);

Examples: Lisp, Maple, Go

Bits and Pieces

Multiple values

Exercise What about Python:

def sumdiff(a, b):
return atb, a-b

Exercise Some languages support pairs:

fn sumdiff(a: i32, b: i32) -> (i32, i32) {
(a+b, a-b)
}

What is the difference between returning two values and
returning one value, which is a pair?

