
Bits and Pieces
Bytecode Execution

Bytecode Execution

We return to bytecode: there are several different ways
bytecode can get executed

Java is bytecode, and has separate compile and runtime
systems (javac vs. java)

Its main objective is machine-independent (byte)code

Java compilers are quite heavyweight (i.e., large and relatively
slow), but the code they produce is only moderately well
optimised

We have a compile→ run→ debug→ compile→ . . . cycle of
development



Bits and Pieces
Bytecode Execution

Bytecode Execution

We return to bytecode: there are several different ways
bytecode can get executed

Java is bytecode, and has separate compile and runtime
systems (javac vs. java)

Its main objective is machine-independent (byte)code

Java compilers are quite heavyweight (i.e., large and relatively
slow), but the code they produce is only moderately well
optimised

We have a compile→ run→ debug→ compile→ . . . cycle of
development



Bits and Pieces
Bytecode Execution

Bytecode Execution

We return to bytecode: there are several different ways
bytecode can get executed

Java is bytecode, and has separate compile and runtime
systems (javac vs. java)

Its main objective is machine-independent (byte)code

Java compilers are quite heavyweight (i.e., large and relatively
slow), but the code they produce is only moderately well
optimised

We have a compile→ run→ debug→ compile→ . . . cycle of
development



Bits and Pieces
Bytecode Execution

Bytecode Execution

We return to bytecode: there are several different ways
bytecode can get executed

Java is bytecode, and has separate compile and runtime
systems (javac vs. java)

Its main objective is machine-independent (byte)code

Java compilers are quite heavyweight (i.e., large and relatively
slow), but the code they produce is only moderately well
optimised

We have a compile→ run→ debug→ compile→ . . . cycle of
development



Bits and Pieces
Bytecode Execution

Bytecode Execution

We return to bytecode: there are several different ways
bytecode can get executed

Java is bytecode, and has separate compile and runtime
systems (javac vs. java)

Its main objective is machine-independent (byte)code

Java compilers are quite heavyweight (i.e., large and relatively
slow), but the code they produce is only moderately well
optimised

We have a compile→ run→ debug→ compile→ . . . cycle of
development



Bits and Pieces
Bytecode Execution

Python is bytecode and has an integrated compile and runtime
system

Each time a Python program (the source text) is run it is first
compiled, then executed: this helps rapid development, as
above

So total run time = compile time + execution time

It helps that the Python compiler is really fast!



Bits and Pieces
Bytecode Execution

Python is bytecode and has an integrated compile and runtime
system

Each time a Python program (the source text) is run it is first
compiled, then executed: this helps rapid development, as
above

So total run time = compile time + execution time

It helps that the Python compiler is really fast!



Bits and Pieces
Bytecode Execution

Python is bytecode and has an integrated compile and runtime
system

Each time a Python program (the source text) is run it is first
compiled, then executed: this helps rapid development, as
above

So total run time = compile time + execution time

It helps that the Python compiler is really fast!



Bits and Pieces
Bytecode Execution

Python is bytecode and has an integrated compile and runtime
system

Each time a Python program (the source text) is run it is first
compiled, then executed: this helps rapid development, as
above

So total run time = compile time + execution time

It helps that the Python compiler is really fast!



Bits and Pieces
Bytecode Execution

But this does mean the Python bytecode produced is not
optimised

So Java code should run faster than Python code

But I’ve seen the same program written in Java and in Python,
and the Python compiled and ran to completion in less time
than the java runtime managed to even start and load the code

And that’s ignoring the time the Java compiler took beforehand



Bits and Pieces
Bytecode Execution

But this does mean the Python bytecode produced is not
optimised

So Java code should run faster than Python code

But I’ve seen the same program written in Java and in Python,
and the Python compiled and ran to completion in less time
than the java runtime managed to even start and load the code

And that’s ignoring the time the Java compiler took beforehand



Bits and Pieces
Bytecode Execution

But this does mean the Python bytecode produced is not
optimised

So Java code should run faster than Python code

But I’ve seen the same program written in Java and in Python,
and the Python compiled and ran to completion in less time
than the java runtime managed to even start and load the code

And that’s ignoring the time the Java compiler took beforehand



Bits and Pieces
Bytecode Execution

But this does mean the Python bytecode produced is not
optimised

So Java code should run faster than Python code

But I’ve seen the same program written in Java and in Python,
and the Python compiled and ran to completion in less time
than the java runtime managed to even start and load the code

And that’s ignoring the time the Java compiler took beforehand



Bits and Pieces
Bytecode Execution

We have an (apparent) run→ debug→ run→ . . . cycle of
development

Python is about development time, not execution time

The compiled form of the Python program may or may not be
kept around for the next run

Perl and Lua are similar to Python in this execution

Exercise Reflect on reasons why it might not be a good idea to
keep the compiled version

Exercise There is currently a drive in the Python world to
produce better optimised bytecode. Read about this



Bits and Pieces
Bytecode Execution

We have an (apparent) run→ debug→ run→ . . . cycle of
development

Python is about development time, not execution time

The compiled form of the Python program may or may not be
kept around for the next run

Perl and Lua are similar to Python in this execution

Exercise Reflect on reasons why it might not be a good idea to
keep the compiled version

Exercise There is currently a drive in the Python world to
produce better optimised bytecode. Read about this



Bits and Pieces
Bytecode Execution

We have an (apparent) run→ debug→ run→ . . . cycle of
development

Python is about development time, not execution time

The compiled form of the Python program may or may not be
kept around for the next run

Perl and Lua are similar to Python in this execution

Exercise Reflect on reasons why it might not be a good idea to
keep the compiled version

Exercise There is currently a drive in the Python world to
produce better optimised bytecode. Read about this



Bits and Pieces
Bytecode Execution

We have an (apparent) run→ debug→ run→ . . . cycle of
development

Python is about development time, not execution time

The compiled form of the Python program may or may not be
kept around for the next run

Perl and Lua are similar to Python in this execution

Exercise Reflect on reasons why it might not be a good idea to
keep the compiled version

Exercise There is currently a drive in the Python world to
produce better optimised bytecode. Read about this



Bits and Pieces
Bytecode Execution

We have an (apparent) run→ debug→ run→ . . . cycle of
development

Python is about development time, not execution time

The compiled form of the Python program may or may not be
kept around for the next run

Perl and Lua are similar to Python in this execution

Exercise Reflect on reasons why it might not be a good idea to
keep the compiled version

Exercise There is currently a drive in the Python world to
produce better optimised bytecode. Read about this



Bits and Pieces
Bytecode Execution

We have an (apparent) run→ debug→ run→ . . . cycle of
development

Python is about development time, not execution time

The compiled form of the Python program may or may not be
kept around for the next run

Perl and Lua are similar to Python in this execution

Exercise Reflect on reasons why it might not be a good idea to
keep the compiled version

Exercise There is currently a drive in the Python world to
produce better optimised bytecode. Read about this



Bits and Pieces
Interpreters

As regards bytecode execution, some systems initially interpret
the bytecode but keep note of those parts of code that are used
frequently, e.g., bodies of loops

They then dynamically (during runtime) compile just those parts
to machine code so they will subsequently execute more quickly

That is, they take time away from running your code to compile
bits of your code

They are taking the gamble this will improve overall runtime

This is Just in Time (JIT) compilation

Examples include Java and JavaScript VMs



Bits and Pieces
Interpreters

As regards bytecode execution, some systems initially interpret
the bytecode but keep note of those parts of code that are used
frequently, e.g., bodies of loops

They then dynamically (during runtime) compile just those parts
to machine code so they will subsequently execute more quickly

That is, they take time away from running your code to compile
bits of your code

They are taking the gamble this will improve overall runtime

This is Just in Time (JIT) compilation

Examples include Java and JavaScript VMs



Bits and Pieces
Interpreters

As regards bytecode execution, some systems initially interpret
the bytecode but keep note of those parts of code that are used
frequently, e.g., bodies of loops

They then dynamically (during runtime) compile just those parts
to machine code so they will subsequently execute more quickly

That is, they take time away from running your code to compile
bits of your code

They are taking the gamble this will improve overall runtime

This is Just in Time (JIT) compilation

Examples include Java and JavaScript VMs



Bits and Pieces
Interpreters

As regards bytecode execution, some systems initially interpret
the bytecode but keep note of those parts of code that are used
frequently, e.g., bodies of loops

They then dynamically (during runtime) compile just those parts
to machine code so they will subsequently execute more quickly

That is, they take time away from running your code to compile
bits of your code

They are taking the gamble this will improve overall runtime

This is Just in Time (JIT) compilation

Examples include Java and JavaScript VMs



Bits and Pieces
Interpreters

As regards bytecode execution, some systems initially interpret
the bytecode but keep note of those parts of code that are used
frequently, e.g., bodies of loops

They then dynamically (during runtime) compile just those parts
to machine code so they will subsequently execute more quickly

That is, they take time away from running your code to compile
bits of your code

They are taking the gamble this will improve overall runtime

This is Just in Time (JIT) compilation

Examples include Java and JavaScript VMs



Bits and Pieces
Interpreters

As regards bytecode execution, some systems initially interpret
the bytecode but keep note of those parts of code that are used
frequently, e.g., bodies of loops

They then dynamically (during runtime) compile just those parts
to machine code so they will subsequently execute more quickly

That is, they take time away from running your code to compile
bits of your code

They are taking the gamble this will improve overall runtime

This is Just in Time (JIT) compilation

Examples include Java and JavaScript VMs



Bits and Pieces
Bytecode Execution

Occasionally JIT can produce faster running code than simple
static compilation as the compilation process can be informed
by the profile information gained from running the program,
e.g., which methods are actually being chosen and called



Bits and Pieces
Bytecode Execution

Though this does incur some runtime overhead: compilation is
not cheap, and unless you are careful it can dominate the
running time in a short-lived program

You might argue that it doesn’t matter in a short-lived program
as it will soon be finished anyway

However if you run that program many times it does add up to a
lot of extra CPU cycles (i.e., energy) as the same JIT
compilations are done and re-done every run time



Bits and Pieces
Bytecode Execution

Though this does incur some runtime overhead: compilation is
not cheap, and unless you are careful it can dominate the
running time in a short-lived program

You might argue that it doesn’t matter in a short-lived program
as it will soon be finished anyway

However if you run that program many times it does add up to a
lot of extra CPU cycles (i.e., energy) as the same JIT
compilations are done and re-done every run time



Bits and Pieces
Bytecode Execution

Though this does incur some runtime overhead: compilation is
not cheap, and unless you are careful it can dominate the
running time in a short-lived program

You might argue that it doesn’t matter in a short-lived program
as it will soon be finished anyway

However if you run that program many times it does add up to a
lot of extra CPU cycles (i.e., energy) as the same JIT
compilations are done and re-done every run time



Bits and Pieces
Bytecode Execution

Long-running programs benefit a lot, though

Despite the overheads of monitoring the execution of the code
to determine which parts to compile and actually doing the
compilation

Exercise Look at the optimisations that modern
implementations of Java and JavaScript use



Bits and Pieces
Bytecode Execution

Long-running programs benefit a lot, though

Despite the overheads of monitoring the execution of the code
to determine which parts to compile and actually doing the
compilation

Exercise Look at the optimisations that modern
implementations of Java and JavaScript use



Bits and Pieces
Bytecode Execution

Long-running programs benefit a lot, though

Despite the overheads of monitoring the execution of the code
to determine which parts to compile and actually doing the
compilation

Exercise Look at the optimisations that modern
implementations of Java and JavaScript use



Bits and Pieces
Bytecode Execution

Another approach is ahead of time (AOT) compilation

This takes bytecode and further compiles it for the specific OS
and hardware at installation time

Devised mostly for users (not developers!) of apps for
low-energy devices (phones), where the repeated runtime
interpretation or JIT compilation every time the app is run is
wasted energy

Suitable compilation and optimisation is done just once, when
the app is installed: “delivery time compilation”



Bits and Pieces
Bytecode Execution

Another approach is ahead of time (AOT) compilation

This takes bytecode and further compiles it for the specific OS
and hardware at installation time

Devised mostly for users (not developers!) of apps for
low-energy devices (phones), where the repeated runtime
interpretation or JIT compilation every time the app is run is
wasted energy

Suitable compilation and optimisation is done just once, when
the app is installed: “delivery time compilation”



Bits and Pieces
Bytecode Execution

Another approach is ahead of time (AOT) compilation

This takes bytecode and further compiles it for the specific OS
and hardware at installation time

Devised mostly for users (not developers!) of apps for
low-energy devices (phones), where the repeated runtime
interpretation or JIT compilation every time the app is run is
wasted energy

Suitable compilation and optimisation is done just once, when
the app is installed: “delivery time compilation”



Bits and Pieces
Bytecode Execution

Another approach is ahead of time (AOT) compilation

This takes bytecode and further compiles it for the specific OS
and hardware at installation time

Devised mostly for users (not developers!) of apps for
low-energy devices (phones), where the repeated runtime
interpretation or JIT compilation every time the app is run is
wasted energy

Suitable compilation and optimisation is done just once, when
the app is installed: “delivery time compilation”



Bits and Pieces
Bytecode Execution

AOT gives us

• a faster running app, as there is reduced run-time
overhead of interpretation or compilation
• less energy used, as we don’t repeatedly use energy in

doing the same compilation every time the app is run



Bits and Pieces
Bytecode Execution

AOT gives us

• a faster running app, as there is reduced run-time
overhead of interpretation or compilation

• less energy used, as we don’t repeatedly use energy in
doing the same compilation every time the app is run



Bits and Pieces
Bytecode Execution

AOT gives us

• a faster running app, as there is reduced run-time
overhead of interpretation or compilation
• less energy used, as we don’t repeatedly use energy in

doing the same compilation every time the app is run



Bits and Pieces
Bytecode Execution

Downsides include

• you lose the run-time information of a JIT that could
possibly produce better optimised code. However, this loss
appears to be outweighed by the gains from being able to
optimise globally the whole app, rather than JIT’s local
optimisations

• installing the app will take a lot longer if a thorough
optimising compiler is used. A user would do this just once,
though
• the compiled code takes up more space. Becoming less of

an issue as memory capacity on small devices improves



Bits and Pieces
Bytecode Execution

Downsides include

• you lose the run-time information of a JIT that could
possibly produce better optimised code. However, this loss
appears to be outweighed by the gains from being able to
optimise globally the whole app, rather than JIT’s local
optimisations
• installing the app will take a lot longer if a thorough

optimising compiler is used. A user would do this just once,
though

• the compiled code takes up more space. Becoming less of
an issue as memory capacity on small devices improves



Bits and Pieces
Bytecode Execution

Downsides include

• you lose the run-time information of a JIT that could
possibly produce better optimised code. However, this loss
appears to be outweighed by the gains from being able to
optimise globally the whole app, rather than JIT’s local
optimisations
• installing the app will take a lot longer if a thorough

optimising compiler is used. A user would do this just once,
though
• the compiled code takes up more space. Becoming less of

an issue as memory capacity on small devices improves



Bits and Pieces
Bytecode Execution

You can also use a mixture of AOT and JIT

Later version of Android do not use AOT when installing an app

When your phone is idle it then sneakily uses AOT while you
are not looking

And it also uses JIT to tune apps as they run



Bits and Pieces
Bytecode Execution

You can also use a mixture of AOT and JIT

Later version of Android do not use AOT when installing an app

When your phone is idle it then sneakily uses AOT while you
are not looking

And it also uses JIT to tune apps as they run



Bits and Pieces
Bytecode Execution

You can also use a mixture of AOT and JIT

Later version of Android do not use AOT when installing an app

When your phone is idle it then sneakily uses AOT while you
are not looking

And it also uses JIT to tune apps as they run



Bits and Pieces
Bytecode Execution

You can also use a mixture of AOT and JIT

Later version of Android do not use AOT when installing an app

When your phone is idle it then sneakily uses AOT while you
are not looking

And it also uses JIT to tune apps as they run



Bytecode Execution
Bytecode Execution

You get the advantages of fast installation and AOT and JIT

But this makes the Android runtime very complicated!

Exercise What does Apple do?



Bytecode Execution
Bytecode Execution

You get the advantages of fast installation and AOT and JIT

But this makes the Android runtime very complicated!

Exercise What does Apple do?



Bytecode Execution
Bytecode Execution

You get the advantages of fast installation and AOT and JIT

But this makes the Android runtime very complicated!

Exercise What does Apple do?



Bits and Pieces
Compilation

You may wish to think about how compilation affects
optimisation of your code

“Normal” Compilation

A compiler is given a module/file at a time and compiles it,
usually with some type information about the external functions
called (e.g., #include, or use or equivalent)

So if the code includes a call k(x+1,y/2), where k is defined
in another module, the compiler generally only has the type
signature int k(int a, int b) so it knows enough to
generate the correct code to pass the arguments to the function
and get the return value



Bits and Pieces
Compilation

You may wish to think about how compilation affects
optimisation of your code

“Normal” Compilation

A compiler is given a module/file at a time and compiles it,
usually with some type information about the external functions
called (e.g., #include, or use or equivalent)

So if the code includes a call k(x+1,y/2), where k is defined
in another module, the compiler generally only has the type
signature int k(int a, int b) so it knows enough to
generate the correct code to pass the arguments to the function
and get the return value



Bits and Pieces
Compilation

You may wish to think about how compilation affects
optimisation of your code

“Normal” Compilation

A compiler is given a module/file at a time and compiles it,
usually with some type information about the external functions
called (e.g., #include, or use or equivalent)

So if the code includes a call k(x+1,y/2), where k is defined
in another module, the compiler generally only has the type
signature int k(int a, int b) so it knows enough to
generate the correct code to pass the arguments to the function
and get the return value



Bits and Pieces
Compilation

The code for k could be in a separate module, compiled at
another time or place, so the compiler has no more information
than the signature, and can make no assumptions on k

E.g., if it knew that b happened to be unused in k, it could
optimise away the y and the division

But without knowing more about k, it can’t do anything clever
like that



Bits and Pieces
Compilation

The code for k could be in a separate module, compiled at
another time or place, so the compiler has no more information
than the signature, and can make no assumptions on k

E.g., if it knew that b happened to be unused in k, it could
optimise away the y and the division

But without knowing more about k, it can’t do anything clever
like that



Bits and Pieces
Compilation

The code for k could be in a separate module, compiled at
another time or place, so the compiler has no more information
than the signature, and can make no assumptions on k

E.g., if it knew that b happened to be unused in k, it could
optimise away the y and the division

But without knowing more about k, it can’t do anything clever
like that



Bits and Pieces
Compilation

Total Compilation

This is currently quite rare in practice, usually only for small
programs

The compiler is given the whole program code at once

It can now look at every detail of every function and make
optimisations such as the one above

Practically, this is clearly quite difficult for larger programs



Bits and Pieces
Compilation

Total Compilation

This is currently quite rare in practice, usually only for small
programs

The compiler is given the whole program code at once

It can now look at every detail of every function and make
optimisations such as the one above

Practically, this is clearly quite difficult for larger programs



Bits and Pieces
Compilation

Total Compilation

This is currently quite rare in practice, usually only for small
programs

The compiler is given the whole program code at once

It can now look at every detail of every function and make
optimisations such as the one above

Practically, this is clearly quite difficult for larger programs



Bits and Pieces
Compilation

Total Compilation

This is currently quite rare in practice, usually only for small
programs

The compiler is given the whole program code at once

It can now look at every detail of every function and make
optimisations such as the one above

Practically, this is clearly quite difficult for larger programs



Bits and Pieces
Compilation

Total Compilation

This is currently quite rare in practice, usually only for small
programs

The compiler is given the whole program code at once

It can now look at every detail of every function and make
optimisations such as the one above

Practically, this is clearly quite difficult for larger programs



Bits and Pieces
Compilation

Link Time Optimisation (LTO)

With this, modules are compiled separately as normal, but in
the link phase, when all the compiled parts are joined together,
the linker can then make some optimisations

Again, technically difficult, but starting to be well supported by
some languages and can make a big difference

Note the linker could be doing some (re)compilation here!



Bits and Pieces
Compilation

Link Time Optimisation (LTO)

With this, modules are compiled separately as normal, but in
the link phase, when all the compiled parts are joined together,
the linker can then make some optimisations

Again, technically difficult, but starting to be well supported by
some languages and can make a big difference

Note the linker could be doing some (re)compilation here!



Bits and Pieces
Compilation

Link Time Optimisation (LTO)

With this, modules are compiled separately as normal, but in
the link phase, when all the compiled parts are joined together,
the linker can then make some optimisations

Again, technically difficult, but starting to be well supported by
some languages and can make a big difference

Note the linker could be doing some (re)compilation here!



Bits and Pieces
Compilation

Link Time Optimisation (LTO)

With this, modules are compiled separately as normal, but in
the link phase, when all the compiled parts are joined together,
the linker can then make some optimisations

Again, technically difficult, but starting to be well supported by
some languages and can make a big difference

Note the linker could be doing some (re)compilation here!



Bits and Pieces
Compilation

Run Time Optimisation

The runtime system monitors the program as it is running, and
make dynamic optimisations to the code using knowledge of
what is actually happening in the code

This might involve moving bits of code or data around based on
how often they are needed, to reduce memory pressure

Used to good effect in JIT compilers



Bits and Pieces
Compilation

Run Time Optimisation

The runtime system monitors the program as it is running, and
make dynamic optimisations to the code using knowledge of
what is actually happening in the code

This might involve moving bits of code or data around based on
how often they are needed, to reduce memory pressure

Used to good effect in JIT compilers



Bits and Pieces
Compilation

Run Time Optimisation

The runtime system monitors the program as it is running, and
make dynamic optimisations to the code using knowledge of
what is actually happening in the code

This might involve moving bits of code or data around based on
how often they are needed, to reduce memory pressure

Used to good effect in JIT compilers



Bits and Pieces
Compilation

In summary: running a program can be a very complex
operation!

Exercise Compare simple optimising-to-native compilers, e.g.,
C, with complex JIT runtimes, e.g., Java. Think about program
speed, data size, complexity of supporting infrastructure, and
so on



Bits and Pieces
Compilation

In summary: running a program can be a very complex
operation!

Exercise Compare simple optimising-to-native compilers, e.g.,
C, with complex JIT runtimes, e.g., Java. Think about program
speed, data size, complexity of supporting infrastructure, and
so on



Classifications

There are a large number of ways we can look at languages,
their features, their abilities

We have just touched on a few topics: there are many more
things we could talk about

Exercise For example, read about tail call optimisation,
continuations, coroutines and generators, all of which deal with
manipulating the flow of control in a program



Classifications

There are a large number of ways we can look at languages,
their features, their abilities

We have just touched on a few topics: there are many more
things we could talk about

Exercise For example, read about tail call optimisation,
continuations, coroutines and generators, all of which deal with
manipulating the flow of control in a program



Classifications

There are a large number of ways we can look at languages,
their features, their abilities

We have just touched on a few topics: there are many more
things we could talk about

Exercise For example, read about tail call optimisation,
continuations, coroutines and generators, all of which deal with
manipulating the flow of control in a program



Classifications

Of course, it is important to know that these classifications exist
so we can make informed choices amongst them

The right tool for the job



Classifications

Of course, it is important to know that these classifications exist
so we can make informed choices amongst them

The right tool for the job


