
C7—Lisp Programming

Russell Bradford

1 Introduction

This course is about Lisp. Or rather this course is about how to program in Lisp. The distinction is a great
one: Lisp, as a language to use, to program with, to learn, is one of the simplest of all languages. There is
no difficult syntax, and every piece of code or data is treated in exactly the same way, with only very few
(but important) exceptions.

On the other hand, some of the hardest language semantic questions can be posed and written using Lisp,
involving subtle or complex ideas, readily adapting to accommodate every new fad and paradigm.

We shall concentrate on the programming aspect, and perhaps give the merest hint of the semantic under-
pinning.

1.1 What is Lisp?

The name “Lisp” means “List Processor.” The basic object that we manipulate is the list. A list is an
ordered collection of objects, each of which may be other lists, or things which are not lists, called “atoms.”
An atom is any object that does not have a list structure. Thus

(the cat sat (on the) mat)

is a list of 5 objects, the 4th being a list of 2 objects. The symbols the, cat, etc., are atoms. Here is another
example of a list

((one 1) (two 2) (three 3))

which associates a symbol with a numeral (each of which are atoms).

Lists come in all shapes and sizes, for example

(((x 10) 2) ((x 5) ((y 2) 1) 1) ((x 2) 3) 2)

is a more complicated list, which some people like to think of as a representation for the polynomial 2x10 +
(y2 + 1)x5 + 3x2 + 2.

Notice the emphasis on symbols: Lisp is a symbolic language, where the data items we handle are symbols.
This is in contrast to, say, C or Fortran, where all we have to play which is numbers. Thus Lisp is used
heavily for symbolic problems, such as logic, computer algebra, and AI.

There is a special list that stands out amongst all lists, the list that contains no objects:

()
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This object has the name nil, and is strange in that it commonly regarded to be both a list and and atom.

This list aside, (we we can liken to the empty set, which has all sorts of exceptional properties) we think
of a list in a recursive manner as being composed of two parts, namely the first element, and all the rest.
Thus the first element of ( (1 3) (3 4) (4 5) ) is the list (1 3), and the rest is ( (3 4) (4 5) ). This
accords well with our naturally recursive outlook on life: the length of a list is 1 for the first element plus
the length of the rest of the list.

These parts have names, the first element of a list is called its car, the rest is called its cdr. To understand
these names we need a little history.

1.2 A Little History

Lisp is very old language, second only to Fortran in the family tree of high level languages. In the late
1950s John McCarthy described a language, named “Lisp 1,” that had all the important parts of the current
language, in particular the lists, and atoms. He was trying to develop a language that would adequately
express the λ-calculus of Alonzo Church that arose in the 1930s.

McCarthy wrote a paper describing a Lisp function that would interpret any Lisp function, including itself.
This function, eval, is like a universal Turing machine. The Lisp language he described was a universal
language that could implement all other languages. In fact, this latter is truer than you might at first think—
many modern top end compilers are written in languages which, if not actually Lisp, at least are morally
Lisp. The first Fortran compiler for UNIX, f77, was written in Lisp. Those of you who use GNUemacs may
be interested to know that it is written mainly in Lisp.

Lisp never looked back. From Lisp 1 there spawned dozens of Lisps, each exploring its own niche of computer
science, each choosing a set of ideas to develop, each picking a new set of names for the basic functions. Lisp
is not a language, it is a family of languages: a family tree can be constructed showing the major paths of
development. Unfortunately, this profusion of dialects, like the Tower of Babel, has lead to a state where
any particular Lisp program may or may not run on a particular implementation of Lisp. Or if your program
does run, it may do something entirely contrary to your expectation.

This may seem a disaster to a Fortran programmer, who wants her program to run on any compiler on any
machine. But the diversity has led to important developments and cross-fertilization of ideas, as perhaps,
objects from one branch are merged with logic programming from another to confront pure functional forms
from a third.

There are a few things common to all Lisps: lists and atoms, the function cons to construct lists, and the
functions car and cdr to take them apart.

McCarthy implemented his Lisp on an IBM 704 whose instruction format had four sections named cpr

(contents of the prefix register), ctr (contents of the tag register), car (contents of the address register),
cdr (contents of the decrement register). The way he arranged things was when he referred to a list, the car
would be in the address register, the cdr in the decrement register. And the names just stuck. Some people
claim we keep the names as a homage to McCarthy, others are more cynical.

Beyond these, things get a little vague. For example, the Cambridge Lisp function to add two numbers is
called plus, while the Common Lisp analogue is named +. This sort of variance is rife.

Even the value of the car and cdr of nil varies according to taste. Either it is an error to try to take the
car (the value of nil is an atom), or it is nil (the value of nil is a list, thus you can take a car of it).
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1.3 The Ball of Mud

A poetic reason for the divergence of Lisp was given by Moses: a language such as APL is like a diamond.
It is perfectly symmetric, and shines brightly. However, if you wish to add a new feature to the language,
the symmetry is smashed, and the diamond cracks and shatters.

Lisp, on the other hand, is a ball of mud. Essentially shapeless, you can easily add new extensions and ideas,
and all you get is a larger ball of mud ready and able to accept more and more. Lisp is infinitely extensible:
you can add new functions that have exactly the same importance to the system as the built-in commands,
or even redefine the built-in commands. You can, if you feel that way inclined, redefine the whole syntax.
Imagine the possibilities if C allowed you to redefine the while loop, or Fortran let you introduce exactly
that form of DO loop that you required for your application.

Over the years many important new ideas have first been tried out using Lisp. Optimizing compilers were
first written in Lisp. The idea of tail recursion removal was implemented in Lisp compilers as early as 1962.
Only since the late ’80 have other languages caught on: C compilers are beginning to spot the advantages
of tail recursion. Object oriented systems and object oriented graphics were first developed using Lisp.
Similarly were pure functional ideas, and logic programming and rewrite systems. Other languages have
subsequently been conceived (Prolog, ML, C++) that are based on these ideas, but they were all prototyped
in Lisp.

Lisp typically runs as an interpreter, using a read-eval-print loop. This loop sits and waits for input, reads
it, evaluates the expression it has read, and then prints the result. (As an aside, the read-eval-print loop is
often written in Lisp, and could be redefined into something more exotic, such as a control program for some
piece of machinery.) This interactive use is one of the reasons Lisp is so important as a prototyping tool: a
function can be tried, and altered, and then re-tried as often as you wish, and function call always refers to
the latest definition of a function. Thus if you define foo, and then bar which calls foo, you can define bar

in the knowledge that foo will use your new definition. (This is somewhat like the language Forth (which
was developed using the idea from Lisp, of course).) It is possible to have only a Lisp compiler, but this
removes the interactive developmental feel of the language.

Lisp enjoys the universal Turing property, not only theoretically, but also practically.

1.4 The Language

We shall be using no particular dialect of Lisp in general, except when we need to make specific points about
how dialects vary. As a default we will use function names from EuLisp (which are similar to those from
Scheme and Common Lisp, but different from those in Cambridge Lisp).

EuLisp is a “modern” Lisp, and the implementation we have is the world’s first nearly complete version, and
as such it is a little flakey here and there: the implementation is named “FEEL,” for “free, and eventually
EuLisp.” t is coded in both C and EuLisp, the former being a bootstrap for the latter. (This is typical way
of porting Lisp: write a small Lisp interpreter in a suitable language, e.g., C, and use this to load and run a
Lisp program, typically a compiler, which you then use to compile Lisp source of the Lisp language. When
this is done, you are left with a compiled Lisp on your new processor.)

Lists are the basic data structure in Lisp, as we have said. Lisp programs are included, themselves being
lists.

(+ 2 3)

This is a (short) program to compute the sum of 2 and 3. The syntax of a function call is

(fun arg arg ... )
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This is only a slight change from the more usual fun(arg, arg, ... ) but it allows an immense flexibility,
as all function calls, programming structure and data are in exactly the same shape.

When you type (+ 2 3), or any other expression, at a Lisp interpreter, it regards that expression as one to be
evaluated. It does this by first evaluating the arguments (which may themselves be arbitrary expressions),
and then applying the function to the evaluated arguments. With a couple of noteworthy exceptions,
everything in Lisp is done this way. Thus

(+ (+ 1 2 3) (* 2 8))

evaluates (+ 1 2 3) to get 6, and (* 2 4) to get 8, and then evaluates (+ 6 8) to return 14. Notice,
also, that + can take a variable number of arguments. Many functions are like this, notably in the area of
arithmetic. In Cambridge Lisp this would be written

(plus (plus 1 2 3) (times 2 8))

which is just the same, but more verbose.

Functions like + or plus act on atoms (numbers) and return atoms. What about a function of a list? Well,
length is the name of a function that takes a list and returns its length. So length applied to the list
(2 4 6) returns 3. But it we simply type

(length (2 4 6))

at the interpreter, the following happens: the interpreter wishes to evaluate the argument (2 4 6). Recur-
sively, it find the value of 4 to be 4, and of 6 to be 6. Then it tries to apply the function 2 to the arguments
4 and 6. Unless we have been particularly perverse, there is no function of that name, and the interpreter
complains

Trapped non-continuable invalid-operator!

message: invalid operator

error-value: 2

args: (3 4)

op: 2

in FEEL and

Error: 2 is invalid as a function.

Error signalled by EVAL.

in KCL, both indicating you tried to use 2 as a function.

(Aside: the Lisps now go into a “condition handler” or “error handler”. These are used for debugging—for
now, use !exit in FEEL or :q in Common Lisp to get back to the top level read-eval-print loop.)

The problem is how to convince the interpreter that this occurence of (2 4 6) is to be understood as a
three-element list, not a function to be evaluated.

Atoms such as 1, 2, and 3 evaluate to themselves, whereas an atom like “+” have a value which can be any
Lisp object.

(Another aside: atoms like + and * have no special syntactic significance, they have exactly the status of a
atom like wombat; this is entirely unlike C or ML, where they are specially treated.)

Suppose, somehow, the symbol two has been associated with the value 4. Then
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two

returns 4, and

(+ 2 two)

is 6.

To help bootstrap ourselves, and allow us to input unevaluated symbols and lists there is a function with
name quote which returns its argument unevaluated. Thus the value of

(quote (2 4 6))

is (2 4 6). The value of (quote two) is the symbol two.

The function quote is one of the above-mentioned exceptions, and is so important that there is a syntactic
abbreviation for it, the quote (’) symbol. So ’two is the same as (quote two) (which evaluates the the
symbol two), and ’(2 4 6) is the same as (quote (2 4 6)) (which evaluates to the list (2 4 6)). This is
purely a syntactic convention, and quite often the reader in the read-eval-print loop will transform a ’ into
the functional form before the evaluator sees it.

Now we can compute the length of a list

(length ’(2 4 6))

returns 3. The function car returns the car of a list, cdr returns the cdr.

(car (cdr ’(1 (2 3) 4)))

is 2. And so on.

Notice that

’(+ 1 2 3)

returns the list of length 4

(+ 1 2 3)

It is instructive to predict result of evaluating the expression

’’two

1.5 Books

In essence, any or no book is recommended for this course. Any book is enough to give a good idea of what
Lisp looks like, and how to write programs, but no book gives a world view ranging over all the Lisps you
are likely to meet. Here are some names anyway

1. “Lisp.” Winston and Horne. This has a grubby programming style, not favoured by purists.
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2. “Artificial Intelligence Programming.” Charniak and McDermot. Only if you want to do AI next year.

3. “Structure and Interpretation of Computer Programs.” Abelson and Sussman. This book describes
Scheme, an important but exceptional Lisp.

4. Cambridge Lisp Manual. We shall try to keep a copy in the teaching lab.

5. Common Lisp, Guy Steele Jr. A description of the soon-to-be Common Lisp ANSI standard. Look at
this, and marvel at its thickness. The latest edition is now 1000 pages long.

6. Any book with “Lisp” in its title.

1.6 Running Lisp

On the machines here we have several Lisps, notably the implementation of EuLisp and and implementation
of Common Lisp. EuLisp is run by the command feel, Common Lisp by kcl. The version of Common Lisp
we have is Kyoto Common Lisp, implemented by Yuasa and Hagiya of Kyoto University. They are both also
available on ss1.

Beware: these Lisps are large (on the order of 2Mb image size), so don’t be surprised if you can’t get several
of them running at once.

After some introductory stuff FEEL gives a prompt like

user!0>

Now you type some Lisp expression, when it evaluates it, and prints the value followed by a new prompt.

Common Lisp has a prompt

>

for the same purpose.

To exit from FEEL or KCL, use control-D.

The command “lisp” gives you Cambridge Lisp, with prompt Input:. Arithmetic functions in Cambridge
Lisp are named plus, difference, and the like, whereas in Common/EuLisp they are +, and −. To exit
Cambridge Lisp, use fin.

There are also a selection of other Lisps available, namely

scheme a comprehensive Scheme interpreter
siod a small Scheme subset
xlisp a small Common Lisp subset
xscheme a substantial Scheme subset
oaklisp a Scheme-like Lisp

To exit these use ^D for siod and xlisp, ^Aq for scheme,

and (exit) for Oaklisp.

Also GNUemacs has a built-in Lisp interpreter—in fact GNUemacs is mostly implemented in Lisp.

2 Basics

We shall now take a little more organized walk through Lisp, starting with the basic data items.
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2.1 Lists and Atoms

Let us start from the indivisible elements that make up the Lisp universe. These are the atoms. We can
classify atoms into two types, those which evaluate to themselves, and those that don’t. What this means is
that an atom of the first class, for example the integer 23 has value the integer 23. Also the string "hello

world" has value "hello world". Thus, when the Lisp evaluator sees an example of this type, it returns
what you gave it.

On the other hand, the class of symbols are completely different. Symbols have values, just like in other
languages, but the values can be any Lisp object. When the Lisp evaluator see a symbol it returns “the”
value of the symbol. (Of course, which value is dependent on where you are, which recursive invocation of
a function you are executing, and so on.)

Thus the value of two might be the integer 2, or it might be the string "forty-two". What is more
interesting, is that the value of a symbol may be a symbol. Perhaps the value of twoplustwo is four. And
then maybe the value of the value of twoplustwo is 4. Unlike C, Lisp does not have a type associated with
a symbol (“strong typing is for weak minds”). Any symbol can have as value any Lisp object—in fact the
objects have types, say integer or string or whatever, but the symbols don’t.

Having collected a few atoms together we want a convenient method for bunching them together. To do this
we use lists.

A list is an ordered sequence of zero or more Lisp objects. This definition is very powerful, as it allows the
members of a list to be arbitrary lists and atoms.

(Aside: some lists contain themselves as members—there is no axiom of foundation to help us here! However,
such lists need a trifle more sophistication to understand than we currently have, so we may assume for now
that all lists are finite.)

Lists are denoted by an open parenthesis followed by a space-separated sequence of its members, followed
by a close parenthesis.

Here is an example:

(+ 2 4)

This list has three elements, firstly the symbol +, then the atoms 2 and 4.

It is very important to realise that lists do not evaluate to themselves. A list presented to the interpreter
is viewed as a function call to be evaluated, the first element of the list being a function to be applied the
other elements of the list, which are the arguments. A list is evaluated in the following manner: firstly,
each argument is (recursively) evaluated, then the function described by the first element is applied to the
results. The value of this function call is the value of the list. (The order of evaluation of arguments is Lisp
dependent.)

Thus (+ 2 3) evaluates to the expected result since 2 and 3 evaluate to themselves, and + names a function
which adds its arguments.

If the symbol four has the value 4, and the symbol twoplustwo has the value four, then the expression
(+ four 5) has value 9, but (+ twoplustwo 6) causes an error, as the function named by + does not know
how to add the symbol four to the number 6.

The list

(* (+ 3 4) (- 5 2))

has value 21.
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The empty list () has a slightly special status in that it is commonly regarded as both a list of zero elements,
and as an atom (as it is “indivisible”). The value of () is itself, namely (). If you like, it it where the
two universes meet. The symbol nil is reserved to hold this value. Some implementations of Lisp blur the
distinction between the symbol nil and its value (), allowing then to be syntactically identical. Others have
nil to be a symbol with constant value (). We shall occasionally use “nil” with the syntactic blur, but
note that this is the “wrong” way of doing things.

Additionally, some implementations prefer nil to be a list, and allow car and cdr to be applied (with result
nil in both cases); others take the atomic view that nil cannot be further divided, and it is an error to try
to take the car or cdr of nil.

2.2 The Truth

The symbol t, like nil, has a special meaning. It is a symbol with constant value t. It is not really self-
evaluating, but has much the same properties—it’s just that its value is itself! So (length (list t t t))

is valid, and has value 3.

The () and t are customarily taken as the boolean false and true: the function equal, which compares two
objects to see if they are the same, will return t if it decides they are the same, otherwise (). For example,
(equal 2 3) is (), whereas (equal ’(1 2) (list 1 2)) is t.

On the other hand, it also customary to regard every non-() value to represent true, just as in C, where 0
is false, and everything else it true, but −1 is a “favoured” representation for true.

Thus the function member takes an object and a list, and checks whether the object is a member of that list.
It returns () if not, but if it is, it returns the remainder of the list from that object onwards. This being
non-(), denotes true, but returns some extra information, viz., where in the list this object lives. On the
whole Lisp functions return as much information as possible, even the boolean functions.

This means (member ’a ’(1 2 3)) is (), but (member ’a ’(b a d)) is (a d). Notice that (member ’a ’(1 (a b) 2))

is ().

2.3 Pairs and Lists

Lists in Lisp can be arbitrarily long (with the usual memory constraints). To achieve this flexibility, they
are often implemented using pairs. A pair is an object that contains just two objects, named the car and the
cdr. The cdr is often another pair, whose cdr is another pair, whose cdr is another pair, and so on. Thus we
get a linked list of pairs, where we store information in the car, and a link in the cdr. A list is simply such
a chain.

We create pairs using cons (for construct). This takes two arguments, and returns a pair containing those
arguments. So (cons ’a 1) is the pair (a . 1). The notation used for a pair is

(car . cdr)

In the read-eval-print loop the printer chooses to format pairs specially: if you want to print a pair use the
following algorithm

1. Print an open parenthesis.

2. Print the car.

3. If the cdr is a pair, make it the current pair, print a space, and go to step 2.
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4. If the cdr is not null, print a space, a dot, a space, and the cdr.

5. Print a closing parenthesis.

Using this algorithm, if the printer gets the pair

(a . (1 . (b . (2 . ()))))

it prints it as

(a 1 b 2)

This is because the above pair representation is precisely how the list (a 1 b 2) is stored. Again, it is
merely a convenience and convention in the reader and printer that the dots and parentheses are dropped.
The pair

((1 . (2 . ())) . (3 . 4))

is printed as

((1 2) 3 . 4)

Notice how () is used as an end of list marker.

We can tack objects on to the start of a list using cons

(cons ’a ’(1 2 3))

returns (a 1 2 3): this is internally (a . (1 . (2 . (3 . ())))). The function list is defined as a
repeated application of cons: (list obj1 obj2 obj3 ... objn) is equivalent to

(cons obj1 (cons obj2 (cons obj3 ... (cons objn ()) ... )))

A list that is terminated by () is a proper list, and one that is terminated by a non-() value is an improper

list. Thus (1 2 3) (i.e., (1 . (2 . (3 . ())))) is proper, but (1 2 . 3) (i.e., (1 . (2 . 3))) is
improper.

The three functions cons, car, and cdr are the building (and unbuilding) blocks of Lisp.

2.4 A Few Functions

Here is a random selection of interesting functions, just to get ourselves going.

2.4.1 Some arithmetic

(+ n1 n2 ...) Form the sum of n1, n2, . . . (Cambridge Lisp: plus)

(- n1 n2) Subtract n2 from n1. (Cambridge Lisp: difference)

(* n1 n2 ...) Form the product. (Cambridge Lisp: times)

10



(/ n1 n2) The integer quotient if both are integers, otherwise a floating point divide. (Common Lisp:
much more complicated, no exact equivalent, Cambridge Lisp: quotient)

(expt n1 n2) The exponential.

(gcd n1 n2) The GCD of integers.

(zerop n) This is t if n is zero, otherwise ().

(> n1 n2) This is t if n1 is greater than n2, otherwise (). (Cambridge Lisp greaterp.)

(< n1 n2) This is t if n1 is less than n2, otherwise (). (Cambridge Lisp lessp.)

Integer arithmetic in Lisp is often unrestricted in size: this means we can compute 2100 and see all of the
31 digits of the answer. These integers are given the colourful name of bignums, and are often internally
implemented as vectors of “digits,” where the digits are often base 108, or 231, say, something that will fit
nicely into a single word. In a good system the cross-over from native small integers to bignums is invisible:
we may mix them in any fashion. Amongst the implementations we have currently, KCL, Cambridge Lisp,
Scheme and Oaklisp support bignums.

KCL claims

>(expt 2 1000)

10715086071862673209484250490600018105614048117055336074437503883703510511249361

22493198378815695858127594672917553146825187145285692314043598457757469857480393

45677748242309854210746050623711418779541821530464749835819412673987675591655439

46077062914571196477686542167660429831652624386837205668069376

There are also a wide range of trigonometric and logarithmic functions.

2.4.2 List stuff

(null x) Returns t if x is the empty list, otherwise ().

(atom x) Returns t if x is an atom, otherwise ().

(consp x) Returns t of x is a pair, otherwise ()

(cons x y) Return the pair (x . y).

(car x) Return the car of the list x.

(cdr x) Return the cdr of the list x.

(list x1 x2 ...) Make the list (x1 x2 ...).

(length x) The length of the list x.

(reverse x) The reverse of the top level of the list x.

(last x) Return the last element of the list x

(append x1 x2) the list x2 is appended to the end of list x1.
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The use of a “p” at the end of some function names is also a little historical. The “p” is meant to imply
predicate, i.e., something that returns true or false. However, its use is somewhat erratic: the names in
Scheme are slightly different, such as null? for null, atom? for atom, and so on.

Exercise: what is the difference between the result of (append ’(1 2 3) ’(a b c)) and the result of
(cons ’(1 2 3) ’(a b c))?

There are also functions named caar, cadr, cdar, and so on, up to (typically) a depth of c....r, where
each dot it either a a or d. These are shorthand for the repeated application of the appropriate car or cdr
functions: (cdar x) is equivalent to (cdr (car x)).

2.4.3 Miscellany

(quote x) Return the unevaluated x. As we have said before, quote is not really a function.

(print x) Return (the value of) x. There is a side-effect in that the value of x is printed.

(newline) Return (). A side-effect is to print a newline. (Common Lisp, Cambridge Lisp: terpri.)

(mapcar fun x) Return the list which the result of applying the function fun to each element of x in
turn. (Cambridge Lisp: the order of arguments differs, (mapcar x fun))

Functions are first-class object in Lisp, mapcar is a good example of a function that has an argument that
is a function. Later we will see how to create and return functions as values. The EuLisp call

(mapcar atom ’(cat sat (on the) mat))

returns (t t () t).

2.4.4 Logical Connectives

The “functions” or and and are two more exceptions to the “always evaluate” rule. Their semantics are forced
upon them by the need to conform with other languages. For example, in C, the expression e1 || e2 || e3

is evaluated by first computing e1. If this is a true, then return true, otherwise compute e2, and so on. So,
the function application (or e1 e2 e3) progresses by evaluating e1 alone, deciding if the value of the or is
determined yet (which it is if e1 evaluates to something non-()), and only then evaluating e2.

(or x1 x2 ...) Evaluate x1, x2, . . . in left to right order. Whenever any value is non-() (i.e., true)
return this immediately as the result of the or. If all are nil, return ().

(and x1 x2 ...) Evaluate x1, x2, . . . in left to right order. Whenever any value is () (i.e., false)
return () immediately. If all are non-(), return the last value as the result of the and.

(not x) If x is () (false), return t. Otherwise return (). This function is identical to null.

2.5 Defining your own

Just as expected, we can define our own functions in Lisp. These have just the same status in the eyes of
the interpreter as any other built-in function; indeed we can often re-define any of the built-in functions to
be whatever we wish (but it is unwise to do so—doing this may have unexpected consequences elsewhere in
other functions that you might not realise are dependent on the function you are hacking).

We define a function as follows
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(defun sumsqs (n m) (+ (* n n) (* m m)))

The “function” defun is almost the last of the exceptions to the evaluation rule. It takes the symbol sumsqs
and makes it the name of a function of two arguments. The arguments have local names n and m in the body
of the function, which computes the sum of the squares of the arguments. (This exception is a notational
convenience: it would be quite possible to have (defun ’sumsqs ’(n m) ’(+ (* n n) (* m m))), but the
quoting of all the arguments is irritating.)

The symbol sumsqs is the value of the defun. The Cambridge Lisp variant is

(de sumsqs (n m) (plus (times n n) (times m m)))

i.e., the function defining function is named de. In Scheme we have the parenthesis in slightly different
places:

(define (sumsqs n m) (+ (* n n) (* m m)))

and use “define”. This makes the definition more reminiscent of the use of the function (in fact the truth
is deeper than this).

In general, we have

(defun name (arg1 arg2 ...) expr1 expr2 ... exprn)

which defines a function with name name, with arguments arg1, arg2, . . . , that when called evaluates expr1
to exprn in turn, and the value of exprn is the value returned by the call.

To define a function of zero arguments is simple:

(defun foo () (print "hello") 23)

i.e., the arglist is (). Then (foo) is the function call. Note that this is different from just “foo” where we
are given the value of the symbol foo (which may be a function), not the result of evaluating the function
call.

To define a function that takes no arguments is even simpler:

(defun foo () (print "hello"))

i.e., the argument list is (). Then (foo) is the function call. Note that this is different from just foo, which
gives the value of the symbol foo (which may be the function just defined).

Once we have defined a function, we can use it immediately:

(sumsq (+ 1 2) (sumsq 3 4))

is 634. We can use it in new function definitions

(defun sqs4 (a b c d) (+ (sumsqs a b) (sumsqs c d)))

and sqs4 has the expected properties, e.g., (sqs4 1 2 3 4) is 30.

However, and this is one of the important features of Lisp, if we now re-define sumsqs by, say,

13



(defun sumsqs (u v) (- (* u u) (* v v)))

now every reference to sumsqs, new or old, will refer to the new function definition. Now (sqs4 1 2 3 4)

is -10.

This is achieved by functions being referred to by name. The functional “value” of a symbol is the body of
the function that we want to evaluate. So when we execute sqs4, it refers to a function named sumsqs, and
to evaluate that, it looks up the current functional value associated with the symbol, and executes the code
it finds there.

We have put “value” above in quotes: this is one of the major points of divergence in the Lisp family tree.
Early in the development of Lisp there was a split in the decision of where to keep the function that was
associated with a symbol. One way was to treat a function just as any other object in the system. The value
of a symbol can be a list, or an atom, or whatever, or it can be a function. Lisps that choose this view of
the world are called single valued, or Lisp-1s.

EuLisp, Scheme and Cambridge Lisp are Lisp-1s. If you have defined sqs4 as above, and then simply type

sqs4

at the interpreter, the interpreter sees a symbol, and just as for any other symbol it retrieves the value,
which in EuLisp is

#<interpreted-function: (lambda (n m) (+ (* n n) (* m m))) @ standard>

This in the form that (interpreted) functions take. They are structures, with the special marker lambda,
a list of arguments, and the procedure body. The name lambda is derived from the λ-calculus, where the
notation λ a b c d.sumsqs(a, b) + sumsqs(c, d) might be employed. Notice that this function is anonymous:
there is no name (like sqs4) attached to it. This is quite general—an object in Lisp is independent of the
particular symbol of which it happens to be a value. You wouldn’t expect the number 2 to be required to
note that it was the value of the symbol grobbit.

On the other hand, in the other branch of the family tree, it was decided that functions and other values
were completely different entities, and should be kept in different places—this, allegedly, was to improve
speed (at the expense of semantic uniformity). These became the Lisp-2s, or the two-valued Lisps, so named
as every symbol now had two values associated with it, namely the normal value it had as a symbol, plus
the functional value, which can be completely unrelated. These are stored in the so-called value cell, and
the function cell.

Common Lisp is a 2-Lisp. For the function sqs4 defined above, if we were to try

sqs4

we would likely get

Error: The variable SQS4 is unbound.

This is because the interpreter looks in the value cell, and finds nothing there. If we want the function

associated with the symbol we have to use

(symbol-function ’sumsqs)

when we get
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(LAMBDA-BLOCK SUMSQS (N M) (+ (* N N) (* M M)))

There is a shorthand for symbol-function, the hash-quote: #’. This is used in the same way as ’, but the
effect is completely different. So #’sqs4 is the lambda-block expression above.

In Common Lisp, if you have a function contained in a value cell (maybe this function was the return value
of another function), to apply this function you must use funcall, or apply. This awkwardness is due to
the semantic hiccough caused by the 2-cell property.

Suppose the symbol foo has a function as its value. In a 2-Lisp the application

(funcall foo 1 2 3)

will take the function that is the value of foo (i.e., is in the value cell of foo), and apply it to the arguments
1, 2, and 3. The function funcall is generally not present in a 1-Lisp, as the equivalent function application
would simply be (foo 1 2 3).

The function apply is similar, but requires the arguments as a single list:

(apply foo ’(1 2 3))

This function is usually present in 1-Lisps, too.

With a 2-Lisp the symbol foo in (foo bar baz) is treated differently from bar and baz. The latter two
are evaluated by inspecting their value cells; the former by looking at the function cell. In a 1-Lisp, all
three symbols have just the same import. The function to apply is in a value cell, just as are the values to
which want to apply the function. In fact, most 1-Lisps allow the object in the first place to be an arbitrary
expression, just as the arguments can be arbitrary expressions:

((if (> x y) sin cos) 42)

will compute sin or cos of 42 according to the relative sizes of x and y. A 2-Lisp does not have this simplicity
of expression, it would have to be

(funcall (if (> x y) #’sin #’cos) 42))

Only a symbol that names a function (or a selection of special lists) may appear in the functional position
of a list that is being evaluated.

The example of mapcar we gave above is for a 1-Lisp. If we were to try the expression (mapcar atom ’(cat

sat (on the) mat)) on a 2-Lisp the result will most probably be an error: the value cell of the symbol
atom is being inspected. What we need is

(mapcar #’atom ’(cat sat (on the) mat))

as this ensures the function atom is used.

This separation of 1-Lisps and 2-Lisps has become a religious war over the decades, each side firmly dug-in.
Examples of 1-Lisps are Cambridge Lisp, EuLisp, the IBM Lisps, and Scheme. The 2-Lisps are the Common
Lisps, and the Common Lisp-lookalikes; also PSL. Standard Lisp avoided the issue by not specifying which
way an implementation should go: a Standard Lisp programmer must be careful not to use constructs that
assume either!
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2.6 If. . .

Having discovered how to define functions, we must now cover the question of program control: this means
the introduction of if.

Lisp does include if, but this is an instance of a more general structure, named cond (for conditional).

The form of a cond is as follows:

(cond (test1 expr1)

(test2 expr2)

...

(testn exprn))

This is a multi-way if statement. The function cond, like defun, does not evaluate its arguments (again,
this is a notational convenience). When evaluated, it first evaluates test1. If this is true (i.e, non-()) the
expression expr1 is evaluated, and the result of this is the value of the cond.

If the value of test1 was false (i.e., ()), the expression test2 is evaluated. If this is true, expr2 is evaluated,
and is the value of the cond. Otherwise we continue down the list of tests until we find one that evaluates
to true. If it happens that all of the tests return (), the value of the cond is ().

An example:

(cond ((= n 0) "zero")

((= n 1) "one")

((= n 2) "two")

(t "many"))

This form returns the strings "zero", "one", or "two" according to whether n is 0, 1, or 2. If n is non of
these, the cond gets to the t test, which evaluates to t, and returns the string "many". This is a typical use
of cond, with a “catch-all” clause at the end signalled by t which ensures the last clause is evaluated as a
default. (Scheme users have the symbol “else” for their convenience.)

The tests and the expressions can be arbitrary Lisp forms. In fact, the cond is still more general:

(cond (test1 expr1a expr1b ... expr1k)

...

(testn exprna exprnb ... exprnl))

there can be many expressions after each test. When a clause is selected, the exprs are evaluated in order
left to right, and the value of the last is the value of the clause and the whole cond.

The form if is also provided in EuLisp and Common Lisp. This looks like

(if test trueclause falseclause)

which is more akin to the if-statements in other languages. The test is evaluated; if it returns true, then
trueclause is evaluated and is the value of the if. Otherwise the falseclause is evaluated and is the value
of the if.

The test expressions in cond and if can be arbitrary expressions: in general they will be combinations of
function calls and uses of and, or, and not.

(cond ((or (> x 10)
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(< x 0))

(some-chance))

((cond ((= y 0) t)

((= z 5) (< y 5))

(t nil))

(possibly-ok))

(t (completely-confused)))

2.7 More Function Definition

We know how to define function of 0, 1, 2, and more arguments, but Lisp is more flexible than this, and
allows us to define functions like list that take an arbitrary number of arguments. These are the so-called
n-ary functions. Consider the following EuLisp definition of a n-ary function:

(defun doubleit l

(if (atom l) ()

(cons (* 2 (car l))

(apply doubleit (cdr l)))))

This takes an arbitrary number of arguments which are numbers and returns a list with those values doubled.
Thus (doubleit 1 2 3) returns (2 4 6); (doubleit 23) returns (46). The first point to note is the
argument list l. This is in contrast to the function of one argument that would be defined by (defun

doubleit (l) ...).

The value of l within doubleit is a list of the arguments that were passed to the function: for (doubleit

1 2 3) l gets the list (1 2 3). In (doubleit 23), l is (1), for just (doubleit), l is (), and so on.

The function definition works like this: first check that we were given some arguments using atom on l. If
none, return the empty list. Otherwise we have a list of things to be doubled, so we double the first one
and cons is on the the recursively doubled rest of the list. Notice that we use apply here for the recursive
call. This is because if we tried (doubleit (cdr l)) we are passing just one argument (the list (cdr l))
to doubleit, and this is not what we want. We use apply to “spread” the arguments to doubleit. (Recall
(apply foo ’(a b)) is equivalent to (foo a b), so (apply doubleit (cdr l)) is equivalent to calling
doubleit on the spread-out elements of (cdr l).)

Here is an alternative definition of doubleit:

(defun doubleit l

(doubleit-aux l))

(defun doubleit-aux (l)

(if (atom l) ()

(cons (* 2 (car l))

(doubleit-aux (cdr l)))))

We avoid the use of apply here by the use of a helper or auxiliary function to do the recursion. This
function, doubleit-aux, takes just one argument, which is the list of the arguments that were passed to
doubleit.

Study these two definitions of doubleit well, until you are convinced you understand them.
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2.8 The “Program” “Feature”

Sometimes we have a place where we require more than one Lisp function to do what we want, where the
syntax allows only one. For example, in the if form we are allowed exactly one expression in the trueclause
position (to allow us to distinguish it from the falseclause position). To circumvent this difficulty, there
is a form, progn which guarantees to evaluate its arguments in left to right order:

(progn expr1 expr2 ... exprn)

Thus, to evaluate a progn, we evaluate expr1 to exprn in that order, and the value of the progn is the value
of the last expression. This is akin to the construct in C of allowing a block of statements in curly brackets
after, say, an if.

The name “progn” is an abbreviation for “program of no arguments,” piece of history.

Thus we may write

(if (< amount 0)

(progn (print "attempt to subtract from account")

(call-error 42))

(add-to-account amount))

which prints a message and calls an error routine if amount is negative, but otherwise adds amount into an
account.

(Common Lisp has several other progn-type constructs, including (prog1 expr1 expr2 ... exprn), which
evaluates expr1 to exprn and then returns the value of expr1 as the value of the prog1. Also, amazingly,
there is a prog2 which does the above, but returning the value of expr2.)

Quite often we would like some extra local variables when we are evaluating a piece of code, maybe to
modularise our ideas, or prevent re-computation of a difficult value. For this purpose we have let.

(let ((var1 val1)

(var2 val2)

...

(varn valn))

expr1

expr2

...

exprn)

This says, “evaluate the expressions val1 to valn, and let the symbols var1 to varn have those values for
the extent of the let. Now evaluate expr1 to exprn in that order, and return the value of exprn as the value
of the let. Outside of the let, the symbols revert to their old values, if they had one, or become undefined
if they didn’t. The vals may be arbitrary Lisp expressions, as may be the exprs. This is like progn, but
with the declaration of local variables.

In Cambridge Lisp there is an order construct, named prog (this is also present in Common Lisp). The form
of prog is

(prog ((var1 val1)

(var2 val2)

...

(varn valn))
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expr1

expr2

...

exprn)

This is much the same as let, but the value of the prog is () unless somewhere in the body of the prog

there is a return statement. A return is simply

(return expr)

and has the effect of immediately exiting the smallest closing prog without evaluation of the following expri,
and having the prog return the value of the expr.

So

(prog ((n 1) (m 2))

(return (plus n m))

(print "hi"))

returns the value 3, and does not print “hi”.

2.9 Were you created equal?

We have used = on numbers above: in fact, = is a function that is only defined on numbers. If we want to
test equality of general Lisp objects we have to think harder: what do we meant by equality? To resolve
this we must dig a little deeper into implementation.

2.9.1 Eq

All objects in Lisp are represented as pointers. There are Lisps that don’t adhere to this to the letter, but to
think of things in this manner is instructive. A symbol is a pointer to some store somewhere that contains
the information associated with that symbol, such as its name and value. A list (or, more precisely, a pair)
is a pointer to a pair of words that contain the car and the cdr. We know the car and cdr will fit into
exactly two words, as their contents are pointers to other Lisp objects. A string is a pointer to some store
that contains the characters in the string. And so on.

For example, the list (+ 2 3):

??

@
@

@@R

---

?

+

nil

21

As we recall, a list is actually a linked list of pairs, terminated by nil. The function eq compares two
pointers, and returns t when they have the same value, i.e., refer to the same location in memory.
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When the interpreter reads a symbol, it checks whether it has already seen that symbol; if so the reader
returns the (pointer to) the previous symbol. If not, the symbol is stored in an internal table (a process
called interning), and a new reference returned. This ensures all symbols that look the same are the same
(. . . , well the truth is more complicated). Also we get

(eq ’foo ’foo)

it t for any symbol.

On the other hand, the function cons always makes a new pair, which is consequently not eq to any other
current Lisp object. Thus

(eq (cons 1 2) (cons 1 2))

is always (), even though the objects produced look identical, viz., (1 . 2). But, now,

(let ((cc (cons 1 2)))

(eq cc cc))

is t, as the value of the two ccs are the same pointer.

Testing for eqality on integers is a little variable. Often, a Lisp implementation will treat small integers
specially, where “small” typically means “will fit comfortably in a word.” Such implementations could use
native machine arithmetic for such integers. Bignums are usually implemented using vectors of integers:
every time a new bignum is needed, a new vector is allocated, even if somewhere deep in the system that
number already exists—of course it is impractical to compare yourself against all the possibly thousands of
other bignums already allocated, it is much easier just to make a new vector. The consequence of this is that
two bignums that are numerically equal may not be eq. The function = is provided for this, and for other
numeric testing.

Other implementations allocate a few “common” integers in advance, and treat them the symbols above.
For example, KCL pre-allocates the integers from −1024 to 1023. This has the effect that (eq 1023 1023)

is t, but (eq 1024 1024) is nil.

The point of eq is that it is a very fast test. If two objects are eq, then they are identical. If they are not
eq, we must work a little harder to discover whether they are “the same.”

2.9.2 Equal

But what do we mean by “the same”? The function equal has a plausible definition: if the objects are eq,
return t. If they are both numbers return t if they are numerically equal. If they are both strings, return t

if they contain the same characters. If they are both pairs, return t of both the cars are equal, and both
the cdrs are equal.

Now

(equal (cons ’a ’b) (cons ’a ’b))

is t, as the cars of the conses are eq, as are the cdrs.

The function equal is a general, tree descending equality. Common Lisp supplies many other variants of
the equality operator, the most useful being eql, which is a form of eq that is also guaranteed to compare
numbers correctly.
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3 Programming

3.1 Delegation

Much of Lisp programming is done by recursion. This is a natural development from the central datatype,
the list. Typically we do not know, and do not need to know how long a list is: we find a common need is
to combine the elements of a list in some fashion, or to make a new list from applying a function to each
member of an old list in turn.

Both can be solved neatly and efficiently by recursion. For example, suppose we want to compute the sum
of a list of pairs of integers. So (summit ’((1 . 2) (3 . 4) (5 . 6))) is 21. One Lisp function to do
that is as follows:

(defun summit (l)

(if (null l) 0

(+ (caar l) (cdar l) (summit (cdr l)))))

This has the natural interpretation that the sum of the list is the what you get by adding the sum of the
first pair to the sum of the rest of the list.

Similarly, to create a list of products of the pairs we want the list created by consing the product of the first
pair on to the list of products of the rest. This translates immediately into

(defun prods (l)

(if (null l) ()

(cons (* (caar l) (cdar l))

(prods (cdr l)))))

Only the end of the recursion, the base case, needs to be thought out carefully.

3.2 Tail Recursion

Consider this function that reverses a list

(defun rev1 (l)

(if (null l) ()

(append (rev1 (cdr l)) (list (car l)))))

The function append works by making a copy of the first argument and consing it onto the second. The
reason for this is clear if we think of the list as a linked chain of pairs. The list (1 2 3) looks like

???

--- nil

@
@

@@R

1 2 3
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To append the list (4) we must create a new list

@
@

@I

---

@
@

@@R

666

???

---

6

nil

@
@

@@R

41 2 3

while retaining the old list in case other objects have a hold on it (e.g., it is a sublist of another list). Thus
each call of append uses a number of new cons cells equal to the length of the list being appended to.

Now, in the recursive definition of reverse above, we call append once for each element in the list: this means
we use O(n2) new cons cells for a list of length n. Clearly this is wasteful, as each partial result is discarded
almost immediately after it has been created.

A much better implementation of reverse uses tail recursion.

(defun rev2 (l)

(revaux l nil))

(defun revaux (l sofar)

(if (null l) sofar

(revaux (cdr l)

(cons (car l) sofar))))

Tail recursion is where the result of the function is simply a call to the function itself, probably with altered
arguments. An intelligent compiler will spot this, and replace a recursive call (using a stack frame) by a
simple re-assignment of the argument variables, and a jump to the top of the function. This allows us to
have arbitrarily deep recursions, as no stack is used. Here are two definitions of factorial, the latter being
tail recursive:

(defun fact1 (n)

(if (< n 2) 1

(* n (fact1 (- n 1)))))

(defun fact2 (n)

(factaux n 1))

(defun factaux (n sofar)

(if (< n 2) sofar

(factaux (- n 1) (* n sofar)))))
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(We note that tail recursion is applicable in any language that allows recursion, and Lisp has being using it
since the mid 60’s. However, it is only in the late 80’s did other language compiler writers notice that they
could do it too.)

In rev2, we use tail recursion to good effect. The reverse of l is accumulated in sofar, and we use exactly
one cons for each element of the list. A trace of revaux shows l getting shorter and shorter, while sofar

gets longer and longer.

Many functions benefit from rewriting in this manner.

3.3 A load of Garbage

Now is a good time to mention garbage collection. We said above that each invocation of append in rev1

creates a new copy of the partial reverse, and the old copy is thrown away. The old list (which is a linked list
of cons pairs, remember) becomes inaccessible, as we no longer have a pointer to its head. The cells simply
lie about uselessly, cluttering up memory. And, of course, we soon will run out of memory if nothing further
is done about this. The dead cells are called garbage.

Lisp is a tidy language, and likes to recycle and reuse idle cells, and to do this it uses a sub-program called
a garbage collector. Garbage collectors come in many shapes and sizes, but they all follow the same general
principles: when the Lisp program runs out of memory, it halts and invokes the GC. The GC visits all of the
cells that are reachable from active variables, locations on the stack and so on—every cell that is still being
used by the program—and compacts them together into a contiguous block. Everything else is dead, and
can therefore by reused by the Lisp program. When the GC is finished it hands control back to the calling
program, which gets its bit of memory, and continues as if nothing had happened.

The visible effect of this is that the program pauses for a while, and then continues after a few seconds. In
practice, this is no problem, until we try a program that uses almost all the available memory, when the
space reclaimed gets smaller and smaller. When this happens, we spend more and more time GCing, and
less and less time doing useful work. Occasionally we get a store jam, where the whole of memory is used:
such a program will not finish in any language!

To avoid such potentially embarrassing pauses, techniques have been developed such as the use of reference
counts: whenever a cell is used a count in it is increased by 1. When a reference to a cell is dropped, the
Lisp decrements the count, and if the count is now zero, it knows that this cell is unused, and can put it on
the free-list for later reuse. This spreads the time of GC over each individual access to a cell. However, the
overhead is relatively high, and there are problems with circular lists.

A current topic of research is concurrent GC, where you have a separate processor dedicated to scavenging
dead cells: the problem to avoid is memory contention when the running program wants a cell that the GC
is inspecting.

(Often, a GC is written in Lisp—the ideal language for traversing tree structures!)

3.4 Making Associations

A common want in a programming application is some method of associating one value with another. A
typical example is the hash table: we have a key, and the table gives us a value from that key. The Common
Lisp and EuLisp standards table have hash tables built in, but there is another technique that can be used
in all Lisps, the association list.

An association list, put simply, is a list of pairs. The keys are the cars of the pairs, and the values are the
cdrs of the pairs. For example, if nametono has the value

( (zero . 0) (one . 1) (two . 2) (three . 3) (four . 4)
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(five . 5) (six . 6) (seven . 7) (eight . 8) (nine . 9) )

then this forms a useful way of getting from the name of a digit to the digit itself. There is a useful function
defined to help us use association lists:

(assoc x l) searches the association list l until it finds the first pair with car equal to x. If successful,
it returns that pair; if not it returns (). (Common Lisp uses eql.)

Thus, for EuLisp, (assoc ’four nametono) is 4, but (assoc ’ten nametono) is (). (Bug alert: in the
current implementation, you need to write (assoc ’ten nametono equal), i.e., including the function to
be used as a comparator. You may also have (assoc ’ten nametono eq), and so on.)

Association lists are useful in mapping objects to objects. However, if the first object is a symbol, there
is another concept we can use called the property list. A property list is (morally speaking) an association
list that is attached to a symbol. This property list is entirely disjoint from the value and/or function cells:
it is sometimes referred to as being in the property cell. (N.B., this somewhat belies the names 1-Lisp and
2-Lisp!)

We access the property list through the functions (setter get) and get, and symbol-props (Common
Lisp: symbol-plist). The function call (symbol-props ’x) returns the current property list associated
with the symbol x. Of course, (symbol-props x) will get the property list of the symbol which is the value
of x, assuming that the value of x was a symbol. Trying to manipulate property lists of non-symbols will
cause an error. (Bug alert: in the current implementation of EuLisp, you need (import plists) to load
the relevant code before the above functions will work.)

(Aside on setter. There are many function in Lisp that access data structures in some way. Thus car gets
the car of a pair, and cdr the cdr; later we will see vector-ref to access elements of a vector. For each
accessor there is generally an associated updator function, i.e., a function that updates the cell referred to
by the accessor. Thus (setter vector-ref) is a function that updates a vector element, and so on. The
usage is ((setter vector-ref) vec index newval). Having a function as a value (setter whatever) is
used just as a function.)

We use (setter get) to add to the property list:

((setter get) ’x ’one 1)

puts the value 1 under the key one on the property list of x. The key for property lists must be a symbol.
Successively, ((setter get) ’x ’two 2) and then

(symbol-props ’x)

will return (two 2 one 1) (this is not actually a kosher association list, but contains equivalent information).
If, now we try ((setter get) ’x ’one 10), the property list is updated and becomes (two 2 one 10).

The function get does an assoc on property lists:

(get ’x ’one)

is 10. If get does not find the key, it returns (). (This makes it difficult to distinguish between keys whose
value is (), and keys which are not there.)

To remove a property, use (remprop symbol key): this deletes the property with key key from the symbol.

Property lists are a kind of dual to association lists: an association list collects together a table for a concept,
and uses a symbol (key) to index to a value. On the other hand, a plist spreads the table out amongst the
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symbols, and then uses the concept to index for the value. Symbolically, this is concept → (key → value) in
contrast to key → (concept → value)

An example: we have the nametono alist above. The “concept” is a map from names to numbers, and we
associate the map with the single symbol nametono. To get a number, we use the name as a key. For a plist,
we might have executed

((setter get) ’one ’nametono 1)

((setter get) ’two ’nametono 2)

...

((setter get) ’nine ’nametono 9)

where the concept is now the key into the plist. The calls

(assoc ’two nametono)

and

(get ’two ’nametono)

have the same result.

It is a coincidence that the symbol nametono happened to occur both as the name of a variable holding the
alist, and as a symbol in its own right which happens to be used as a key off some plists.

Given we have the two mechanisms, which is the better? As usual, it all depends on the situation. If you
wish to keep a small alist of ideas in one place, and be able to manipulate the whole alist, then an association
list is better. On the other hand, a large alist can be slow to search, while it is rare for a plist to be large,
making it very fast to search. However, the table of associations is spread over a possibly indeterminate
range of symbols, making it difficult to use as a single entity.

Common Lisp usage of property lists is at variance with the above. To look at the plist, use symbol-plist in
place of symbol-props; the accessors and removers are the same, get and remprop. To put a new property,
use the construct

(setf (get ’x ’one) 10)

The function setf is much more general than this, but for now regard this as an idiom:

(setf (get symbol key) value)

where EuLisp has ((setter get) symbol key value).

Cambridge Lisp has one further way of associating a value with a symbol: flag. This function uses the plist
to indicate values in the following way:

(flag ’(x y) ’used)

causes the symbols x and y to be flagged with the symbol used. The first argument can be a list of symbols
of any positive length: each symbol in the list is flagged.

Now, if we use

(flagp ’x ’used)

25



we get t, but (flagp ’z ’used) is nil. To delete a flag, use (remflag ’(x) ’used). Now (flagp ’x ’used)

is nil.

The value is stored on the property list as an atom (in contrast to the other properties, which are pairs). If
we try

((setter get) ’num ’one 1)

((setter get) ’num ’two 2)

(flag ’(num) ’numbered)

then the value of (plist ’num) is (numbered (two . 2) (one . 1)).

Notice that the Common Lisp usage cannot be extended in this manner due to the way property lists are
stored.

3.5 Binding and Assignment

Thus far in this course we have learnt of the various ways a value can be associated with a symbol: value
cell, function cell, property list. However, we have said only a little about how to create these associations.

To update the function cell of a symbol, we use defun or de. To change the property list, we have put. But
the process of altering the value cell is more interesting.

We have used prog or let to make local bindings of values to symbols: think of a symbol

--

value cell

foo value

where we have the value cell of the symbol foo pointing to some Lisp object.

If we use (let ((foo 23)) ...) then in the body of the prog we have a new association of symbol to value
cell

-. . . . . . . - -
�
�
�

?

(23)

new value cell

new value

old value cell

old valuefoo

but the old association still exists. The process of making a new cell–new value association is called binding.
It is much more useful than the usual (in other languages) method of assignment to a variable in that no
information is destroyed. Thus when we leave the scope of the let, the old association can be resumed, i.e.,
the symbol regains its old value.

Lisp has a function that allows us to subvert the binding mechanism: it is the assignment function set. If
we do (set ’foo 42) to the original binding this happens
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- - new value (42)foo

old value cell

and now the value of foo is 42 (in the scope of this binding). This is akin to the usual assignment in other lan-
guages. In fact, there is a special non-evaluating “function” setq (for “set quote”) so that (setq foo 123)

is equivalent to (set ’foo 123). The function set is a deviation from the semantic purity of Lisp, and
some people try to avoid its use at all costs—though others think that the costs are too large, involving
cortorted use of local functions. In fact, Scheme and EuLisp deny the use of set completely, but allow setq

(Scheme: set!. The exclamation mark indicates we are doing a destructive operation—overwriting the old
value).

The distinction between assignment and binding is very important, particularly when we come to the question
of scope.

3.6 The Scope of a Binding

Consider the program

(setq n 23)

(defun foo () (print n))

(defun bar () (let ((n 42)) (print n) (foo))

so n has the global value 23.

The question of scope addresses to resolution of the free variable n in foo. The instance of n in bar is clear:
running bar will print 42. Also, running foo directly we expect to see the value 23. However, what about
the invocation of foo from within bar?

There are two choices for n in foo. Either it refers to the global variable (with value 23), or the locally
bound variable (with value 42). These two choices are called the lexical and dynamic scope.

The scope is lexical when we derive the meaning of a reference by its textual context. So, for lexical scope,
the n in foo refers to the global variable with value 23, as it is the “nearest” textual binding of n.

On the other hand, we have dynamic scope when the reference is determined at run time from the latest
binding that was executed. So, for dynamic scope, the n in foo refers to the local variable that was bound
in bar to the value 42.

Both kinds of scoping are useful, and we would like some mechanism for employing both. In the past
Lisps have been a little vague on this subject, but recently it has become clear that a distinction must be
made. After all, we get very different program behaviour using the two schemes. Older Lisps tend to be
dynamically scoped, and newer ones lexically: this is due to a shift in style and need as functional ideas
grow in importance. (Functional programming requires a “one symbol, one value” concept in that we can
determine from examination of the text of a program what reference a particular symbol means. Clearly
this is lexical scoping.)

Cambridge Lisp is (roughly speaking) dynamically scoped as a default, whereas EuLisp and Common Lisp
are lexically scoped as a default. In Common Lisp if we want a symbol to be dynamically scoped, we must
declare it to be such.
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(proclaim ’(special n m))

declares n and m to be special variables (which is the CL parlance for dynamically scoped). In the presence
of this declaration, n above would be taken to mean the dynamic version. Without such a declaration, n and
m would be lexically scoped, and n reveals its lexical value. The use of declarations is a bit of a kludge, as
the meaning of a symbol varies according to whether it is used before or after a declaration. This allows the
possibility of having a symbol being lexical in some areas of a program, but dynamic in others. This can be
nothing other than confusing.

EuLisp has a neat method for determining which scope to use for a symbol. If we require the lexical scope,
simply use the symbol: thus “n” gives the lexical value. If we want the dynamic scope, we must explicitly
ask for it,

(dynamic n)

is the dynamic value. Thus we can see explicitly which scope is required. There are other analogous functions,
such as dynamic-let and dynamic-setq to rebind and re-assign the dynamic variable.

3.6.1 Examples of Lexical Scope

Consider the following Common Lisp program

(setq n 23)

(let ((n 0))

(defun countme () (setq n (+ n 1)))

)

The function definition is contained within the let, so the free lexical variable n inside countme refers to
the n from the let, not to the global definition.

When we use the function: (countme) returns 1, as the value of the function is the value of the setq which
is 1. Typing “n”, we are asking for the global value, which is still 23. However, we have re-assigned the
n local to countme, so the next use (countme) returns 2. And so on. This function counts the number of
times it is used. The value of (the global) n remains unaffected.

The local version of n is inaccessible to the rest of the world, providing us with a simple form of data-hiding.

Here is a more sophisticated example in EuLisp

(defun makeadder (n) (lambda (m) (+ m n)))

(setq add4 (makeadder 4))

Here the lambda expression is an anonymous function: for example (lambda (x) (+ x 1)) is a function
that adds 1 to its argument.

The call to (makeadder 4) returns a function in which n is lexically bound to 4. If, now, we try (add4 5),
the result is 9. But, further, (setq add6 (makeadder 6)), then (+ (add4 3) (add6 10)) is 25. The
instance of n in each lambda which is the result of calling makeadder is a separate binding (made at the time
the lambda is created), and is unaffected by anyone else’s use of the same name.
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3.7 Structure Sharing

A list is a sequence of pointers (to pairs). In particular, there is no restriction on them being distinct pointers.
Suppose

(setq pp (list 1 2 3))

(setq qq (list pp pp))

then qq has value ((1 2 3) (1 2 3)):

�
�

�
�

�
�

��=

J
J
J

J
JĴ

???

--

�-

1

-

pp

qq nil

32

Although the sublist (1 2 3) appears twice within qq, it is a single list of pairs. Contrast this with the
alternative

(setq qq (list (list 1 2 3) (list 1 2 3)))

where the car of qq is a separate set of conses from the cdr:

????

666

-

?

- - -

---

6
1

qq

nil

nil32

Consider the following:

(setq a (cons 1 2))

(setq b (list a a))
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So a is (1 . 2), and b is ((1 . 2) (1 . 2)).

�
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??

-

?

1

-

b
a

()2

The function (setter car) destructively overwrites the car of a pair: after ((setter car) a 3), the value
of a is now (3 . 2). But now consider the value of b:

�
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�
�
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?

??

-

?

2

-

3

b
a

()

By overwriting the car of a, we have affected the value of b, it is now ((3 . 2) (3 . 2)). Moreover, it
has affected b in each pair that was a copy of a. In fact, as the diagram shows, they were not copies of the
pair (1 . 2), but actually multiple reference to the same pair.

(Compare the action of a list appending function that makes a copy of its first argument (as does append),
against the action of an appending function that destructively overwrites the last cdr of the first argument
(as does nconc). If a has the value (1 2), what do you think the values of (append a a), and (nconc a

a) will be?)

These are simple examples of structure sharing in Lisp. Structure sharing allows us to express much larger
objects than we might expect: if we merge all identical branches of a tree, we can save on the store we
previously required. For a large example, this saving can be immense.

A practical case can be found in computer algebra. A polynomial can be represented in Lisp as a list:
axn + bxn−1 + · · · might be

(((x . n) . a) ((x . n-1) . b) ...)
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which is to say the car is the pair (leading power . leading coefficient), where the leading power is a pair
(variable . degree). The cdr of the list is the reductum of the polynomial, i.e., the rest of the polynomial.
An integer is represented by a Lisp integer.

Thus, 3x2 +4x+5 becomes (((x . 2) . 3) ((x . 1) . 4) . 5). We add polynomials using the function
addf

(de addf (u v)

(cond ((zerop u) v)

((zerop v) u)

((and (atom u) (atom v)) (+ u v)) % both integers

((atom u)

(cons (car v) (addf (cdr v) u))) % v not an integer

((atom v)

(cons (car u) (addf (cdr u) v))) % u not an integer

((> (cdaar u) (cdaar v)) % both not integers

(cons (car u) (addf (cdr u) v)))

((> (cdaar v) (cdaar u))

(cons (car v) (addf (cdr v) u)))

((zerop (plus (cdar u) (cdar v))) % the leading coefficients

(addf (cdr u) (cdr v)))

(t (cons (cons (cons ’x (cdaar u)) % degree

(+ (cdar u) (cdar v))) % coeff

(addf (cdr u) (cdr v))))))

This function looks complicated, but is quite simple if worked through carefully: to start with, the sum of
anything and zero is that thing. If both are integers, their sum is easy. Otherwise one of u or v (or both) is
not an integer. We use the property of polynomials that

(axn + bxn−1 + · · ·) + (rxm + sxm−1 + · · ·) = axn +
(

(bxn−1 + · · ·) + (rxm + sxm−1 + · · ·)
)

.

In particular, when n < m, we can add the two polynomials on the right by recursion.

This is what addf does. We look at the degrees of u and v: if the degree of one is larger than the other
(taking care not to try to take the car of an integer, which has degree 0) we pull off its leading term, and
stick it back on to the recursively computed sum of rest.

If both degrees are the same, we check that the leading coefficients do not cancel, and do a simple recursion
using the sum of the reducta.

Try applying this function to x3+x+1 and 2x2, viz., (((x . 3) . 1) ((x . 1) . 1) . 1) and (((x . 2) . 2) . 0).
We get a recursive call of (((x . 1) . 1) . 1) and (((x . 2) . 2) . 0), then a call on 0 and (((x . 1) . 1) . 1).
This returns immediately with (((x . 1) . 1) . 1), and notice that it returns the structure (((x . 1) . 1) . 1)

directly, not a copy of it (i.e., the pointer to the structure that already exists). Crawling back up the stack,
we cons on ((x . 2) . 2), and then ((x . 3) . 1), giving a final result

(((x . 3) . 1) ((x . 2) . 2) ((x . 1) . 1) . 1)

or x3 + 2x2 + x + 1 Now, the number of new cons cells it took to make this answer was exactly two. Every
other cons in the result is one of the old ones, reused. Each of the ((x . 3) . 1), ((x . 2) . 2), and the
final (((x . 1) . 1) . 1) are all shared with the input structure.

In a big computation, this sharing of structure is essential in the successful shoehorning of the answer into
the available memory. Also, by reusing structure, we are not creating as many garbage cells as we might
have at first supposed, thus saving us time in reduced garbage collection time, too.
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4 Advanced

4.1 Macros

Macros are a relatively benign addition to C. We can define symbols and trivial functions that are textually
replaced by their expansion in the body of code when we call the compiler. In Lisp, macros have status often
equal to that of functions, and can have very subtle semantics.

Macros are used when we would like to name a short piece of code for the sake of abstraction: e.g., in addf

above we could define ldeg to be the same as cdaar; this adds meaning to the program in that we see
from the name in the text that we want the leading degree of a polynomial, not just a random part of a
random structure. This also allows us an extra level of abstraction by keeping the implementational detail
of polynomials hidden behind the name ldeg—we might want to change the representation of a polynomial,
and all we need do is change the definition of ldeg.

We could define ldeg as a function, but we might not want the expense of an extra function call, but want the
“ldeg” to be replaced by “ldeg” directly. More generally, a macro allows a Lisp expression to be arbitrarily
manipulated before being evaluated. Lisp macros work at the Lisp expression level, not at the character
level, as in C.

We define a macro like this

(defmacro ldeg (l) (list ’cdaar l))

(Cambridge Lisp: use dm. In Scheme there is no prevailing standard for macros.) The body of a macro is an
expression that is evaluated to give the required macro expansion. When we use ldeg, e.g., (ldeg ’(((x . 3) . 2) . 1)),
the macro first expands to (cdaar ’(((x . 3) . 2) . 1)), which has value 3.

A simplistic way of thinking of macros is to regard them as functions whose bodies are evaluated twice.
Firstly to do the expansion, secondly to compute the value of the expansion. However, the arguments of
the macro are not expanded at all. If we use (ldeg u), the macro expands to (cdaar u), which, when
evaluated will hand us the leading degree of the polynomial that is the value of u.

Define push:

(defmacro push (x l)

(list ’setq l (list ’cons x l)))

which takes an object and a symbol whose value is a list, and pushes the object on to the front of the list.
So when we use

(setq stack ’(3 2 1))

(push 4 stack)

the macro expands to (setq stack (cons 4 stack)), which has the desired effect when it is evaluated.

Consider, however, the call (push 4 ’(1 2 3)). We might hope to get the list (4 1 2 3). But consider
the macroexpansion:

(setq ’(1 2 3) (cons 4 ’(1 2 3)))

This will almost certainly flag an error: setq demands that its first argument is a symbol.
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This kind of usage (where we cons up an expression to be executed) is so common that there is a shorthand
provided, called the backquote (‘). We can’t define push as

(defmacro push (x l)

’(setq l (cons x l)))

in the hope that the body evaluates to the right setq and cons combination, since, for this definition,
(push 4 stack) will expand to (setq l (cons x l)). When we come to evaluate this expression, more
likely than not, the symbols l and x are undefined, or at least have nothing to do with 4 and stack.

The backquote is like the forward quote, but allows escapes inside that are treated specially:

(defmacro push (x l)

‘(setq ,l (cons ,x ,l)))

Within a backquoted expression objects are quoted, except when they appear after a comma , operator.
The comma is a sort of “anti-quote,” meaning that the object after the comma are not quoted. Now
(push 4 stack) expands to (setq stack (cons 4 stack)), since the value of x is 4, and the value of l is
stack.

So we might have defined ldeg by

(defmacro ldeg (p)

‘(cdaar ,p))

The backquote is a template that is filled in with the comma expressions.

What about

(defmacro def (fun arglist body)

‘(setq ,fun (lambda ,arglist ,body)))

This is a simplified (no implied progn in the body) form of defun for a 1-Lisp. If we try

(def foo (n) (+ n 1))

the macro expands to (setq foo (lambda (n) ( n 1)))+, which makes the value of foo the specified
function.

The ‘ is a piece of syntax, just like ’, and expands in the reader to the backquote function; the , likewise.
It is important to note that commas are evaluated at expand time: so

‘(1 ’,x 2)

expands to (1 (quote 123) 2) if x has the value 123.

For more adventurous macro writing, there is also the splicing operator ,@. Applied to a sublist inside a
backquoted list this splices its argument into the superlist.

(setq x ’(a b))

‘(1 ,x 2 ,@x 3)

33



has value (1 (a b) 2 a b 3).

As always, 1-Lisps and 2-Lisps do things differently. Typically a 1-Lisp saves a macro in the value cell
(thus a symbol cannot simultaneously name both function and a macro), where a 2-Lisp keeps it elsewhere.
Common Lisp requires the use of a macro-cell, so a single symbol can mean either a value, a function, or a
macro, according to context. (What with property cells, and several other cells too, calling CL a “2-Lisp” is
somewhat understated!)

4.1.1 Destructuring

A very powerful use of macros involves destructuring. This is a simple form of pattern matching of the
argument list of the macro. For example, in Common Lisp, we can define

(defmacro foo ((a b) c) ‘(cons ,a ,b ,c))

and use foo like (foo (1 2) 3), when a is bound to 1, b to 2, and c to 3. The arguments in the call are
matched up against the arguments in the definition, and appropriate bindings are made.

The most useful instance of destructuring is in the following example:

(defmacro myif (test . cases)

(cond ((= (length cases) 1)

‘(cond (,test ,(car cases))))

(t

‘(cond (,test ,(car cases))

(t ,(cadr cases))))))

The first argument if myif is bound to test, and all the remaining arguments are bound in a single list to
cases.

The macro expands into a two case cond or a one case cond according to the length of cases. We can test
a macro using macroexpand:

(macroexpand ’(myif 1 2 3))

results in (cond (1 2) (t 3)). (The local variable of test in the macro call is 1, and the value of cases
is (2 3).) The call (macroexpand ’(myif 1 2)) expands to (cond (1 2)).

Another example

(defmacro mylet (bindings . body)

(prog ((vars (mapcar #’car bindings))

(vals (mapcar #’cadr bindings)))

(return

‘((lambda ,vars ,@body) ,@vals))))

Cambridge Lisp supports (in the default system) a little destructuring, namely

(dm if args

(prog ((test (car args))

(cases (cdr args)))

(return
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(cond ((equal (length cases) 1)

‘(cond (,test ,(car cases))))

(t

‘(cond (,test ,(car cases))

(t ,(cadr cases))))))))

where the entire argument list is bound to args.

4.2 Exotica

We now come so a miscellany of bits of Lisp, bits that did not fit elsewhere, and bits that are not “in the
spirit of Lisp.”

4.2.1 Gensym

Consider a three way if (Fortran users note!)

(arithmetic-if test neg-form zero-form pos-form)

where we do pos-form if the value of test is positive, zero-form if it is zero, and neg-form when it is
negative.

Using macros, this is easy:

(defmacro arithmetic-if (test neg zero pos)

‘(let ((var ,test))

(cond ((< var 0) ,neg)

((= var 0) ,zero)

(t ,pos))))

Here we have a local variable var to hold the value of test (we do not want to evaluate test more than
once). This works fine until we try

(arithmetic-if (foo var) (+ var 1) var (- var 1))

This expands into

(let ((var (foo var)))

(cond ((< var 0) (+ var 1))

((= var 0) var)

(t (- var 1))))

which almost certainly does not do what we want. The problem, of course, is the name clash. We need to
define the macro in such a way that the symbol in the let is different from any in the expansion of the body.
To do this, Lisp supplies the function gensym.

This returns a symbol guaranteed different from every other symbol currently in the system. Also it is not
put into the system’s table of symbols: the only way to get at this symbol is indirectly, like this:

(setq symb (gensym))

(set symb 23)

35



This sets the value of the gensym to be 23.

We can now write arithmetic-if:

(defmacro arithmetic-if (test neg zero pos)

(let ((var (gensym)))

‘(let ((,var ,test))

(cond ((< ,var 0) ,neg)

((= ,var 0) ,zero)

(t ,pos)))))

Now the example expands to

(let ((g1234 (foo var)))

((< g1234 0) (+ var 1))

((= g1234 0) var)

(t (- var 1))))

where g1234 might be a printed representation of the gensym.

Gensyms are useful whenever we need a new symbol which must be different from any other we have already.

4.2.2 Vectors

Lisp has lists. For those who can’t cope with a flexible, dynamic data structure, we also have vectors. Vectors
in Lisp have the functionality of vectors in other languages. The EuLisp

(setq v (make-vector 5))

makes a vector of 5 slots, numbered 0 to 4 (as a C vector). The value of v is now

#(() () () ())

(each slot is initialised to ()). To get a value of a slot, use

(vector-ref v 3)

to access the slot numbered 3 in v. To put a value use the idiom

((setter vector-ref) v 3 hi)

which puts the symbol in slot numbered 3. The value of v is now

#(() () () hi ())

(Aside: the EuLisp setter idiom. The setter function is a function that takes an accessor function as
argument, and returns the corresponding updator function. So (setter vector-ref) is a function to
update a vector. There are many other setters.)

As for everything else in Lisp, a “vector” is really a pointer to a block of memory, and when we pass a vector
as an argument to a function, we are passing a pointer to the block of memory. This means that the local
instance of the vector we get in the body of the function is, in fact, a pointer to the original vector. The
effect of this is that if we update some slot of a vector in the function, this actually updates the original.
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(defun foo (vec)

((setter vector-ref) vec 0 ’zero))

(foo v)

then v has value #(zero () () hi ()).

Common Lisp goes way over the top with vectors: it calls them arrays, and they can be multidimensional.
Simple usage is as follows.

(setq v (make-array 5))

makes an array of 5 slots, numbered 0 to 4. The value of v is #(NIL NIL NIL NIL NIL). Access values by

(aref v 3)

and set values by

(setf (aref v 3) ’hi)

Now is the time to describe the general use of setter and setf.

4.2.3 Ever Increasing Circles

A member of a list can be any Lisp object, including itself. We can make self-referential objects by using
the (Cambridge Lisp) functions rplaca and rplacd. The former destructively replaces the pointer that is
the value of a car of a list by another pointer.

(setq a ’(1 2))

(setq b (cons 3 a))

(rplaca a ’hi)

The value of a is now (hi 2). but, also, the value of b is (3 hi 2). To see the reason why think of the
boxes model

-

?

-

???

PPPPPPq

?b

3 nil21

a

The rplaca replaces the pointer to 1 by a pointer to hi.
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Thus rplacs must be used with extreme care when we employ shared structure. The other function, rplacd,
does the same for the cdr.

The real fun starts when we rplac the list into itself.

(setq a ’(1 2))

(rplacd a a)

Don’t do this! The value of rplacd is the last argument. In this case, it is the value of a, which after begin
rplacd’d looks like

(1 1 1 1 1 ...

ad infinitum. The value of a looks like

-

?

?

1

a

and the printer loops forever. The print function printl can cope with circular structures, and prints the
value as

%l1=(1 . %l1)

where the %l1= labels a pointer, and %l1 refers back to it.

Such pointer bashing can be useful in its place, allowing us to create “infinite” structures, but they are best
avoided until you know exactly what is going on.

In EuLisp there is a general mechanism for updating, namely setter. This, as mentioned above, takes a
accessor function such as vector-ref, car or cdr, and returns a function that updates the place referred to
by the accessor. We have seen (setter vector-ref) is a function that updates a vector, but also there is
(setter car) and (setter cdr). The former is a function that updates a car of a list, namely rplaca. So

((setter car) a ’hi)
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in EuLisp is the (rplaca a ’hi) of Cambridge Lisp.

In Common Lisp there is a similar mechanism for destructive updating, namely setf. The call

(setf form value)

finds the object referred to by form, and destructively replaces it by value.

(setf (car a) 23)

replaces the car of a by 23. This is rplaca.

(setf (cdr a) a)

is rplacd. We have already seen (setf (get ’foo ’bar) ’baz) to update a property on a symbol, and
(setf (aref v 3) ’hi) to update a vector. Here is a simpler example:

(setf ’x ’(1 2))

this is the same as (set ’x ’(1 2)). The function setf is used in many other places, for example

(setf (symbol-function ’foo)

#’(lambda (n) (+ n 1)))

will replace the contents of the function cell of foo.

4.3 The Evaluator

We finish on the function that lies at the heart of Lisp: eval. This takes an arbitrary Lisp expression, and
returns the result of evaluating that expression.

(eval ’(plus 2 3))

returns 5. Eval takes an expression: if it is a symbol, it retrieves the relevant value; if it is a list, it regards
it as a function call, determines which function is to be used, evaluates the arguments of the function, and
applies the function to the arguments. It also takes note of things like quote, cond, and macro expansion.

The argument of eval is evaluated as is normal for a function. The result is regarded as a piece of program
to be executed, which is what eval does. We can regard it as a function that takes a piece of text and
breathes life into it to make a living chunk of running code.

Consider the following

(eval (reverse ’(’quote print)))

The argument of eval is call to reverse. To evaluate the reverse, we look at its argument, which is a
quoted expression containing two pieces of data:

’(’quote print)
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this has value (’quote print). This is what reverse gets: it replies with the list (print ’quote). When
eval receives the latter list it regards it as code to be executed. The action it takes is to print the symbol
“quote”. Somehow, the print, which was hidden behind several quotes, and started life most definitely as
data, became activated as program.

This action is central to Lisp: a list (plus 2 3) can be data, or it can be program—its all up to the
programmer (or perhaps the program) how it is interpreted.

Here is an outline for a definition of eval in a 1-Lisp (adapted from Abelson and Sussman).

(de eval (exp env)

(cond ((self-evaluating exp) exp)

((quoted exp) (text-of-quotation exp))

((variable exp) (lookup-variable exp env))

((definition exp) (eval-definition exp env))

((assignment exp) (eval-assignment exp env))

((lambdap exp) (make-procedure exp env))

((conditional exp) (make-cond (clauses exp) env))

((application exp)

(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))

(t (error "Unrecognised expression"))))

The argument exp is the expression to be evaluated, the env is the environment, which, roughly speaking,
is the current set of bindings of variables.

Self-evaluating expressions are left as they are, while quoted expressions are easy to evaluate, just return
the expression after the quote. (The functions above are mostly trivial, thus self-evaluating might be
(lambda (exp) (or (numberp exp) (string exp))); perhaps quoted is (lambda (exp) (if (atom exp) nil (eq (car exp) ’quote))),
and text-of-quotation could be (lambda (exp) (cadr exp)), and so on).

If we have a variable, we need to look up its value; we do so by referring to the environment env, which may
contain bindings that shadow the global value of a variable.

Assignments (setq) and definitions (de) are quite similar, only the definition needs to wrap a lambda about
the body. These need the environment, as they potentially overwrite bindings.

A lambda expression is recognised by its car being lambda. The make-procedure procedure packages up (in
a cons) the lambda-body and the environment. When the lambda is called we will need to refer back to the
environment in which the lambda was defined for the lexical bindings of the variables it contains.

Conditionals (i.e., cond) need a modicum of special treatment to avoid evaluating all the arguments.

A function application is any non-atomic expression that is not covered by one of the above cases. We
proceed by finding the function to be applied: this is the value of the car of the expression. The car can
be an arbitrary expression, and so we call eval to determine its value. The arguments are all evaluated in
the current environment and set in a list by list-of-values ready for the use by apply. The definition of
list-of-values is a simple recursive call

(de list-of-values (exps env)

(cond ((null exps) nil)

(t (cons (eval (car exps) env)

(list-of-values (cdr exps))))))

Apply works by extending the current environment by binding the parameters of the function to their
arguments and doing a primitive function application (below the level of Lisp).
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The pair eval-assignment and eval-definition determine the value to be assigned, and then modify the
environment to reflect the new values for the variables that have been changed.

The environment can represented quite simply as an association list:

( (x . 1) (y . 2) (z . 3) )

reading from the car, this says that the current bindings for x, y and z have values 1, 2, and 3. Or rather,
the environment is a list of association lists. Each association list is called a frame.

( ( (x . 1) (y . 2) (z . 3) )

( (z . 1) (x . 2) (w . 4) )

)

The current frame is the car; in the previous frame, which would correspond to an earlier function application,
z has value 1, x has value 2, and w. In this outer frame, y has no value. Adding a binding to the current
frame is a cons on to the front of the outermost frame; deleting a frame (as happened when we move out of
the extent of a binding is a cdr.

In the inner frame, if we reference w we do not find it in the current frame. When this happens, we search
though the next closest frame, and so on out until we find as binding. If there is no binding in any frame,
then the reference is in error. This method, called deep binding, has the drawback that we may have to
search through many frames to find a binding for a given variable. This can be slow. Other strategies exist,
such as shallow binding and Padget’s method, that address this problem.

The above definitions can be fleshed out into a fully lexically scoped Lisp interpreter (see Abelson and
Sussman). Notice that it would be relatively easy to convert to a 2-Lisp: the definition and application
functions would need to be changed, but otherwise things are much the same. In fact this would be a good
way of comparing, say 1-Lisps and 2-Lisps, or lexical and dynamic scoping: it is only a matter of code.

4.4 The End

Conceptually, the read-eval-print loop of the interpreter is

(loop

(print (eval (read)))

)

The value of read is a Lisp expression. This is passed to eval, which evaluates it; then print prints it. And
so on.

The function eval is where McCarthy started: with it, we can write Lisp in Lisp, and change our semantics
to our hearts content. This reflective (or maybe introspective) property is why Lisp is still such an important
and useful language, despite its age.
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