CM20167: Programming Il

Russell Bradford

1 Introduction

1.1 Woffle
This course is regarded by some as “difficult”. The princigalsoning behind this seems not to be the nature of the
content, but rather the fact that you, the student, is expiictdo some of the work for yourself.

This is not a course where you can attend the lectures, laavaursework to the last moment and hope to understand
what is going on. You are now a 2nd year University studentsiralild not need handholding through every step of
the learning process.

You, the student, need to be involved in the learning process

This is just newspeak for “you need to get down and do some'work

| expect you to go away and do things for yourself, in parictihe bulk of learning about Lisp, the language we shall
be highlighting in the course. This is all part of your “lesngphow to learn”. After all, in a business environment, you
will be given a problem to solve and then largely left to youmadevices. Part of this course is for you to learn the
skills you will need to do that.

1.2 Whatis the course about?

The gap between theory and practice. How does the stuff opetahility and decidability tie in with real program-
ming languages?

You have seen

e Assemblers (unstructured)

C-like languages (procedural)

Java or G-+-like languages (object oriented)

Perhaps Prolog (declarative languages)

Event driven, such as used in User Interfaces
Next on the list is

e Lisp-like languages (functional)
There are four main aspects to this course:

e Practice: Lisp programming,

e Theory: Lambda Calculus (and more),
e The link between the above,
¢ Introduction to other functional languages.
No one style of programming is suitable for all jobs. Bewdre person who says that “Java is the only language |

need”, as this is a sure sign of a bad computer scientist. @oatpis with a plumber who says “A hammer is the only
tool | need”.

So:
Use the right tool for the job.

One of the main points to this course is to introduce the fonel style. This style is not suitable for every pro-

gramming task, but it is another string to your bow that yon employ when appropriate. Even if you can’t use a
functional language for a project, many of the conceptssfieario other styles of programming and will improve your
programming in that style.

This course is 25% coursework and 75% exam. The coursewdirkend programming exercise in Lispon't leave

the coursework until the last moment There is a lot of “culture shock” involved in learning Lispr(@ny functional
language) for people who have only encountered the OO oeprtoel styles. They spend more time trying to program
Lisp in a procedural style than learning the new style ansljtist doesn’'t work.

You will need to learn a new style of programming.

Trying to force the old style is counterproductive. The mmpen you are to new concepts, the easier you will find this
course.

Some small easy exercises have been prepared for you teétytts://www.bath.ac.uk/ ~masrjb/CourseNotes/
cm20167.html

Do these exercises. It will pay you back multifold in the lang, and not just in this course.

This web page also contains other items of interest regaidsp and Lambda Calculus. Do read some of the articles.

1.3 Books
For lambda calculus.

e H P Barendregt “The Lambda Calculus” Exhaustive, high level
¢ J R Hindley and J P Seldin “Introduction to Combinators andalculus”

e The Web
For Lisp/Scheme.

e Abelson and Sussman “Structure and Interpretation of Céenfrograms”

e amillion books on Lisp

e http://www.bath.ac.uk/ ~mastrjb/Sources/eunotes.html
e http://www.bath.ac.uk/ ~masjap/TYL/
“ Lisp is worth learning for the profound enlightenment expace you will have when you finally get it;

that experience will make you a better programmer for theatgour days, even if you never actually
use Lisp itself a lot.”

Eric Raymond, "How to Become a Hacker”.

2 Lisp and Scheme

2.1 A Brief History
Early history.

e Developed in 1956-1958 by John McCarthy. First “officialle@se 1959. Only Fortran and Algol 58 older.
e Symbolic processing oriented, not numerical.
e Forthe IBM 704. This had a 36 bit word and 15 bit registers ib &it address space.

e Listprocessor. 15 used to pointto object, 15 bits used totpoirest of list. Usedddress registeanddecrement
registerrespectively.

Note this the first hint of the functional style. A list is (ahpty, or (b) an object and the rest of the
list. A recursive approach (or inductive, for the Mathermiatns) is central.

e Wanted higher order functions, adopted Church’s lambdautizd to notate functions.

e Natural use of recursiom! =n x (n — 1)!

e Simple syntax: program and data look the same “parentltepiedix”

e So programs can read and manipulate programs

e The eval function takes a piece of data (i.e., a list datasira) and executes it as a program.

e Thus can write a Lisp interpreter in Lisp.

e Garbage collection, so no worries about memory allocatidisis, etc.
Lisp has flexibility. Many new ideas tested in Lisp beforediaing integrated in other languages. E.g., object oriented
techniques. All modern languages have something borrovead fisp.
Lisp diaspora. Common Lisp and Scheme. EuLisp. (ISLispabyJava, Perl).

Lisp vs. Scheme.

2.2 Basic Introduction

BUCS:drscheme , euscheme.

Lambda Calculus
Church 1930s

Al ; Symbolic Algebra
y
(speed) Lisp 1 (semantic purity)
McCarthy 1959
Xerox Lisp 1.5 (1960 """"""""""""""""""""""" > Lisp 2 (disaster)
InterLisp \/
(closures) Lisp 1,8+0.3i (~1970)
¢ MacLisp BBN Lisp ‘
InterLisp Stanford Lisp Staﬁéard Lisp YKT Lisp
/ i 1968 !
DEC10 IBM T Lisp/VM
= Cambridge Lisp
Franz Spice Zetalisp Scheme:
(lex) : z
.‘\UCIIRutgers Standard Lisp,
(DARPA) R VLisp 1976 Cambridge Lisp
| | (Bath/Cambridge
n RN] PSL
Common Llsp R Scheme LeLisp
/ (l bO(l:)k 1) (leX, ClOSUrES\ \L CPSL CSL
ex, closures
' closures
etc Lucid KCL Allegro .= EuLisp 1990
Common Lisp OakLisp (lex, closures)
book 2

(lex, closures)

SIN

2.3 The Functional Style

e Functions as objects (first class objects)
e Recursion rather than iteration (e.g., traversing a tree)
e Avoid assignmentgetq), use bindinglét)

e Datastructures "in the wholet{ap)

Avoid side effects (referential transparency)

3 Lambda Calculus

The theoretical basis for Lisp. First explored by Churchthi@ 1930s as a way to investigate higher-order logic.
Motto: “Everything is a function”

We shall be describing a particular form of lambda calculuevikn aspurelambda calculus. Many variants exist, for
example typed lambda calculus (see later), but we starttivitlsimplest.

All formalisms like lambda calculus, and, indeed, set tigestart with a few basic symbols, rules on how to combine
them into valid formulas, and rules on how formulas transforto each other. We shall not be too formal in showing
proofs of things, though we ought to in order to treat the sciigeriously.

3.1 Syntax

The syntax of lambda calculus is composeddérms

We have an inexhaustible supply\@riables e.g.,z, y, z, and the special symbal

Actually, using variables is a bad way to proceed and willseaus problems later. But better ways are
very difficult to typeset and manipulate.

A \-term is defined as follows.

e avariable is a\-term
e if M andN areA-terms, so i§M)(NV). This is called arapplication

e if M is aA-term andv is a variable, therhv.(M) is a A\-term. This is called ambstraction Here, M is the
body, while v is theformal argument

e nothing else is a-term.

Examples.

(@)(x) (z.(2))Az(2)) (Ay-(y))(Az.(z)) (Az.(2)(2))(A=.(2)(2))

In that last example, thein the right half is not the “same” as than the left half.

Note that we can apply something to itsdlf)(x), thisdoesmake sense if is, say, the identity function.

Also look atAz.(Ay.(2)). This is a function (ofc) that when you apply it to an argument it returns a functi@mely
Ay.z. Functions are valid values: in fact functions are dinéy values!

As is usual with such things, we drop parentheses when weltanconvention is that

e application binds more tightly than abstraction, e\g..M N is A\x.((M)(N)), not(Az.(M))(N),

e application associates left-to-right, e.gyz is ((x)(y))(2).

Another notational convenience is collecting togeth&r\xyz. M for \xz.\y.\z.M, which is
Az.(Ay.(Az.(M))).

Very important note: Azyz.M is not a function of three variables, it is just a simple way of writing the nested
lambda expression.

3.2 Free and Bound Variables
Itis plain that the two\-termsAz.z and\y.y are both ways of writing the “same” function (the identitythis case).
The fact we used anin the first and a in the second is somehow irrelevant. We had tosmeevariable, though.

On the other hand\z.zy and\y.yy are definitely different, so we can’t just swap names arodmdradom. We must
distinguish carefully between names that appear stuckibdias, and names that don't.

Compare with code

int f(int x)
{

}

X F Yo

and
int f(int y)

LYty oL
}

A variable in the body of an abstraction that is also the fdrangument of that abstraction is calledaundvariable
(in that abstraction).

Non-bound variables are call@&evariables.

x z is free

Ax.x x is bound

Ax.xy x is boundy is free

(Az.z)xz thez within the body is bound, while the one on the outside is free

(r®.0®) ®

(.

Figure 1: No names

This is a point of easy confusion: theinside is “really” a different variable than theoutside, we have just been
perverse. We could equally have written

(Ay.y)z
to mean the same thing, and now the difference is clear. Again

(Az.(Az.2)z)x

the innerzs are bound while the outer is free. Note that, as with conmpatguages, the inner binding sfshadows
the outer binding. A more readable version could be

Ny.(Az.2)y)z

In a C-like language we can write

{“int X; {“i.nt y;
{“int X; {“i.nt z;
;J';%e inner x L.J;e z
} }...
;)“uter X again u;'e y
} }...

This is bad coding style, but valid as a program.

It would be better not to have to use named variables for bqasitions for this reason, however it makes writing
down and understandingterms that much harder.

For example, one alternative notation is to us€ 1 3 to mean\z.(\y.zyz). And \y.(Az.yzz). And dw.(Az.wxz).
And so on.

The integer indicates which the position should be bound to: 1 for the closest, 2 for the,read so on. A number
bigger than the depth of nesting & denotes a free variable. Different free variables geerfiit values.

We do not want to distinguish betweerterms that only differ in consistent renamings of boundalaes. This is
calleda renaming ThusAz.z “is the same as)y.y, and(Az.zz)z “is the same as{\y.yy)z, but (Az.zz)z “is not

the same as{\z.zz)w, andAz.zy “is not the same asXy.yy. The last because the term on the |hs has a free variable
(), but the term on the rhs does not. This is cathagine capturgand is a thing to be avoided.

Alpha renaming i®nlyfor bound variables.

r® .00 rA® .00

(-

A X. Xy Ay.yy
Figure 2: Name capture

Now, if expressiond “is the same asB then B “is the same as4; if A “is the same as’B and B “is the same as”
C then A “is the same asC. These statements are not entirely obvious and we reallytdogirove them from our
definitions by considering carefully what we mean by “is tame as”.

So when expressioA “is the same asB we can, up to a point, replacéwhereever we see it b (we are glossing
over alot here), and we are therefore justified to caland B (in some sense) “equal”.

So, the notation we use for “is the same asAis=,, B, or more commonly simply = B.

Notice what we are doing here: we atefininga relationship betweek-terms thabehavedike an equality.. If we
risk confusion by using the familiar equals sign)(we can use=, to make things clear. There is a separate notion of
structural identity written=, if we want to say two terms are completely identical.)Sor # A\y.y, butAz.z = A\y.y,

or \z.x =, Ay.y if we are being fussy.

Reiterating an earlier point: we ought to prove at this pthat=,, is worthy of being called an equality, namely that
it has the properties we might expect from an equality. Sohtleese properties are
o Reflexive: a term is=,, to itself, M =, M for all M. This is clear.
e Symmetric: ifM =, N thenN =, M. Thisis also clear.
e Transitive: if M =, N andN =, P thenM =, P. This says a succesion of renamings is a renaming, so this
is OK.
There are other properties (namely substitionality, ses)labut for now we can agree that callirg, and equality
makes sense.
Now, a term isclosedif there are no free variables. We writd/ (A/) for the collection of free variables 6/ .

Exercise: write down a formal definition of'V. You will need to refer back to the definition of)aterm and go
through each case of bound and unbound variables.

Answer:

FV(z) = {z} for a variablex
FV(MN)=FV(M)UFV(N) foran application
FV(Ax.M)=FV(M)\ {z} for an abstraction

ThusF'V(Az.xy) = FV(zy)\{z} = (FV(2)UFV(y))\{z} = ({z} U{y}) \{z} = {z,y} \{2} = {y}. Similarly,
FV((Qz.x)x) = FV(Az.x) UFV(z) = (FV(x) \ {z}) U{z} = {z} \ {z}H) U{z} = 0U {z} = {=}.

Exercise: write down a formal definition ofe equality of twoA-termsM andN.

Answer:

e)M is avariableg, say. Return true ifV = M else return false.

e M is an applicatiod B. Return true ifN is an applicatiotC' D with A =, C andB =, D, else return false.

e M is an abstractionx. A. Return false ifV is not an abstraction. S¥ is \y.B, say.

— if x =yreturnA =, B.
— let z be some variable not appearing4B. Replace all free:s in A by z giving A’ and all freeys in B

by z giving B’. Returnd’ =, B’
Note: this proof usestructural recursion

Exercise: Prove thaty equality has the behaviour you might expect from an equalaynely

e A=, Aforall \-termsA
e if A=, BthenB =, A for all \-termsA andB
e if A=, BandB =, C thenA =, C for all \-termsA, B andC

3.3 Substitution

Substitution captures the idea of replacing a variable withlue.

Given A-termsM and N and a variable, we can substituté’ for eachfreeoccurrence of in M, provided we don't
accidentally bind any of the free variables . If there would be some name clashes, we can do sememaming
first.

We write this agN/v]M. Note in the special case thatloes not appear free i¥ we have[N/v]|M = M (in fact,
[N/v]|M = M).

Substitutiononly happens for free variables.

Examples.
[Ny-y/ale = Ay.y
[A\z.zz/x] \x.xy = Av.xy x is not free
[y/x)Az.(Az.xy)x = Az.(Az.2zy)z the outerr is free, but the inner is bound
ly/x]|\y.xy # Ay.yy that unbound: became a boungl
z.z/y|\x.xy # Ax.x(Az.x) thex in the A\z.z accidentally got bound
z.x/y| e.ay = Ar.x(Az.x) the innerz is reboundand so is OKly /x| \y.xy =, [y/x]A\z.22 = Az.yz

In the last, we renamed the variable in the abstraction fydm: to avoid a clash. The substitutions can be arbitrary
terms for the free variable, e.g.,
z.xz/x] y.xyx = My.(Az.az2)y(Az.xz).

Notationally,[] has very low precedence, so thafy]zw meansz/y](zw). Also, the form[N/z][M/y]P means
[N/x]([M/y]P)
Just to get a flavour of these things, we show the formal defin@f substitution. In general, we shan’t be too formal.

The definition is in several cases:

e variable:[N/z]z = N

e variable:[N/z]a = a, for variables: # z

« application:(N/z|(PQ) = ([N/]P)([N/z]Q)
e abstraction{N/z](Az.P) = Az.P

e abstraction{N/z|(A\y.P) = \y.[N/z]Pif y # z andy &€ FV(N) orx ¢ FV(P) (y is not free inN so can't
be accidentally bound, ar doesn’t actually appear free iR)

e abstraction{N/z|(\y.P) = \z.[N/x][z/y]|Pif y # x andy € FV(N) andx € FV(P) (x really does appear
this time and would bind a fregin N)

In the last,z is some variable not i"V (N P). This is justa renaming inP to avoid capture of the freg in N.
For example[y/x]\y.z. Note we only need to rename if (a)appears free idv, and (b)z is free inP, i.e., some
substitution actually happens. g/ z]\y.y there is no free:.

Note this is an inductive definition: given a terid one of the above must apply (recall the definition of-germ),
and then we get the substitution 8h defined using the sub-terms bf.

Everything in lambda calculus is defined formally, but wellsteezus on the informal interpretations. For example, in
the last abovelV has a variable that clashes, so we rename it toz first.

Exercise: From the above definition, prove thaf/«|P = P if = ¢ FV(P).

Answer: Do the cases!

1. variable
2. application

3. abstraction

3.4 Reduction

Reduction is the primary way of manipulatidgterms. It is what makes the lambda calculus a model of coatiout
a reduction is like a computation.

A term of the form(\u.E)F is called aredex(reducible expressign Conceptually, this is a function being applied
to an argument. Theeduction[F/u]E (together with anyx renamings to make this safe) is sometimes called the
contractum Reduction is equivalent to execution of a function to picela result.

We say: M p-reduces taV in one stepf N results fromM after a reduction of some subterm &f, and we write
M =15 N. Thus, for example\u.E)F =15 [F/ulE.

Examples.

(Az.y)z =18y

z((Az.zy)z)y =15 ©(2y)y

(Az.zy)(Az.22) =15 (A\z.22)y =13 Yy
(Az.zz)(Az.zx) =18 (Az.zx)Az.xz) =15 ...
z(Ay.y)z has no reduction!

We write M -3 N, or evenM > N, if there is a finite sequence of zero or more single redustion
M =1 M’ 18 M =18 ... ™18 N,

and sayM (-reduces tav.

10

Figure 3: Church Rosser
We also allow any number @f renamings:

M ~13 M’ ~1p3 M =a M 13 --- >183 N,

There can be zero reductions, so that-3 M.

Note: in some sens&@“+ 2 = 4". So 2 + 2 and4, while the same mathematically, differ by a reduction stethe
lambda sense.

3.5 Normal Forms
M is in normal formif it contains no redexes. Thus zy, x(\y.y)z are in normal form. On the other handy.y)z
andz((Ay.y)z)Az.z are not.

Clearly, a term in normal form cannot liereduced. A term not in normal forwan be -reduced. A normal form
represents the end of a computation: the answer, if you like.

It would seem that to produce a normal form from a term we ghqudt keep reducing it until we can go no fur-
ther. Unfortunately, this doesn’t work, as we have alreaBng\z.xx)(Az.xx) reduces forever. Of course, some
computations never terminate either: think of infinite leop

A further complication is that there is more than one way thue a term if it contains more than one redex.

(Az.(Ay.zy)z)z >3 (\y.2y)z

applying the outen, while
(Az.(A\y.zy)z)z =5 (A\z.xx)2

applying the innen.

In this case, both further reduce 4e. In fact, this is generally true: there may be multiple wayseduce, but you
can always end up at the same place.

3.6 Church-Rosser

One of the cornerstones of the lambda calculus is this theofeChurch and Rosser:

If M, A andB are any\-terms withd -3 A andM >g B, then there is a-term .V with A >3 N and
B =3 N.

11

This is sometimes callecbnfluenceor thediamond propertyf reductions.

A corollary is:

If M, AandB are any\-terms withA -3 A andM >~z B, andA andB are both in normal form, then
A = B (up toa renaming, so this is really =, B).

Notice this does not guarantee the existence of a normal: fitjonst says if a normal form exists, it is unique. Nor
does it guarantee a sequence of reductions will ultimatsylt in a normal form, even if that normal form exists.
For some terms we get the normal form regardless of the sequémeductions, e.g(Az.(\y.zy)x)z, above.

Some terms do not have a normal form, e(¢z.zz)(Ax.zz). This particular term is a favourite, and is often called
Q. Also, little w = \z.xzz, so thaf) = ww.

Some terms have a normal form, but it depends on the ordedattiens whether we reach it or not. Of course,
the only way to fail to reach the normal form in this case is awéhan infinite sequence of reductions. For example,
Az.y)Q = (Az.y)((Az.22)(Az.22)).

If we -reduce the?, this term reduces to itself. If we reduce the fikse gety, the normal form.

Church-Rosser does guarantee if the normal form exists awelbwvays get to it from wherever we are. There are no
wrong paths, just some very long ones!

3.7 Applicative and Normal order

So what can we do about finding normal forms? Is there some anégzd way of always finding a normal form when
it exists? There are two (important) ways of doing redudj@alledapplicativeandnormalorders.

Consider the evaluation of a function:

(defun double (x) (+ x X))

(double (+ 2 3))
There are conceivably two ways to proceed:

o textually substitute the actual argument for the formalargnt on the body, then reduce that

e reduce the actual argument, then substitute and reduce

Of course, real implementations of Lisp do the second. As dstntout not all, other languages.

Maple has a curious evaluation strategy. Algol 60 had caltdaye as well as call by value.

For the first way:

(double (+ 2 3)) ->
(+(+ 23 (+23)->
(+ 55 >

10

12

And the second

(double (+ 2 3)) ->

(double 5) ->
(+ 55 ->
10

We get the same answer. Note that we're not guaranteed #higitta Church-Rosser, since Lisp is not pure lambda
calculus.

(setq n 0)

(defun inc ()
(setg n (+ n 1))
n)

What is(double (inc)) ?
With the first, callechormal order or leftmost outermosbr call by namewhere we reduce the outermost lambda first

(i.e., thedouble), we might get

(double (inc)) ->
(+ (inc) (inc)) ->
+12 >

3

With the second, calledpplicative ordey or leftmost innermostor call by value where we reduce the innermost
lambda first (i.e., the arguments), we get

(double (inc)) ->

(double 1) ->
+11) ->
2

This divergence from Church-Rosser is very important, aedmll return to it later when we talk about functional
programming.

What is the value of the following?

(setq n 0)
(list (inc) (inc))

Back to lambda calculus. We know that it theoretically ddesratter whether we use applicative or normal order
reduction as a normal form is unique. But there is one bigtmadifference:

normal order reduction will converge to the normal formt éxists.

13

In general, it is undecidable whether a term has a normal,forhnormal order reduction gives usami-decision
procedure. That is, a method that will find the normal fornt éists, but will never terminate it it doesn't.

On the other hand, applicative order reduction has no suaregtee of getting to the normal form.
Look at(Az.y)Q = (A\x.y)((Az.22)(Az.22)).

Normal order reduces the first lambda:
Az.y)Q =y

Applicative order reduces the inner lambda{i)

Az.y)Q = Azy)Q = ...

So the moral of the tale is: use normal order reduction in Badalculus!

This effect is reflected in Lisp, too. Consider

(defun foo (x y)
(if (zerop x) 0 vy))
(defun bar () (bar))

(foo 0 (bar))

Under applicative order evaluation, this program nevanteates. Of course, (most) programming languages use
applicative order as it is more efficient: it evaluates thguarents just once, rather than each time a formal argument
appears in the function body. Other languages, such as Hasgproximate normal order reduction usitagy
evaluation See later.

Another example.

(defun try (a b)
(if = a 0) 1 b))

(try O (/ 1 0))

This generates an error in Lisp since thel 0) is evaluated before thé . With normal order reduction, thé is
evaluated first, and the division by zero never happens.

In other words, in Lisp, and most other languages, theg@arts that use normal order reduction: namely
with if !

if (x == 0 || 1/x == 2.0) ...

3.7.1 A Test for Normal Forms?

Here is the first step in proving that the existence of normaht is undecidable.

TheoremThere is no\-term N that detects whether)aterm has a normal form. That is such that for anterm M,

NM =T if M hasanormal form
NM - F otherwise

14

HereT = A\zy.x, F = A\xy.y.

Proof Letw = \z.zz, Q = ww andl = Az.xz. Note that2 has no NF, whild is already in NF.
Let N be aX-term that detects NFs, and sét= A\z.N (wz)Q1.

NowwZ >~ ZZ = N(wZ)Q, sowZ has a NF if and only ifV (wZ)QI does (by Church-Rosser).

1. SupposeZ has a NF, saV(wZ) > T. But then
NWwZ)QI = TQI > Q
which has no NF. Contradiction.
2. Suppose Z does not have a NF, S§(wZ) > F. But then
N(wZ)Q = FQI > I

which is a NF. Contradiction, again.

So such a\-term N cannot exist.

Now if we assume something is computable if and only if theraX-term with a normal form that represents it, we
can see that the existence of normal forms is not computadlgindecidable.

3.7.2 Non-termination
Expressions that don’'t have normal forms can fail to terteimaseveral ways:

e Simple Loops:
The A-term(2 §-reduces to itself in a single step. A related example is
(Azy.yxy)(Azy.yzy)(Azy.yzy)
which reduces to itself in two steps. And

reduces to itself in three steps.
We can have arbitrary long loops: 1Bt= \xq125 ... 2. 2h2122 . .. 2. Then
L' = LL...L
H,._/
n + 1 times

reduces to itself im steps.

e A sequence of reductions, then a loop. A simple example coelth\z.z)(A\z.2)Q =5 (Az.2)Q >3 Q >3
Q2 Clearly, this can be extended to an arbitrary number okdtefore the loop.

¢ Nonlooping. This must necessarily be an expression thatgwathout limit. For examplé\z.zzz)(Az.xzz) >3
(Az.zzx)Az.xex) Az.xzz) -5 (Av.czz)(Ar.czz)(Ar.czx)(Az.zzz) =g ... Or (Az.zzy)(A\r.czy) >3

Az.zzy)(Ar.zzy)y = (A\v.zzy)(Az.xzy)yy >3

Note: there are\-terms that grow arbitrarily before hitting a NF (see the@xgntial Church numeral, later) so we
can't judge the existence of a NF on size alone.

15

A real answer to an exam question: “first try applicativeh#tfails try normal”. How many ways is that
wrong?

3.8 Another Equality
We have seen various kinds of ways to transform ®iterm into another

e « renaming: changing bound variables
e (-reduction: application oks
e substitution:[M /x| N
Sometimes we say things are equal, and-ts©ther times we say things reduce, and uge This is an important

distinction, sometimes glossed over in other branches dfi@naatics. For example, we say 3 = 5 in arithmetic,
but would say2 + 3 reducedo 5 in the lambda world.

Why is this distinction made? Because reduction corresptoncbmputation |t is quite natural to replace+ 3 by 5,
but quite unusual to replace 5 By 3. So this equality is not really symmetric.

In the physical world, it appears that reversible and naengble computations really are quite different,
as the former necessarily consumes energy.

We shall now define another relationship between terms ifgddi= and=,,).
We define~g by M ~z N if there is a sequenck®! = My, My, Mo, ..., M, = N with
M; =g M1 or M1 =g M; or M4 is ana renaming ofM;

Now we claim that- 3 is another “equality like” relation betweenterms. For this to be a reasonable definition of an
equality, we have to prove it has the expected properties efjaality:

o M ~g M
o if M ~3 NthenN ~g M
o M ~g NandN ~g PimpliesM ~g P

e if M ~g N then substitutingV for A/ in any expression leaves its value unchanged, i.e., the rpression is
~ g to the old (with the usual caveats abeutenaming to avoid clashes during the substitution). Thésiked
substitionality In an abuse of notation we might write M ~3z N then[N/M|P ~3 P”.

In this case everything works well, for there is a corollafhChurch-Rosser that says
if M ~g N then thereis & with M ~g T andN >3 T.

e The proof ofM ~g M is easy: sincé/ >z M with zero reductions.

o Similarly, if M ~g N there is a sequence of reductions/renamings takinp N. Just reversing the sequence
takes us fromV to M, showingN ~g M.

16

o If M ~3 N andN ~g P, there is a sequence froid to NV and a sequence frof to p. Joining them together
gives us a sequence froid to P, i.e.,M ~g P.

e Here is an outline of a proof of substitionality: ¥ ~g N, thenM >3 T and N >z T for someT.
SupposeV! appears in some expressionM Now...M ... ~g...T... <g ... N ..., which is to say
..M...~g...N.... Areal proof would have to worry aboutsubstitutions to avoid name capture.

Thus it is reasonable to think efg as an equality oh-terms. Thus, the usual notation for this is actuaHy, or
(again) simply= if we are being lazy.

So here is the definition again, written as you would normsdig it:

Define=g by M =4 N if there is a sequenck®! = My, My, Mo, ..., M, = N with

M; =g M1 or M1 =g M; or M;4q is ana renaming ofM;
A lot of people get confused about what is happening here esoegd to think carefully about what we are doing: we
have justdefinedwhat the symbok3 means. Just because it has some typographic similarityete: symbol some

people expect that s automatically has certain properties, for exampléfif=3 M for every expressiod/. This
may or may not be true: we havepeoovethat that equation is true, as we did above.

SayingM =g N is very different from saying/ = N, or evenM =, N. These arall equalities, but they claim
different collections of\-terms are equal. It all depends on what you want to do at the.tiWhether you want to
talk about equality of structures(), or equality up to inessential namesy), or computational equality<g). All are
valid, all are useful in different circumstances.

We have===,==3.

Examples:
(Az.(Ay.2y))z = (A\y.zy)z = Az.2z,

SO (A\x.(\y.2y))z =g Az.z2z,.

(Ar.y)Q =5y

(Az.y)Q =5 (Az.(\z2.y)2)Q
Exercise: Give examples o/ and N such that

1. M =g NbutM #, NandM # N.
2. M =g NandM =, N butM # N.

Answer: Nearly anything will do.

1. (\z.x)z =p z but(\z.x)z #, x and(A\z.x)z # .
2. \x.x =, A\y.y butdz.z # M\y.y.

17

3.8.1 No Decision Procedure

Now, while it is easy to determine if twa-terms are= or are=,, it is possible to show that there is no algorithm to
determine if twoA-terms are=g. This follows from the halting problem for Turing machinéhere is, however, a
semi-decision procedure

A semi-decision proceduie something that, if it terminates, gives you the answeridnot guaranteed to terminate.
Recall that if something is to be called an algorithm, or daslen procedure, inustterminate on all inputs. Something
that is not guaranteed to terminatenist an algorithm.

So the semi-decision procedure fédequality is to simply reduce both to normal form (when thgis®, and see if
they are the same (hamely,). Thus, sometimes we can show things to be equal, but we amguacanteed to be
able to do so.

In fact, we already know that determining ifaterm even has a normal form is also undecidable.

We might be able to determine when some other terms withaumaldorms are=g, for example we can easily see
that(A\z.Q)y =g Q, but in general there is no hope.

It may seem strange to be using an equality where we can’trgiynprove things to be equal, but in fact the same is
also true of the old familiar equality of numbers: it is pddsito write down two numerical expressions that we can't
prove are equal or not equal (proof by Dan Richardson). Ofsmuhese equalities are practical enough to be useful
for many other things.

3.8.2 Extensionality

Another point to note is that to proy&equality of two expressions, you can only use the definitianove. It would
be tempting to have a proof that went

blah, blah, and sa/X =g N X for all termsX. ThereforeM =g N.
This is calledextensionalityand is an analogue of
blah, blah, and s¢(x) = g(z) for all z, thusf = ¢

in Set theory.

But extensionality does not hold for lambda calculus. Famegle, takel/ = y andN = Az.yx. CertainlyM #g N
(both are in normal form), but
NX =(Mzyr)X =gyX =MX
forall X.
Computationally speaking, these terms are certainly miffe N needs one more function application th&h On

the other hand, their outcomes when applied to an argumemt\aays the sameV just seems a less efficient way of
doing the same thing a¥/.

To think about: if two programs produce the same outputstfersame inputs for all inputs, are they the
same program?

We could define a kind of equality on programs, nam¥&ly= M if N andM produce the same outputs
for the same inputs for all inputs, but it would be in genengbossible to test two programs for equality
due to the Halting Problem. This is calledtensionakquality.

To gain extensionality, something extra has to be addedbda calculus. One way is usingreduction.

18

3.8.3 n-reduction

n-reduction is

Ar.Mz -, M whenevet is not free inM.
Note that(Az.Mz)X >3 MX foranyX, but \z.Mx 5 M.
Examplesiz.yx >, y; Ax.(Az.2)x >, Az.x; but \e.xx i, .

Note also:\z.(Az.z)x >3 Az.x by f-reducing the inner redex. Similarlyz.(\z.z)x >3 Az.x while Az.(Az.z)x >,
Az.z, but these are stilk-equal.

This is acknowledging thal/ is independent af, and the\ is not really doing anything for us. Notice that thisnist
a reduction we could do previously, even though wheneverametkis termin someg redex contextve could have
reduced it.

It turns out thaty-reduction satisfies substitionality and the other progsmxpected of an equality, and so is “well
behaved,” but does alter the collection of things that caprosed in the lambda calculus. It is not a question of
whether it is “right or wrong” to use@-reduction, you just get a different range of theorems tdanep

Imagine changing the rules of Chess so that a pawn could almaye one or two squares forward. This would be a
new game, not Chess, but would have substantial similatiti€Chess. Some Chess strategies might be still relevant,
but others now fail. And some new strategies might work.

Similarly, some theorems from the pure lambda calculus trégt be true: others can now be false. Or things that
were false previously might now be true (e.g., extensityalithe case of) reduction).

Indeed, we have to go back to anything we have proven preyians re-prove it (if possible) for this new calculus.
For example, it turns out that Church-Rosser still holdhanpgresence of-reduction:

If M, AandB are any\-terms withA >3, A andM g, B, then there is a-term N with A >3, N
andB >g, N.

Many popular theorems do remain true, but some of the debperéms break down, which lead some to avoid the
use ofn.

We use the notatior g, for a sequence of zero or moseandr (andc) reductions. Similarly=s,, for a sequence of
zero or morg3 andn (anda) reductions or reverse reductions.

n-reductions do have these nice properties:

e a\-term has &n normal form if and only if it has & normal form.
e in a fn-reduction we can postpone thereductions to the end, that is M >3, N, then there is & with
M ~g P>y, N.

So in some sensg is a very benign reduction, but there is one big benefit: laantalculus withn-reduction has
extensionality. Sincé/ X =g, NX for all X implies

M =g, MMz by reverse), wherex ¢ FV (MN)
=gy Ar.Nz by Mz =g, Nz and substitionality
=y N by n

19

Some likery-reduction to program optimisation: you take a program dted & to be more efficient while still giving
the same answers. In this semsgoes not model computation as dges

We shall not be using-reduction, but shall stick to thaure A-calculus.

3.8.4 ¢ reduction

Another form of reduction i$ reduction. This does not apply to the pure lambda calculugeabave developed it,
but rather to an extended form that contasosistants These are things like, for example, integers (which aréndis
from variables), perhaps together with some operatioysaddition.

We get terms like
Ax+1)2>52+1>53

We shall look ab reduction in detail later, in section 6.

3.9 Currying

What of multi-argument functions? For example, the sumondiiinction takes two arguments.
(defun sum (x y) (+ x y))

so that the value cdfumis
(lambda (x y) (+ x Y))
and is called as

(sum 8 11) -> 19

Surely we can't represeflambda (x y) (+ X y)) as\-terms only have one argument?

Now, we have already seen the notational convenience:gff zy to mean\z.(\y. fxy). Taking this as inspiration
we can definesum as

(defun csum (x) (lambda (y) (+ x y)))

Now the value otsum is

(lambda (x) (lambda (y) (+ x ¥)))

namely a function of one argument that returns a functiomef@argument.
(csum 7) -> <function>

where the function takes one argument and returns that angiymtus 7. So

20

((csum 7) 11) -> 18

This is calledCurrying, after Curry, who first thought of the idea.

In \-terms:
()\561562 Ce IT.E)M:[MQ oM, - [M»,/IT] Ce [MQ/IQ] [Ml/Il]E

In Lisp, we can define a function

(defun curry (f)
(lambda (x)
(lambda (y)

f x y))

Now, curry is a function that takes a function of two arguments and nstthrat function curried.

(setq add7 ((curry sum) 7))

(add7 5) ->
12

(((curry sum) 7) 11) ->
18

In the opposite direction,

(defun uncurry (f)
(lambda (x y) ((f x) ¥)))

Here,uncurry takes a function of one argument that returns a function efangument and returns a function of
two arguments.

(defun uncurry (f)
(lambda (x y)

((f %))

(setq csum (curry sum))
(setq add (uncurry csum))

(add 2 3) ->
5

Currying proves that by restricting functions to a singlgtament does not reduce the expressive power of the lambda
calculus.

21

3.10 Y operator

When writing a recursive function in Lisp (or other langupgie need a name for the function we are writing in order
to refer back to itself:

(defun fact (n)
(if (<n2) 1(=+ n (fact (- n 1))

Here the innefact is a reference back to the function being defined. The prollgémlambda calculus is that we
can’t do this as lambdas don’t have names!

So we need some other way of doing things. Consider what imappe simple recursive function.

(defun g (a) (h (9 @)

Hereh would include some conditional so that the recursion camiteate.

Expanding

(9 a > (h(ga)
> (h (h (9 @)
> (h (h (h (g @)

->

When we apply to some argument, it will only recurse to some finite depthe(se the function fails to return!), but
we can't tell in advance how deep it will go. So what we wouketlis to defingy as

(defun g (@) (h (h (h ... &))))

for an infinite depth. This may seem strange, but with norm@¢oreduction, it isn’t so bad.
Let’s look atf where
(defun f (x) (lambda (a) (h (x a))))
Then
(f f) -> (lambda (a) (h (f a)))
(f (f f)) -> (lambda (a) (h ((lambda (a) (h (f a))) a)))
-> (lambda (a) (h (h (f &))))
(f (f (1) -> (lambda (a) (h (h (h (f a)))

and so on. Thus, a-fold application off tof matches a-fold depth of recursion fog.

So again, nesting infinitely

(f (f .. f)) -> (lambda (a) (h (h (h ... &)

22

which is the same as the functignas we will only ever recurse to a finite depth in an actual catajion ofg.

Now,F = (f (f ... 1) has the curious property that
fF) =F

F is called dfixed pointfor f .

A fixed pointfor a functionf is a valuer such thatf(z) = x. Thus the (numerical) functiofi(z) = 2 — 3z has
fixed point4 as f(4) = 42 — 3 x 4 = 16 — 12 = 4. It also has another fixed point, namely= 0. The function
f(z) = z + 1 has no fixed points, whil¢(z) = = has an infinite number of fixed points. A numerical function ca
have zero to infinity fixed points: in thecalculus there is a significant difference.

Returning to our, if we could define such alR by some proper means, then we would hgve F as our recursive
function.

In lambda calculus termg, is
Aa.h(h(...a))

which isnota A-term, as it is infinitely long(!), anél is
M = Aza.h(za)

which is a perfectly respectable term.

Now we have

MM = (Axa.h(xa))M
= Aa.h(Ma)
M(MM) = (Aza.h(za))(Aa.h(Ma))
= Aa.h((Aa.h(Ma))a)
= Aa.h(h(Ma))

and so on. And then an infinite applicatidh= M (M (... M)) does what we want. Again, we hal¢F =3 F, i.e.,
Fis a fixed point for the termd/.

It may seem impossible to figure out how to find a reasonablaitiefi for F, but it turns out that there is a theorem.
Fixed Point Theorem:

Given any\-term M there is a ternX (depending onl/) such that
MX =3X

Thus: everyA-term has at least one fixed pointhis is different from normal, numerical, functions thaigim not
have a fixed point.

Proof:

LetW = \z.M(zz), andX = WW. Then

X =WW = Aze.M(zz))W = M(WW) =MX.

Examples.

M = z. We getW = \y.M(yy) = My.z(yy) and soX = (Ay.z(yy))(Ay.z(yy)). Checking this: X >
z((Ay.z(yy))(A\y.xz(yy))) = 2X, i.e.,2X =g X, as required. Note that > 2 X > zaX > zzxzX ...

23

M = dz.z. Now X = (Ay.(Az.2)(yy))(Ay.(Az.z)(yy)) > (Ay.yy)(Ay.yy) = Q. As noted above, everything is a
fixed point of the identity function, but here we compute aciffieexample, which happens to be

Even better than the fixed point theorem, there lstarmY’, aa fixed point operatqrsuch that for any/, Y M is a
fixed point forM. In other words
M(YM)=3YM.

(In terms numerical functions, this would be a “functignduch thaty(f) is a number that is a fixed point fgr, i.e.,
f(f)) = y(f). But no such “function’y exists.)
Hence, given\/, Y M is the term we seek, and implements the recursive functioareéooking for.

Fixed points are not unique: consider.x, for which everythings a fixed point. Similarly, fixed point operators are
not unique. Two popular ones are due to Curry and Turing.

Curry:
Y = Az.VV whereV = \y.z(yy)

Turing:
Y = ZZ whereZ = \zz.x(zzx)

Taking Curry, for example, we have

YM

A Y Y I

Reading this other wayy"M is a fixed point ofM: M(YM) =g Y M. Turing'sY is somewhat better in that
Y M > M(Y M) rather than just:
Z7Z = (Azz.ax(zzx))Z
= \r.w(ZZx)

and so
YM =ZZM = \z.x(ZZx))M = M(ZZM) = M(Y M).

In fact, fixed point operators are rather common. For exanifple
A = Xabede f ghijklmnopqrstuvwzyz.r(thisisa fizedpointoperator)

and
B = AAAAAAAAAAAAAAAAAAAAAAAAAA

(26 times), therB is a fixed point operator.
Example.

M = z. Thenusing CurryY M = Yz = (Ay.(Az.y(22))(Az.y(z2)))x = (Az.2(22))(Az.2(22)), as before. Using
Turing: Yo = ZZx = (Azy.y(zzy)) Zz = (\y.y(ZZy))z = x(ZZx) = (Y z). This doesn’t simplify to anything
particularly pretty.

TheY operator translates directly into Lisp. We can define

(defun Y () ((lambda (x) (f (lambda (y) ((x X) Y))))
(lambda (x) (f (lambda (y) ((x X) y))))))

24

This is Turing’s operator. Curry’s doesn’t work with an aipptive order Lisp. Then

(defun FACT (f) (lambda (n) (if (< n 2) 1 (*n (f (- n 1))
(setq fact (Y FACT))

(fact 5) ->
120

The point here is that the recursifaet has been defined, vIBACT, without self-reference. Théties the loop.

In general,
(defun foo (x) (... (foo ...) ... (foo ...) ...))
can be defined as

(defun FOO (f) (lambda (X) ... (f .) oo (F) o)

(setq foo (Y FOO))

For example, instead of

(defun len (1) (if (null 1) O (+ 1 (len (cdr 1))))
We could have

(defun LEN (f) (lambda () (if (null) 0 (+ 1 (f (cdr 1))

(setq len (Y LEN))
More succinctly,

(setq len (Y (lambda (f) (lambda (I) (if (null) O (+ 1 (f (cdr | M)

3.10.1 MoreonY

We can us&” to solve equations:

for any A-term M the equation
Yy ... Yp = M

has a solution fog. That is, there is aiX such that

Xy1...Yn =p [X/x]M

Proof:

25

TakeX =Y (Azy1 ...yn.M). Then(Azy; ... yn.M)X = X, SO

Xyr.oyn = Y(Azyr.. . yn-M))y1 ... Yn
= (Azyr...yn-M)Xy1...yn
= (Ay1 .y [X/ M)y1 .. yn,
= [X/x]M

For example, find a solutionto
TYZ = 2Y.
(Note this is the equatiofxy)z = zy.) We take
X = Y(A\zyz.zy)

(Az.(Ay.2(yy)) (Ay-2(yy))) (Aryz.2y)
Aw.(Azyz.zy) (ww)) (Aw.(Azyz.2y) (ww))

Aw.Ayz.zy)(Aw.Ayz.zy)
A\Yyz.zy

Y Y Yl

And, of course,
(Auv.vuw)yz = (Av.oy)z = zy.

3.11 Relationship to Lisp

Aislambda !

Lisp the language was first developed as a way of implemettim¢ambda calculus. Over the years it has developed
into a powerful tool in its own right, which is a testament te original design, and the flexibility of the lambda
calculus as a means of expressing concepts.

Unfortunately (or fortunately, depending on how you loolthtLisp diverges from the pure lambda calculus. There
are minor differences, such a multiple argument functibasye know this is not important because of curryings It
important in terms of efficiency, though. Multiple nesteddtion calls are more expensive than multiple arguments.
In fact, most of the divergence of Lisp from lambda calcutudriven by efficiency concerns. The of recursion instead
of the Y operator is just the same.

There are major differences: Lisp has objects other tharbeianit has side effects; it can give values names; it uses
applicative order evaluation.

Lisp is unusual for a computer language in that it has symlbolsesponding to lambda calculus variables. In common
with other languages, though, it has numbers and lists (gstather types), which do not appear in pure lambda
calculus. Though such things are representable in puredarodiculus (see, for example, Church numerals, later) it
is somewhat involved, so for efficiency these are primitindsisp.

Side effects are like the functionc where
(setq n 0)
(defun inc ()

(setg n (+ n 1))
1)

26

Callinginc has the side effect of updating the variableSide effects are sometimes useful: for exampleptire
function has the side effect of updating the contents of thee!

However, side effects breakferential transparency An expression is referentially transparent when its vasue
independent of its environment. Thus any part of a refeatintiransparent expression maybe replaced by something
which is “equal”, and the value of the expression is unchdnge

Thus, in(+ 1 (+ 2 3)) we can replace thé+ 2 3) by 5 giving the equivalen{+ 2 5) . But we cannot
replaceinc in(+ 1 (inc)) toget(+ 1 1) ,eventhouglinc always returnd. Thisis because would not be
updated.

The point of referential transparency is that
equals may be substituted for equals

That is, substitutionality.

This means analysing a program is much easier: the ordenafation is unimportant and side effects do not compli-
cate things. For example, what is the valudlst (inc) (inc)) ?

Quite often, referential transparency is violated by theafglobal variables. This is part of the approach of the cbje
oriented programming style: by keeping state in objectsn@dmking towards referential transparency, which means
we can understand a program just by looking at local sectimotshaving to comprehend the thing as a whole.

When Lisp was first developed, programmers did not have tohevledge of how to program efficiently in a referen-
tially transparent way, so the purity of Lisp was broken, &ssae with thénc example. Nevertheless, even though
we canwrite programs in such a way, we should try to avoid such a figiobal state (the variable in this case).

Avoiding global state turns out to be a good thing generedlyardless of programming language. In fact,
one of the big benefits of OO programming is that it naturallyids global state, bringing OO languages
closer to the referentially transparent ideal. This is tipdwith the idea of software reuse: a module is
self-contained and has no unexpected side-effects.

We have seen how applicative order evaluation means thag aeterms do not translate well into Lisp. Of course,
this is an efficiency issue again, but it would be reasonablyghtforward to change the evaluation in Lisp to normal
order.

4 Modelling Computation using Lambda Calculus

So what can we do with lambda calculus? We have seen how ifropui(ely) be represented as Lisp, but there is also
a lot of other things we can do with it. In particular, we candabvarious aspects of mathematics and computing using
As, and using these models we can prove things about matlsmaati computing. Lambda calculus is a universal
model of computation, that is, any computation that can Ipeesssed using a Turing machine can also be expressed in
the lambda calculus.

27

4.1 Church Numerals

You may have seen set theory being used as a foundation oématits. This starts by the definitions

o 4y
)

o def o1y
3 € 41,9y

The we can define auccessofunction: S(n) = n U {n}. Intuitively, this meansS(n) = n + 1, but we haven't
defined addition yet. ThuS(2) =2U {2} = {0,1} U {2} = {0,1,2} = 3.

Addition is a defined inductivelyn + 0 = n andn + S(m) = S(n+m). S02+2 =24+ 5(1) = S2+1) =
S(2+5(0)) =S(S(2+0)) =5(5(2)) = S(3) = 4. We need to prove the various facts we expect of addition, e.g
n+m =m+n,n+(m+n) = (n+m)+n, andindeed(n) = n+1 (sincen+1 =n+S5(0) = S(n+0) = S(n)).
Next we can define other operations like multiplication argamentiation. At each state we must prove that these
operators have the properties we expect of them.

Pairs can be defined &s,b) = {a, {a,b}}. This has the expected property tiiatb) = (¢, d) impliesa = ¢ and
b = d. For considefa, {a,b}} = {¢, {c,d}} and suppose # c. Then we must have = {c, d} andc = {a,b}. So
a = {{a, b}, d}, which contradicts the axiom of foundation. &e= c. Then{a, b} = {¢,d} = {a, d}, whenceb = d.

Exercise: find and fix the hole in this proof.
Answer: What if a = b?

Using integers we can define rationals as (classes of) fairtegers. For example, the pdir, 2) could be a represen-
tation of the fractiorl /2. Again, we need to define addition and so on for our fracti¢nsh) + (c, d) = (ad+ be, db).
Real numbers can be defined as (classes of) sequences aflstithen complex numbers as pairs of reals. Every
time we must include proof that the definitions are workindlwe

We shall now that we can use lambda calculus in place of setyh&hat is, rather than using sets and set axioms as
primitives, we can usas.

Definition:
0 def Azy.y
1 def Azy. Ty
7 def Azy.z(zy)
3 def Azy.z(z(zy))
n def Azy.x(z...(xy)...)
H./_/
n times
= Axy.x™y.

We use overlines to remind ourselves that they are Churcleralerather than simple numbers.

The alert philosopher should be worried that we seem to begusatural integers in the definitions of
Church numerals. Be assured that things can be formulatedutiany reference to Set theory.

In Set, “n” is “having n things”, while in the Lambda Calculus it is “doingthings”.

28

These numerals are all in normal form. For any tethand M we have
AMN =3 M(M...(MN)...),
n times
which is M applied toN n times. So the Church numefals an “applyn times” operator.

For a number its successol7 is given by
S = AnAzy.z(nxy),

(i.e., applyz n times, then one more time).

Example.
S2 (AnAzy.z(nzy))2
A\zy.z(2zy)
Azy.z(z(zy)) as2zy + z(zy)
3.

Yy Y

In general:

(AnAzy.x(nzy))n
Azy.x(xy)

Azy.x(z™y)) asnzy = "y
Ary.x"tly

= n+1.

Y Y I

Thatis
Sm>-n-+ 1.

We can define addition in terms 6f
A = dmn.mSn,

(i.e., applyS m times ton; which means to add i times) or directly as
A = dmn.Azy.mx(nzy),

(i.e., applyn times, thenn more times) so thatlm 7 > m + n.

For example

A23 (Amn.Azy.mz(nzy))23
Azy.2x(3xy)
A\ry.a?(z3y)
A\zry.z’y
5

Iy Yy I

Exercise: proveAmn = m + n.

Similarly, multiplication is
M = dmn. zxy.m(nx)y,

(i.e., apply “applyn times”m times) so thalim 7 > mn.

29

For example

(Amn.Azy.m(nz)y)23
A\zy.2(3x)y
Azy.(3x)(3zy)
Xy (32) (1)
Ary.a?(2Py
Azy.xby

6

Y Y Y Yl

Exercise: prove Mmn - mmn.
NowmnM »-n(n...(mM)...) =7n"M, so that exponentiation is
H/_/
m times
E = dmn. \zy.nmay.
andEmm = m™.

Sometimes you will see the the definitidh = Azy.yz. Thisalmostworks with 3 reduction, but fails on >4
Az.z #5 1. On the other hand, we do ha¥e.z =, 1, so if we allow ourselveg reduction, we can use this simpler
form for exponentiation.

Exercise: Prove, without using any property of the (normal) integtrat

forall n An0=A0n="n
for all n andm Anm = Amn
foralln,mandp An(Amp) = A(Anm)p

n+0=0+n=n
n+m=m-+n
n+(m+p)=m+m)+p

for all n Mn0=M0n=0 n0=0n=0
foralln Mrl=MIn=mn nl=1n=n
for all n andm Mnm=Mmn nm =mn
foralln,mandp Mn(Mmp)= M(Mnm)p n(mp) = (nm)p
for all n En0=1 n’ =1

foralln >0 E0n=0 0" =

forall n Enl=n nl=n

foralln Fin=1 1"=1

for all n En2=Mnn n2=nxn
foralln,mandp Mn(Amp) = A(Mnm)(Mnp) n(m+p)=nm+np
and so on.

(Of course, those=s above are actualbss). The “cheating” proofs of these go likém 0 = n + 0 = m. However,
we can prove all these equalities without reference to tiherakintegers.

All of this works very naturally in Lisp:

(defun int2church (n)
(lambda (x)
(lambda (y)
(int2churchrec n x y))))

; apply x n times to y
(defun int2churchrec (n x y)
(if (= n 0)
y
(x (int2churchrec (- n 1) x V))))

30

; apply “add 1” to O n times
(defun church2int (n)
((n (lambda (x) (+ x 1))) 0))

(defconstant zero (int2church 0))
(defconstant one (int2church 1))
(defconstant two (int2church 2))
(defconstant three (int2church 3))

And then

; successor
(defun S (n)
(lambda (x)
(lambda (y)

x (0 x) yN)

; add
(defun A (m)
(lambda (n)
(lambda (x)
(lambda (y)

((m x) (0 x) y)))

; multiply
(defun M (m)
(lambda (n)
(lambda (x)
(lambda (y)

((m (n X)) y)))

; exponentiate
(defun E (m)
(lambda (n)
(lambda (x)
(lambda (y)

(0 m) x) V)

(church2int ((E two) three)) ->
8

A rather more elegant definition fant2church

(defun int2church (n)
(if = n 0)
(lambda (x) (lambda (y) Y))
(S (int2church (- n 1)))))

usess

% viz 0

31

Church numerals display an interesting property@érms, namely that their normal forms can be very large.kLoo
at the sequence

which are)-terms of lengths roughly

but whose normal forms (i.e\zy.z(z(x ... (zy)...))) are of lengths roughly

2

9, 22, 922 92

So, while the original lambda terms increase linearly ingtlrtheir normal forms are super-exponential in length.
This shows thah-term can have a normal form that is arbitrarily longer thaalf. Calling this “reduction” is perhaps

a little misleading!

Subtraction comes later: it is surprisingly hard!

4.2 Cons, car, cdr as lambdas

We can make datastructures like lists using the lambda lcalcu

Define thepair
<M,N>= M .vMN,

wherev does not appear free il or N.

Whenever we say “Lefl = blah” what we mean is “l am going to uskas a shorthand for blah”. Thé
is notpart of theh-calculus, but just convenient notation so we don'’t haveritevout the full expressions

everywhere.

Then define
= Axy.A\z.zxy

Ap.p(Axy.x)
= Ap.p(Azy.y)

IV IES e
I

We get

PMN (Azy Az.zxy) M N
Ay Az.zMy)N
Az.z2MN

<M, N>

Y Y I

F<M,N> (Ap.p(Azy.x))<M, N>
<M, N>(A\zy.z)
(AWOMN)(Azy.x)
(Azy.x) M N

(\y.M)N

M

Y Y Y I Yl

32

Similarly,
R<M,N> > N.

Thus we haveP for pair (or cons) F for first (or car), andr for rest (or cdr).

Exercise: Prove<A, B> = <C, D> ifand only if A = BandC = D.

From the positive integers (Church numerals) and pairs,amedefine the negative integers; from these we can define
rationals; and then reals and complexes. Lambda calcuiusepdace set theory as a foundation for arithmetic.

In Lisp:

; cons
(defun P (x)
(lambda (y)
(lambda (z)

((z x))

; car
(defun F (p)
(p (lambda (x) (lambda (y) x))))

; cdr
(defun R (p)
(p (lambda (x) (lambda (y) y))))

4.3 Predecessor and Subtraction

Subtraction of Church numerals would be nice to have, asdsnge take care not to end up with a negative number.
This can be built from a predecessor function, where we défia@redecessor ofto be0.

First we define an operatéf on pairs such that

U<m,n> > <m,n+ 1>
as the idea is to pait + 1 with its predecessat.

We can define
U = \p.P(Rp)(S(Rp)),
i.e, the pair consisting of the cdr pfand 1 plus the cdr of the pagit
Next,
Uw(...U <0,0>)...) = <n—1,n>

N
n > 0 times

But the operator applies something times, so this is

nU<0,0> = <n — 1,7> ifn>0

33

So if we define

D An.F(nU<0,0>)
An.(Ap.p(Azy.x))
(n(Ap-(Azy.Az.zzy) (Ap.p(Azy.y))p) (An.Azy.z(nay)) ((Ap-p(Azy-y))p)))

(Mw(Azy.y)(Ary.y)))

when written out in full, we see that, for example,

D3

Now we can define a form of subtractianuncated subtractionby

T = dmn.nDm,

then

m—-n ifm>n

Tmm = { 0 otherwise

The toaster algorithm. How to make perfect toast when th&t¢éoalways overdoes it by 10 seconds. Get
a second identical toaster. Put bread in the first, wait 10rs#s; then put bread in the second. When the
first pops up with its overdone toast, extract the perfeatlyadtoast from the second.

In Lisp:

(defun U (p)
(P (R p) (S (R p))

(defconstant zerozero ((P zero) zero))

; decrement
(defun D (n)
(F ((n U) zerozero)))

; truncated subtraction
(defun T (m)
(lambda (n)
((n D) m)))

(church2int ((T two) three)) ->
0

(church2int ((T three) two)) ->
1

34

4.4 Equality and Comparison

Now we can test for equality of Church Numerals. Define
Z=E0

so that _
Zn = FEOn

1 ifn=0
0 otherwise
SoZ is atest for zero, where we are usihtp indicate true, and to indicate false. Next,

L = mn.Z(Tmn)

has

Lmn > Z(IT'mn)
Z(m—mn) ifm>n
0 otherwise
if m>n
otherwise
ifm<n
otherwise

—

Ol =l = ol N
o

ThusLmn tests whethem < n.

Now,
Q = dmn.M(Lmn)(Lnm)

has
Qmn > M(Lmn)(Lnm)
MI0 ifm<n
- MIT ifm=n
MOT ifm>n

1 ifm=n
0 otherwise

And soQ is a test for equality of Church numerals. Note that we caast arbitrary\-terms for equality! Since all
Church numerals have normal forms, we could check that wag: rformal form then check fat-equality. On the
other hand¢) gives us a computed value without having to look at the stingabf the terms.

In Lisp:

;=0
(defconstant Z (E zero))
, <=
(defun L (m)
(lambda (n)

(Z (T m) n)))

(defun O (m)
(lambda (n)

35

(M ((L m) n)) ((L n) m)))

(church2int ((Q one) one)) ->
1

(church2int ((Q one) three)) ->
0

45 Booleans

The notion of Booleans can be taken further. For example, axedefine an AND operator
AND = M,
as multiplication does the right thing @nand1.
However, there is an alternative formulation of Boolearad tends to be more useful. This starts with

T = dryx
F = Jxyy

T picks the first, whileF’ picks the second’' M N = M, while FM N = N. Note these are the same as the car and
cdr operators!

Then the Boolean operations are

AND = Mdmn.mnF
OR = Mmn.mTn
NOT = Xm.mFT

This aligns more closely with the way we tend to think of theo®@n operations. lf: is true thenm AN D n is true
exactly whem is true, elsen AN D n is false: ifm is true thenmn F' picks then, otherwise it picks thd’. This is
the view thatn AN Dn is “if AthenB elseF™.

Now we can prove the usual things about Boolean operatkescimmutativity, associativity, idempotency, idenstie
distributivity, de Morgan, and so on.

Exercise: do this.

4.6 Other Datatypes

It is easy to see how we may construct other datatypes. Fon@raa string could be a list of numbers (where a list
is a sequence of pairs, just as you might expect).

Aggregate types can be make out of simple ones using listss@on.

4.7 Control Structures

In Lisp there is no real distinction between program and:dhty look alike. The same is true in the Lambda calculus:
just as data can be modelled byterms, so can program.

Here we model if-then-else:

36

IF = Jm.J\zy.mzy

That's all there is to it!

We find that
IFTMN

Y

(Azy.Tzy)MN
TMN
- M

v

and

IFFMN (Azy.Foy)MN
FMN

N

Y Y'Y

ThusIF BM N acts like the Lisgif B M N)

4.8 Summary

Thus we have built all the constructs we need in a computgulage: numbers, comparisons, recursive functions and
conditionals. This means that we can take an arbitrary dlgorand implement in the lambda calculus, and then use
the tools of reduction to analyse the algorithm.

5 Combinators

The idea of taking operators and giving them names (e.gAtaed M operators on Church Numerals) can be taken
a long way.

The purpose otombinatorsis to package up some useful operators and to do lambda gsal@uitially) without
variables. This was developed by Schonfinkel in the 192@dater by Curry.

A lambda abstraction without any free variables is known esmbinator For example,

S = dxyz.xz(yz) K = \xy.x I=X\cx

These three are not independent, for consider

SK (Azyz.zz(yz))(Azy.x)
Ayz.(Azry.x)z(yz)
Ayz.z

Y Y Y

So
SKK (M\yz.2)(Azy.x)

A2z

1

Yy

In summary,
SKK =51

37

Rather than defining and K in terms of lambdas, we can go in the opposite direction, ave.$ and K as primitives,
forgetting, for a moment, the existence of the lambda cakuThecombinator calculuss defined as strings df's,
K, and optionally's, with parentheses for grouping.

A combinator termis

e ansS or aK or (optionally) an/, or

e (ab) wherea andb are combinator terms.

Thus, for examplel, (SK), ((SK)K), ((SS)(II)) are combinator terms.
As usual, we drop parentheses and associate to the |96 meang(SK)K).

There are a few reduction rules and nothing else:

or, dropping parentheses:
Kab > a
Sabe = ac(be)
Ia > a

where lower case letters represent arbitrary expressibioge that these areot 5 reductions: this isiot Lambda
calculus, but th&€ombinator calculus

Note that the worccombinatornow has two meanings: firstly, &term with no free variables; and
secondly a term as defined above. Usually, you can tell bydheegt, but it is important to know which
you are talking about.

Note that

1. there are no variables;
2. there is nax renaming;

3. there is no substitution.

Just as in the lambda calculus, we uséor a sequence of reductions or reverse reductions.

The reduction rules allow us to prove things like
SKKz > Ke(Kz) =z < Iz,

for all combinator terms;, thus
SKKzx = Ix Yz

so we could us& K K in place ofI. In fact, most definitions of combinators just uSend K, and then definé as
syntactic abbreviation fof K K. We caneither

e choose to havé, K andI and note thab K K andI have the same properties but are not equal (no extension-
ality), or

38

e have justS and K and defind to be convenient abbreviation 6K K.
Another reduction isSTIa >~ Ia(la) > aa, S0SII is like w = Az.zx. And thenSII(SII) > SII(SII)is an
infinite loop, just likeQ2 = ww.

Notice that lambda calculus and combinators are not coelgldte same, since in lambda calculus we peovethat
SKK = I, while the combinator rules don't let us do this.

If we haveX = \z.zKSK,thenXXX > K andX(XX) - SsoX(XX)(XXX)(XXX) > I.But
there doesn’t seem to be a nice combinator-style definibotx.

XX = QraKSK)M\z.xKSK) = (Ar.aKSK)KSK » (KKSK)SK = KKSK = KK so
XXX~ KKX ~ K andX(XX) - X(KK) - KKKSK = KSK > 5.

5.1 Other Properties
5.1.1 Normal Forms, Church-Rosser

Just as in lambda calculus we have normal forms. These ane welon’t have dCab or aSabc to reduce.
For example'S andSK K.

Next, we can prove a Church-Rosser theorem:
if u = x andu > y then there is @ with z > z andy > z.

So again, if a term has a normal form, it is unique. We see fdi(.S17) that normal forms need not exist.

5.1.2 Applicative and Normal Order Reduction

We can reduce inside-out (applicative order) or outsidgrarmal order), just as before. Normal order reduction will
reach a normal form, if it exists.

Example: KI(SII(SII)) = KI(SII(SII)) = ..., for applicative order, whilgI(STI(SII)) = I for normal
order.

5.1.3 Church Numerals

We candefin® = KI,1= S(S(KS)K)(KI),2 = S(S(KS)K)(S(S(KS)K)(KI)),andsoon. Her§(S(KS)K)
is a successor combinator.

More succinctly, letB = S(K S)K, thenm = (SB)((SB)((SB) ... (KI))) = (SB)"(KI).

Note thatBzyz = S(KS)Kzyz = KSx(Kz)yz = S(Kz)yz = Kzz(yz) = x(yz).

Just as for lambda numerals, we find

nFrz =F"x.

Exercise: Define addition, multiplication, etc.

39

5.1.4 Datastructures

Exercise: Define pairs, car and cdr.

5.1.5 Booleans

Exercise: Definetrue andfalsg and the boolean operators.

Answer: T =K, F = KI.

5.1.6 Fixed Points

Let
V =S(S(KS)K)(K(SII))
and then
Y =5VV
has
Ym =m(Ym),

as before. This combinator is derived from Currfy’sWe can use thi¥” in the same way to define recursive functions
and solve equations.

We find

Vin = S(S(KS)K)(K(SII))m
S(KS)Km(K(SII)m)
KSm(Km)(SII)
= S(Km)(SII)

And then

Vmn = S(Km)(SII)n
Kmn(SIIn)
m(In(In))
= m(nn)

So
Ym = SVVm

Vm(Vm)

= m(Vm(Vm))
m(SVVm)
= m(Ym)

5.1.7 Extensionality

The combinator calculus is not extensional. For exam(& K) [z = KKx(Iz) = Kz forall z, butS(KK)I # K
(both sides are in normal form).

Adding extensionality to combinators is much harder thartlie lambda calculus, and involves ideas that we don't
have time for here.

40

5.2 Extended Combinators and Equivalence to Lambda Calculsi

One of the major benefits of the combinator calculus is thdbés not have variables: this makes everything nice
and simple. We want to show that the Lambda Calculus and timeb@@tor Calculus are “equivalent,” in the sense
that they have equal expressive power. To do this we need tielhsombinators asds and\s as combinators, which
requires introducing variables to combinators.

Extending the combinator calculus with variables is easst include symbols like, b, ¢ alongsideS and K. There
are no bound variables and no substitution. The reducti@s are unchanged.

Itis now possible to show that the combinator calculus ugiagS andK (or S, K andl) has equal expressive power
to the lambda calculus.

Theorem: for evenh-term there is an equivalent (extended) combinator term.

Closed\-terms are equivalent to pure combinators.

Translation of combinators ta-terms is simple: use the lambda calculus definitionsSfand K (andI) above:

S = Azryz.az(yz)
K — Azy.x
I — Ax.x

It is easy to see that the behaviour of the translations isdhge as the behaviour of the combinators. After all, that’s
how we started.

combinator A-term
m A M
reduce 0 reduce
n A N

Each reduction in the combinator calculus is reflected bylacton in the Lambda calculus.

Translation of\-terms to combinators is harder. Defileand A by

e A(z,M)=KC(M)forx ¢ FV(M)
e A(xz, MN)=5A(z, M)A(z,N)

e C(z) = z foravariabler

e C(c) = cforaconstant (i.e., onlySs or K's)

e C(MN)=C(M)C(N) application

e C(\x.M) = A(x,C(M)) abstraction

o Alz,z) =

e A(z,c) = Kcfora constant (this is actually a special case of the next rule)
(
(

41

Note thatA(x, M)z = M for any combinator expressia :

A(z,S)x = KC(S)z = KSx = S
Alz,K)z = KC(K)z = KKz = K
o Alw,x)x =Iz =1
(
(

x
A(z,y)x = KC(y)r = Kyzr =y

o Ale, MN)x = S A(x, M)A(z, N)x = A(x, M)z(A(z, N)x) = M N, by structural induction

This is sometimes calledompiling A-terms. If we were proving things, we would now have to finislowsing how
the resulting\-terms behave in the same way as the original combinators.

A-term combinator
compile
M m
G reduce reduce
compile
n

Each reduction in the Lambda calculus is reflected by a réstutt the combinator calculus.

Example. Compilé\zy.y.
ClAryy) =

And Klzy = Iy = y.
Example. Compilé\z.y. This has a free variable.

Chzy) = Az, C(y))
= A(z,y)

And Kym > y as required.

Example. Compile\zy.x.
C\xy.x) =

Il
b
8
o Q

I
=
8

=
&

= SA(x,K)A(z,z)

We might have expected this to produsg but we haveS(K K)I which does not reduce. Note, though, that
S(KK)Ix = KKz(Iz) = K(Iz) = Kz for all z. So, WhileS(K K)I and K have equivalent behaviour, they
are not actually equal. This is lack of extensionality again

42

Example. Compile\z. Mz, wherex ¢ FV(M). This term was important regarding extensionality in thallda
calculus.
CAx.Mz) = A(x,C(Mz))
Az, C(M)C(x))
Az, mz) wherem = C(M)
S A(z,m)A(z,)
= S(Km)I

And S(Km)Iy = Kmy(ly) = my for all y. We might hope that one possible way of adding extensignadit
combinators would be to add the rule
S(Km)I = m

for all m. This new rule does allow us to prove
xm = zn for all x impliesm = n

sincem = S(Km)I = S(Kn)I = n. Though this is not quite what we want. And proving that addtris new rule
is consistent is harder.

The above is just one way of compilingterms to combinators. There have been many attempts teedsrmpilation
rules that produce simpler combinators. Most schemesdant®new combinators, as discussed below.

How can we reconcile the fact th8# K is irreducible in the combinator calculus, whilkryz.xz(y2)) (Azy.x)(Azy.x)
simplifies in the lambda calculus with this equivalence?

SKK Aeyz.xz(yz))(Aey.x)(Azy.x)
reduce [reduce
compile
7 L COmPTe (Myz.(Azy.z)z(yz))(Azy.x)

If the A-term on the right reduces, the equivalence says the conabitem on the left must reduce?

43

In reality, this is not a true picture. It is actually

SKK

nasty«—— (Azyz.xz(yz))(Azy.x) Axy.x)

nasty«—— (Ayz.(Aay.z)z(yz))(Azy.x)

I AT

The A-term on the right compiles to something big and nasty ondfteWhatever it is, it can reduce fo This nasty
thing has the same behaviour&& K, but is not equal to it.

In fact, a moment'’s reflection shows that there cannot be giation scheme that magazyz.zz(yz))(Azy.z)(Azy.x)
to SK K, as the former reduces and the latter does not.

We have equivalence, not an isomorphismZFif: combinator— A andG : A — combinator, then
GF # identity, for exampl&g F(K) = G(Azy.x) = S(KK)I # K.

However, we always find th&@.F(c) = something with equivalent behaviourdo

Note, also, tha¥¥G (L) >3, L for all \-termsL if we allow n reduction, as) reduction says “alk-terms
with the same behaviour reduce to the saxrterm”.

5.3 Combinators for Computation
Turner 1979. Conversion of a program to combinators. Retlueeombinators to execute the program. Extend
combinators with variables, integers, =, cond,Y’, I, etc.

If we let
Fr=S(K(S((S((S(Kif))((S <)(K2))))(K1))))(S(K(S*)(S(S(KS)K)(K((S—)(K1)))))

then
f=YF

is the factorial function. In thisf would be the compilation of tha-term for if-then-else2 the Church numeral;
and=* etc. the Church numeral arithmetic operators. Alterntjwee add these constructs as natives to the language.

44

@\
A
M X
Figure 4: Shared Structure

5.3.1 Hardware Implementations

This idea behind combinator computation is that you can asallel reduction to increase speed of execution. In an
expression like
(IT)(KII)

we can reduce thé simultaneously with thé{ as we know that there can be no interaction between the tws, jpair
any side effects to confuse things. Thus, if we have a compuitie more than one processor, we can trivially increase
the speed of execution by parallel reduction.

Similarly, in S(SSST)(SSST) we know that any reduction of the first part can be mirroredhengecond part, that is,
we can reduce the first as far as we like, and simply copy thdtreger to the second. Computationally, we can go
further: make both partss pointers to ame structureso that reduction of the firg reduction of the second. This
structure sharing reduces space and increases speed again.

This leads naturally to the idea of representiaterms as graphst/ (M x) becomes the graph in Figure 4.
Here@means “apply”.

There were several projects that aimed to implement thesasith hardware. The vision was to gain speed over
conventional architectures from parallel reduction.

ALICE (Applicative Language Idealised Computing Engirggsigned by Darlington and Reeve at Imperial College
in 1981. Intention to implement in VLSI, but only ever usedalete components.

The graph reducer GRIP (Graph Reduction in Parallel) wadsfboin a distributed network of conventional processors.
SKIM (The SKI Machine). For reducing pure combinators.

But there is a problem that all these had, namely quadragicession swell (in the number of abstractions). When we
compile to combinators we find that the size of expressioo& gnmensely. For example

COayzazlyz)) = S(KS)(S(K(KS))(SKS)(S(S(KK)(S(KK)I))

rather than jusf.
If a A\-term isO(n) in size, then the compiled combinator is of@(n?).

Adding a new rule
o A(x,Mz)=C(M),whenx & FV (M)

can help sometimes. We know that. M x has the same behaviour &5 (they are extensionally equal) so we might
as well compile to the simpler form. So adding this rule prekicombinators with equivalent behaviour.

With this rule, we find thaC'(Azyz.zz(yz)) = S, which is considerably better!

45

However, we now also need to alloyreduction in the\-terms. For example:

CAzyxy) = Az, Ay, zy))
= Az, x) by application of the new rule
= T

andzy.zy = Az.(A\y.xzy) >, Az.z. On the other hand, we gé$ ((KS)(S((S((KK)I))(KI))))) without the new
rule.

Exercise: ReworkAzy.y, Az.y, Axy.z, Az.M x using this rule.
Answer: K1, Ky, K, m.

They needed more optimisations to be practical. So theydadplerators likeBabe = a(bc), Cabe = (ac)b and rules

Shared structure helps a little: we have
S(S(KS)(SK(K(SII)))(S(KS)(SK(K(SII))))=SVV,

whereV = S(KS)(SK(K(SII)), is about half the length again (as stored in memory), blitlsé expressions are
larger than they really ought to be.

Another approach is to defimeaching combinators

e S’pabe = p(Sabe) = p(ac(be))
e K'pab = p(Kab) = pa, and

e I'pa = p(Ia) > pa

It turns out that when we use reaching combinators, we ortllirggar expression swell, not quadratic.

5.3.2 Supercombinators and Lambda Lifting

Hardware reduction machines never really took off as thexewapidly superceded by new compilation techniques
based aroundupercombinatoréHughes 1984). These are combinators that do a lot more Wwarkdimple combina-
tors: in essence they are function definitions. For exantipéeprogram

(defun double (a) (+ a a))
(double 4)

We regarddouble as a (super)combinator with a reduction rule

(double n) -> (+ n n)

46

Thinking of combinators at this level is a whole lot easiertlthe low-levelS and K, and is much easier to compile
and optimise.

Compilation of supercombinators requires a technique kraslambda lifting As a combinator has no free variables,
we will have to manipulate code that contains free variatdediminate them before we compile.

For example, inH = Az.y we want to rewrite this using supercombinators, pus$ free inside the lambda and
combinators don't have free variables. We can fix this by

Az.y =g (Au.(Az.u))y = (Auz.u)y

So now we can now writé/ = Gy, whereG = Auz.u iS a supercombinator.

If \z.y =5 Gy appears inside some other lambdla,z(\z.y) =3 Az.z(Gy), say, we can lifty again
Az2.2(Gy) =5 (A\vz.2(Gv))y = Fy,

for the supercombinatdr = (\vz.z(Gwv)). Clearly,y can be lifted as far as we need, until it is bound in sona
we reach the top level of the program.

This idea is used in languages like Haskell and others andéasdoped into a technique used in compilers of standard
languages.

6 Lambda Calculus with Constants

As previously mentioned, this takes the pure {plambda calculus and adds new objects catledstants These
differ from variables in that they cannot be bound. For exiamnwe could have constants 0, 1, 2, .+., Note that
we regard+ as a constant (after all, it is a constant function in the s¢hat its defintion never changes!). Another
example is when we have constattse, false, and, not.

More formally, we could take our definition of the pure lamlnddculus and add to it:
A \-term with constants is defined as follows.

e aconstantis a-term

e avariable is a\-term

e if M andN areA-terms, so i§M)(NV). This is called arapplication

e if M is aA-term andv is a variable, therhv.(M) is a A\-term. This is called ambstraction Here, M is the
body, while v is theformal argument

e nothing else is a-term.
For readability, we shall use infix notation suchlas 2 rather than+1 2, though you will occasionally see people

using the latter. This actually means, of coursel)2, or the constant being applied to the constahtvhich in turn
is applied to the constagt So this is actually the Curried version-6f

Note that the rules for constructingterms do not stop us writing down terms liRe- or +1 2 even if we want infix
notation.

When given a collection of constants we generally have sdteeiar motive lurking about as to what they “really
mean”. For example, we like to think of 0, 1, and 2, as integems+ as addition of them. To capture this meaning
we havej-reduction rules. An example could be the rule

47

n-—+m s n+m
S—— S~——

lambdaterm integer sum

for constants: andm. Perhaps this would be easier to interpret if we wrote
(+n)m >=sn+m

or even
n + m =5 the sum ofn andm

The function over the integers is calledexternalfunction (i.e., external to the calculus), while theeduction is the
internalform, or itsinternalisation

n—+m >=s n+m
N—— N———

internal external

This is actually an infinite number of reduction rules, onedach possible pairing of andm. This is called aule
schema

More generally, we can have multiple functions, and eacld leeir own¢ rule or rule schema. Strictly speaking,
each function has differentd, like 6., J with reductions-;, , -5, and so on.

Example. Constantsue, false, and, not. Reductions

nottrue ;s false
not false >s5 true
false and false ;s false
false and true >~; false
true and false ~; false
true and true =5 true

Again, “false and tru€’ is a notational convenience for ‘g0d false true)”. Combining with 5-reduction we have
>~ 3s5. We find that (Mitschke, 1976)

Let f be an external function on the constants. Then Church-Rbsés for:- 35, -reduction.

Now we can do all the usual stuff like normal forms, which carfduund by normal order reduction when they exist.

More general forms af-reduction allow us to apply functions to closkderms as well as constants. An early example
of é-reduction was used by Church:

CMN >;, true ifM=N

CMN >;, false if M #N

whereM and N are closed\-terms in normal form, and a constant that models a conditional. This only works on
closed normal forms, since
(Azy.Cxy)lI =5 CII =5, true,

while
(Azy.Cxy)II =5, (A\xy.false)I -z false

The power of lambda calculus with constants is that (a) we il computational efficiency of the external function,
and (b) we can mix things as we see fit. For example, have irdage booleans. Or have arithmetic with errors:

48

constantsn for eachn € Z, +, —, *, /, error.

0-schema: as expected fer, —, *, but also

n/m > integer quotient ifn #0

> error if m=0
n+error > error
error +n >~ error
n*error > error

and so on. This all fits together naturally, unlike set thaangre addingrror is somewhat a kludge as it changes the
domains and codomains of all our functions.

7 Typed Lambda Calculus

The lambda calculus, although very powerful, does notyeaflect the commonly held view of a function as some-
thing with a specified domain and range and a rule to get froetothe other. Thus the functiofis 7 — Z : n—n
andg : Z — R : n — n are different, even though “they do the same thing”. The fions

int f(int n)
{

return n;
}
and

double g(int n)
{

return (double)n;

}

are really quite different ag requires the conversion of ant (possibly a 32 bit signed integer) todmuble
(possibly a 64 bit IEEE).

Peculiarities like infinite reductions and functions beamplied to themselves seem a bit strange, and do not fit well
with ideas of set theory. Further, most modern computerdaggs ard¢yped i.e., there is a concept of a type of an
object and this prevents some of the pure lambda calculasideing directly applicable. For example, applying a
lambda to itself.

For some computer languages (like C, Java, etc.) the typds &ne variables: the type of an object in inferred from
the type of the variable that contains it. If you can squeezelgect into arint variable, then what you read of the
the variable is amnt . For others (like Lisp) the type is in the object itself andaaiable can hold an object of any

type.

There arauintypedanguages of course, assembler being one in point. Mordisiymtly, there are untypeligh level
languages, BCPL being the most visible example.

Thetyped lambda calculuattempts to regain some of the classical intuition of funtdiwith types.

49

7.1 Types

Types capture the idea of domains and ranges.

We start with some collection of symbols that we shall esédimic types These symbols are different from the ones
we shall be using for variables.

A typeis defined by

e an atomic type is a type, and

e if « andg are types, the(w — () is a type, called @ompound type

You may like to think of an atomic type as a set, and a compoypel(v —) as the collection of functions from
to 5. For example, the seéf — @ would be the collection of all functions from the integershe rationals.

Alternatively, as some specific collection of functiongy.ea and 8 are groups, ande — [is the
collection of all group homomorphisms fromto 3; or o« and 3 are vector spaces, and — (3 is the
collection of all linear maps from to 3.

Or « andg are Booleans (true or false) and— [is an implication.

One point, to become important later, is thilttypes are of finite lengtlwherea has length 1o« — 3 length 2, and
so on.

As always we drop parentheses:

e o — fmeanda — ()

e a— 3 —ymeanga — (8 — 7))

i.e., associate to the right.

Another common notation for compound typegitsfor a — 3.

7.2 Typedls

We now define the syntax of typed.

For each typev (atomic or compound) we have infinitely many variables, wnv®. The variable)* is distinct from
v?if o # B. In fact, to avoid confusion, we won't even use bothandv” in the same equation. Occasionally we
will use the notation: : « for x.

A typed A-term is defined as follows

e eachv® is a typedhi-term of typea (atomic or compound)

o if Mo~ andN® are typed\-terms of typesy — 3 and3 respectively, therid/®—8 N*)? is a typedi-term
of type 3 (application)

o if 2 is a variable of typey, andM” is a typed\-term of types, then(Az®.M?P)*—F is a typed\-term of type
a — (3 (abstraction)

50

e nothing else is a typed-term.

In the above definitions of typedterms it is important to note that thes andgs stand for arbitrary types, both atomic
and compound. Thug:(@—#) == ya=8)1=3 js g valid application. It is slightly confusing to be usisgy,a both
as an atomic type and as a type variable representing anytiypthis is normal usage.

Notice that in the construction of the abstractighV, the type ofA mustbe a compound type — something, and
the type of B mustbe exactlya. This corresponds to the intuition that a function that safkyuments of typa can
only be applied to an object of type The formM 5N is not a valid typed\-term if o # .

The application rule take¥ ® (if you like, something in the domain se) and a function\/*—# (one of the functions
from o — 3) and produces an object of typgsomething in the range sgj}.

Similarly, abstraction creates a function of type— (which takes a value of type and produces a value of type

To avoid things getting too complex, superscripts are afteitted. Other conventions, such as dropping parentheses,
are as before.

Example. The identity function on (any type, atomic or compound)
Ia — ()\xa'xa)aﬁa
= \%.x
This has typd, : a — a. I, is differentfrom Iz whena # 5.
Thus we can havé,_.s(A\z*.y%)*~F =5 Az*.y” Note that if I, 7 is a valid typed\-term only if o« = 3.

Example.
Kog = (/\Ia.(/\yﬁ.xa)(ﬁﬁa))(aﬁ(ﬁﬂa))
= (AzvyP.pe)e—hoa
= X%yl

when abbreviated. We havé,s : o - f —a=a — (f — «)

Example.

a—B—y

Sapy = Ax Yy P2 x2(y2)

Sapy hastypgla — =) = (@ = f) ma—v=(a— (—17)) = (@a—=p) = (a—=7)).

In the abbreviated form we only drop as much annotation asép khe meaning unambiguous. For exampie.x
is OK, as we can deducer®.x = Az®.z% = (A\z®.z%)*~“. On the other hand\z.z gives us no starting point to
deduce the type af, so this is a bad abbreviation.

Similarly, \x®y%.x = Ax®y®.2% = A\z®(\y?.2*)07 = (Aa®.(\yP .x>)P~>)e=(B=) Onthe other handzy”.z
is not enough.

The process of deducing incompletely specified types ied#@jipe inferenceand is very important in computer
languages, where the habit is to leave as much as possitgecified and let the compiler figure things out.

Given:

e M8 and N we can deduce that the applicatidhN has type?
e (MN%)? we can deduce thdt/ : « — 3
e M>~PN we can deduce thd¥ : « andM N : 3

51

e M8 N7 we can deduce that = ~
e NP andz®™ we can deduce the abstractidn. M has typex — 3

e (\z.M)*—P we can deduce that: o andM : 3.

And so on.

Example. We have sedp = \z“.x. Step by step:

e Thexs must match, s@, = \z%.x%

e [, takesz® and returng®, sol,, has typex — «, orl, = (Az®.z*)* <.

A harder exampleS = \zyz.xz(yz).

As a completely unannotated term we need to make an inigalnagtion. So supposehas typex

Theny must bea — 3 for somes as we have an applicatian. Soyz :

And x must bea — 1) for somey as we have an applicatiarr. Sozxz : ¢

But, also, the applicationz(yz) tells us that) = § — ~ for somey. Soz : « — 8 — v andzz(yz) : v

ThusS = Az ~F=7y2=B2% 22(yz), andS : (a — B —7) — (a —) — a — 7.

7.3 Alpha Renaming

Just as before, but with one wrinkle: the destination véeiaust be of the same type as the source variable. So
Ax®.x =4 Ay® is OK, butAz®.z =, A\y? is not (whenn # 3).

Here is more opportunity for confusion: thetype is not the same as thein alpha equality!

7.4 Substitution

This is quite straightforward, and is defined in pretty mush$ame way as before. The only difference is the type of
the substitution must match that of the variable:

[N /2%)(MP)
The result is of types.

If the type of NV differs from the type of, then[N/x] M is not defined. This never arises in practice, as we can't even
construct a\-term with a mis-typed redex.

7.5 Reduction

We can now defineedex contractumandreductionas before. Similarly, fog normal forms.

It can be shown that il/* >z N7, thena = ~, so that reduction does not change the type bftarm.

52

7.6 Typed Church-Rosser and Normal Forms
Church-Rosser still holds, so we still have unique normahfa But better still, we find that
in the typed lambda calculus there are no infifiteeductions.

This is thestrong normalisation theorem for typedterms

So what abouf)? Look atw = Az.xx. What, possibly, could be the type of? Suppose: has typex, sow =
Ax®.x%x®. But the application:zx tells usae = o« — 3 for someg, asx is a function that takes an argument of type
a. Butthenan =a — = (a— p) - 8= ((a« —) — B) — 8 =...,which is not a valid type. The conclusion
we are forced to make iso is not a valid typed\-term Thus the typed\ calculus simply outlaws, and therefore
also(.

A corollary of the SNT and Church-Rosser is ti@malisation theorem
every typed term has a unique normal form.

To imagine why the strong normalisation theorem might be think of the types involved in a reduction:

MO"PN® »5 PP

Every reduction reduces the length of a compound type, €.¢= § becomess, and a term can’t have an infinite
length compound type or an infinite number of finite length poond types by construction of typedterms. So
eventually we must stop reducing.

We can define ar=3 as before, and now we have algorithmthat will determine equality of terms: simply reduce
both terms until we can go no further and see if the normal fosne the same. There is no non-termination to worry
about.

And what's more, it doesn’t matter if we use applicative ormal order reductions!

7.7 Church Numerals

Typed Church numerals are possible. For each type can defina&,, = Az*~*y*.2"y, a term of typda — o) —
a— a = (a— a) — (a — «a). Then we can define (for eael) addition, multiplication and so on as before. Notice
that we can’t mix numerals of different types. Also, i/ N = M™N we must have matching types farand M,
namelymn, M~ N,

7.8 Typed Combinators

The idea of types translates directly to combinators. Fohea s andy define operators
Kop:a— (B—a) Sapy:ila—(B—17)—((a—p)—(a—7)

or
Kog:a— -« Sag,y:(a—>5—>’y)—>(oé—>5)—’a—>7

without the extra parentheses.

53

Notice that these are separate operators for each conthinatiy, 3 and~, so we will have an infinite number of
operators (one per type, atomic or compound). Reductias rarle

KogMN =M So3,MNL = ML(NL)

whereM, N andL are of appropriate types.
Exercise: Write these out in full with all their types.

Answer:

K207 MNP = M

S0 =)= o Nam a8 (e B o)

Just as for the lambda calculus, types restrict what conttnisaan do. For example, althougl is a simple untyped
combinator with a reductio&’ /= = I, it is much more complicated when typed. In the applicaﬂbj}jﬁ_’alq*v,
we must haver = v — ~ for the types to match. So this is actually

KO=nN=8=r=y =7 . B—~y—n

and this reduces as
KO=N=B=v=y v =78 — 7=
Now, even though” is not “used” in the above, ihustbe of types.

Notice that, as statements in logie,= (6 = «) and(a = (6 = 7)) = ((a = () = (o = 7)) are tautologies,
that is, for every possible true or false valuenoind 3 the implictions are true:

e ﬁ|ﬁ:>a a= (= a)
F F T T
F T| F T
T F T T
T T T T

This is not a coincidence! There is a strong connection batwambda calculus and logic: the Curry-Howard iso-
morphism says that every valid proof of a theorem in logiaegponds to a-term reduction, and vice versa. Thus
there is a link between logic and computation.

There is a closed-term with a particular type only if the type corresponds tbeorem of logic. Sex = 3 = aisa
theorem, corresponding #@. On the other hand there is no closederm of typea — 3 asa = (3 is nota theorem.
(Note that, conversely, given a theorem there is not nedfsaa\-term of that type, e.g((a = 8) = o) = aisa
theorem, but there is no correspondixerm.)

We know that fromn = 3 anda we can deducg: this is just the reduction/*— N = PSI

54

7.9 Typed Lambda Calculus with Constants
We can give types to constants, too. For example, we can ltame steger constant’?, 14, etc., and boolean
constantsrue” andfalse”. Types ofs-rules could be

notB—»B andB—»B—>B
_|_Z~>Z~>Z *ZHZ‘?Z

error? equal—%—8

And so on.

7.10 Polymorphic Lambda Calculus
Also calledsecond order typelhmbda calculus. This promotes types to first-class stahdallows them to be bound
in As.
The identity function/,, is defined
I, = %2
with typea — a. Now, as always/, # Ig whena # (3, but there is no essential difference between alllgiethey
are all an identity. The problem is that the type system isifigy us to define a separafg for eacha.
Compare this with a similar situation in C (Note! The followiis actuallyoverloading but we shall momentarily

blur over this for the sake of an example)

int idint(int v)

{
return v;
}
double iddouble(double v)
{
return v;
}
n = idint(1);
X = iddouble(1.0);

There is no essential difference betweédimt andiddouble , but C's type system makes us write out the same
function twice, and with different names. IntG- there is some help in this direction, as we can write

int id(int v)

{

return v,

}

double id(double v)
{

55

return v;

}
n = id(1);
X = id(1.0);

and the compiler can work out from the context by type infeeawhichid we mean when we use it. But we still are
writing the same code twice. SoiG- introduced the idea dEmplates

template <class T>
T id(T v)
{

return v,

}

id(1);
id(1.0);

Now T is a type variable (just like we have been usigand the G-+ compiler again works out what we mean from
the context.

Java has a related thing callggneric typesbut with the usual kludges. Thusst<Integer> is OK, but
List<int> is not.

Of course, Lisp programmers don’t even realise there is@areibere and write
(defun id (v) v)

This last function igpolymorphic A polymorphic function doesn’t care about the type of itguanents but does the
same thing regardless. Thus, fleagth function is polymorphic for lists as it does not care what tyyees of the
objects in the list are. Similarlgons does not care what it is making a pair of.

The opposite of polymorphic imonomorphic

Note that+ is not polymorphic even though we write+ y regardless of the types afandy. This is because if we
were to look inside the definition of, the code to add two integers (say as 32 bit representai®nsjte different
from the code to add two floating point numbers (say as 64 bitesentations). This is calleaerloading For
example, the (non-templat®) in the G-+ above is actually overloaded as we could have different bodies for
each type. You can't properly do polymorphism in G/€/Java without breaking the type system.

On the other hand, polymorphic functions just don’t carewaltioeir arguments.

Back to lambda calculus. We would like ofyf to be polymorphic, but the standard typed lambda calculustiet
us. Thesecond order typed lambda calculinsroduces polymorphism.

We may define
I=At)\tz

wheret ranges over all possible types. The capitaindicates a type variable, while the smallis for the usual
variables. And now
Iz -5 x“

56

whatever thex. The type off is written
Vit —t

namelyt — ¢ for all typest.

We could at this point define the syntax for polymorphic typeesibda calculus, but instead we shall just use our
intuition. In particular, in the application
(At z'.z) M

we see that we shall have to do substitutipng] and[M /z].
A polymorphic function can bastantiatedat a type:
Ia] = Aa®.x
andI[a] : @ — a is @ monomorphic typed-term.
Example.

To = Af*7%2% f(fx)

T, has typela — a) — a — «, and takes a functioyf of typea — « and returns the function that jsapplied
twice. We can define a polymorphic
T = AtAf' 2t f(fx)

andt is a type variable, whilg andx are normal variables. The type ofis

T:Vt.(t —t)—>t—t

Example. We can define polymorphic Church numerals
n= Atz 7yt 2"y

with typeVvt.(t — t) — t — t, and polymorphic operators to add, multiply and so on. T inore natural way to
define integers tham,, as there is only one kind of integer (not one per type), angtiigmorphicr can be applied
to any function

nMYTYN® = M"N

Example. Polymorphic combinators. We have séaiready.
K = Ast z®y'.x

with typeVst.s — t — s, and
S = Arst \x" 757y T w2 (y2)

with typeVvrst.(r — s —t) — (r —s) —r — t.
Thus polymorphism regains us some of the flexibility thatuhgyped lambda calculus has.

The notion of polymorphism is widely used in computer largesgas a means to reduce the amount of code you you
have to write. An additional benefit is your compiled progrstmuld be smaller, too. In certain languages, e.g., Lisp,
it happens naturally. In some, such as C and Pascal, it isreitbakly or not supported. In others, such as{Cthere

are curious syntax wranglings to make it appear possible.

57

In fact, C++ cheats and uses overloading. If &€ compiler comes across a definition likle above,
and then a usel(1) , it effectively writes out the code

int id(int v)
{

return v;
}

and compiles and uses that. Each ticheis used on a new type it writes out the whole function agaih wit
the appropriate types inserted. This means that there isa® sharing going on at all. The programmer
does get the benefit of writing the source just once, though.

7.11 Conclusion

We do lose some things, of course. We can’t apply a functiatsédf: think of the type that such a function should
have. Thus we lose things like thé operator and guaranteed fixed points. Recursive functiomg@nerally not
possible: a recursive program could loop forever, but wet teave non-terminating reductions.

There are many extensions, for exampieduct typesGiven typesy and we can form a new type with nanaex 3
(just as previously given typesand(we formed a new type with name— (3) together with projection and pairing
operations. This is the natural way of thinking about pafrelgjects. For examplé2, 3.4) has typeint x double.
A function of two objects can be expressed as a function ofgaie is f(z, y) a function of bothz andy or of the
single(z, y)? Product types are available in G/&- usingstruct

struct prod {
int a;
double b;
}

and Java usinglass

class prod {
int a;
double b;
}

Currying can now be expressed using product tygesx 5) — v vsa — 8 — ~, or in a rather more suggestive
notation:y*# vs (y4),

There are alssumtypes,a + (. This is something that is am or a 3 (but not both). C/G-+ has sum types using
union

union sum {
int a;
double b;
}

58

An element of this type can store art or adouble , but not both at the same time.

Much fun can be had deciding whether equationsdike (8 + v) = (a x 3) + (a x) hold in your system for all
typesa, 5 and-y.

For example, is the type

struct T1 {
char a;
union {
int b;
double c;
Py
|3

the “same” as the type

union T2 {
struct {
char a;
int b;
} s1;
struct {
char a;
double c;
} s2;
3

?

Of course, the answer depends on what you mean by “the samelyhat properties of the types you are considering.
Polymorphism is not the end of the story. Consider the famdgfi . It certainly has type3 — something, so why not
regard it as polymorphic with typét. B — t? Well, consider the perfectly valid Lisp

(if (foo) 1 1.0)

This does not return an object of a fixed type. Sometimesutrmstanint , sometimes alouble and so is not of
the typeVi.B — t. One solution (as used in ML and Haskell, below) requireswitebranches of th# to be of the
same type

if foo() then 1 else 1.0

would beinvalid, uncompilable code. Perhaps sum types can be empldfed: Vs, t.B — s + ¢, but this gets
unwieldy very quickly. The other solution, as adopted bypl.is beyond polymorphism.

The hierarchy does not stop with second order types as therkigher order: we can haw#assesof types, for
example we can havdumwhich containghar , int anddouble . Then we can talk about thindar all numeric

types

59

8 Functional Programming

Some people were unhappy with procedural languages siagatk so hard to understand and compile. The presence
of side effects means that certain optimisations cannotdgerand compilers can't produce perfect code.

These people argued that if you disallowed side effects ydcget a faster running program. Also, because of
referential transparency, programs would be easier tewariid debug though natural use of modularity. Thus was
born the functional style.

The functional style of programming is one that emphasisegvaluation of expressions rather than the execution of
commands. A functional programming language is one thgi@uip such a style.

You can program, more or less, in a functional style whatdwetanguage, but some languages actively
help you. For example, higher order functions are prettyhmexessary to program in a functional style.

This contrasts the C

sum = 0;

for (i = 0; i < 10; i++)
sum += i;

with, say,

(reduce + (intlist 0 10))

whereintlist would be a function that produces a list of integers, edtice a function that repeatedly applies
a function to a list.

Outline implementations (not complete!):

(defun intlist (a b)
(if (< ab)
(cons a (intlist (+ a 1) b))
0)

(defun reduce (f I)
(if (= (length 1) 1)
(car 1)
(f (car 1) (reduce f (cdr 1)))))

Notice the compactness of the functional version, and &agse of higher order functionseduce). Thepurefunc-
tional programming style also rejects the use of assignsnékesetq or=in C. This is for referential transparency:
when you see a variable (in a given block, or, in lambda caktérms, within the scope of a lambda) it always has
the same value.

In the functional style, variables do not vary!

We note at this point the difference betwdandingandassignmentAssignment is the traditional way of updating
the value of a variable

60

X T 7 a2 X 77| 23 e
variable memory assignment overwrites
cell value .
X 23

binding makes nev
association

Figure 5: Assignment and Binding

(setq x 3)

and does not have a lambda calculus equivalent. On the adhel hinding is the direct equivalent of a bound variable
inaA:

(let ((x 3))
)

The binding has the limited scope of the body, and the vaiald independent of any other variables presently named
x (when using lexical scope).

In a C-like language this becomes:
x =3

for assignment and

int x = 3;

for binding. The syntax in C tends to obscure the difference.

In assignment, an existing memory location is updated. ihdibg a new memory location is associated with the
variable name and it is initialised with a value: nothing v&iwritten. This is the essence: assignment destroys the
old value, while binding is non-destructive. With bindirgetold variable-value association can be retrieved.

Notice the relationship betwedst andlambda
((lambda (x)
)
3)

does exactly the same as fee above. In fact, some Lisps implemdat in just this way!

It may seem weird to outlawetq , but if you think truly in the functional style, you discovirat you rarely need it.
There are occasions when you do, of course, but these aryidumto efficiency concerns, or it makes your program
justtoo contorted to avoid it.

61

Sometimes it is good to ugmto , too!

Of course, Lisp was the first language that was extensivedg tsexplore functional ideas, though other specifically
functional language sprang up, e.g., ML, Miranda, Haskell.

The Haskell designers also wanted to support normal ordeictsn, but we know that isn’t very efficient. So instead
they usdazy reductionalso known agall by need This is like normal order in that you do not evaluate argutsien
but if we do evaluate an argument we remember the result and reuse lite Bibisence of side effects this is identical
to normal order reduction.

The opposite of lazy ieager Closely related terms argrict, for languages that always evaluate arguments; and
non-strictfor those that don't.

Example. Suppose we had a Lisp with lazy evaluation. Then

(defun hi ()
(print "hello™)
7)

(hi) ->

hello

7

(defun lazy (a b)
a)

(lazy 9 (hi)) ->
9

The call tohi is not expanded.

(defun lazy2 (a)
(list a a))

(lazy2 (hi)) ->

hello
(7 7)

The call tohi is expanded just once. In a pure normal order reductior{ife would be evaluated twice in the
expansior(list (hi) (hi)) andhello would be printed twice.

In

(defun loop () (loop))

(defun foo (n) 42)

The function call(foo (loop)) will return 42 even thougloop would never return if we called it. This is a
direct equivalent of Az.y)S2.

62

Exercise: (difficult) Write down a Lisp expression that prirdpplicative if it is evaluated applicativelyazy if
evaluated lazily, andormal if evaluated in normal order.

Answer:
(setq n 0)

(defun inc ()
(setqg n (+ n 1))
n)

(defun foo (a)
(setq n 10)
(if (= a 11)
(if (= a a) "lazy
"applicative"))

normal™)

(foo (inc))

The idea behind lazy evaluation is that you only executegleapressions that are actually needed. If an expression is
never needed, you don’t waste time executing it. You get tfi@ency of single evaluation you get from applicative
order, but you get the semantics of normal order.

In practice

o the overhead of lazy evaluation (carrying around expressietc.) is pretty high
¢ the overhead of checking an expression to see if it has alfeaeh evaluated is non-trivial

e most of the time youwlo require the value of most expressions so you don't gain asiraag/ou might think
from less re-evaluation.

So lazy evaluation does not gain you much in terms of speeldels give you the semantics of normal order reduction,
though.

It does allow you to prograrimfinite data structuregnote: this program won'’t work in normal Lisps!)

(defun intlist (n)
(cons n (intlist (+ n 1))))

(setq I (intlist 0))

(car (cdr 1)) ->

1

This is because the call tatlist in (setq | (intlist 0)) is not evaluated until needed. When we do
(cdr 1) this expands intgcdr (cons O (intlist 1))) which evaluates tdintlist 1) . And then
car of that expands again {gar (cons 1 (intlist 2))) which gives us 1.

Thus(intlist 0) has all the properties of the infinite list

0123456 ..)

without, of course, taking up an infinite amount of storage.

63

8.1 ML

Roughly speaking, ML (fometa languaggis a typed version of Lisp, though with a decidedly hardertay. Simi-
larly, it uses eager evaluation. You can run ML on the BUCShireaes by typingsml

midge:1 % sml

Edinburgh Standard ML (core language) (C) Edinburgh Univer sity

- 1+2;

> 3 :int
- D

ML exit

As with Lisp, this is a read-eval-print loop: type an expiessit reads, evaluates and prints the result. The a
prompt, while the> introduces the result.

A very brief introduction.

e Variables
- val x = 5;
>val x =5 :int
- X
> 5 int

Everything gets annotated with its type.

e Functions
-fun f x = 2 =*x;
>val f=1fn:int > int

Note that ML has inferred the type bffrom the2x x. Herex must be of the same type 2snamelyint . And
thenf returns arint .

Arguments must have the right type

- f(1.0);

Type clash in: (f 1.0)
Looking for a: int

| have found a: real

e Local Variables

-letvaly = x+1 in 2 *y+3
= end;
> 15 : int

The=is a continuation prompt.

e Type Inference

64

- fun add x y = x+y;

Type checking error in: (syntactic context unknown)

Unresolvable overloaded identifier: +

Definition cannot be found for the type: (‘a * 'a) -> 'a

ML cannot work out what typadd should be. It use® for «,’b for 3, etc., as type variables. It can figure
out thatx andy must be of the same type, but no more than that.

- fun add (x:int) (y:int) = x+y;
> val add = fn : int -> (int -> int)

Annotating some types helps ML. We could actually do

- fun add (xint) y =x+y;
> val add = fn : int -> (int -> int)

ML works out the type ofy by type inference.
Notice thatadd is a function of one variable, returning a function of ondale.

- add;

> fn :int -> (int -> int)
- add 3;

> fn :int -=> int

- add 3 4;

> 7 :int

Note the lack of parentheses in the calboid .
ML does allow functions of more than one argument

- fun add2(x:int,y:int) = x+y;

> val add2 = fn : (int * int) -> int
- add2(1,2);

> 3 :int

Actually, it doesn’t: the parenthes@s make a pair of their contents, $b,2) is a single object of type pair
ofint orint * int . Thisis an example of product type

Note that writingadd(1,2) is an error: you are passing an object of type * int to add, which is a
function of typeint -> (int -> int)

- add(2,3);
Type clash in: (add (2,3))

Looking for a: int
| have found a: int * int

Lists

- [1,2,3];
> [1,2,3] : int list

All the elements in a list must be of the same type. We ta/gl , null (test for[]), aninfix:: for cons

65

-1 [2,3];
> [1,2,3] : int list

Notice thelist here is acting like a function on types: it take a type andrreta new type that is lists of that
type. This is called #&pe constructara fancy name for a function from types to types.

Lambdas

- fn xiint => x+1;
> fn : int -> int

Asin Lisp,fun f x ... isthe same agal f = fn x => ...
Conditionals

-val x =if 1 = 1 then 2 else 3;

>val x =2 : int

The values in each branch must have the same type

- if 1 = 2 then 3 else 1.0;

Type clash in: (if (1 = 2) then 3 else 1.0)
Looking for a: int

| have found a: real

Booleandrue andfalse

- true;
> true : bool
- not true;

> false : bool

Recursion

- fun fact n = if n < 2 then 1 else n *fact(n-1);
> val fact = fn : int -> int

- fact 10;

> 3628800 : int

No need forY". The existence of recursion shows that ML is not a faithfotiigon of the typed lambda calculus.

Polymorphism.
Functions likehd, tl and:: are polymorphic, as they can be used on all list types

- hd;
> fn : (a list) -> 'a

The type ofhd uses the type variable. The empty lisf] has typ€a list , butitis also possible to have
empty lists of any type, which causes some peculiarities:

66

- val nilint = tl [1];

> val nilint = [] : int list

- val nilreal = tl [1.0];

> val nilreal = [] : real list

- nilint = [];
> true : bool
- nilreal = [];

> true : bool

- nilreal = nilint;

Type clash in: (nilreal = nilint)
Looking for a: real

| have found a: int

Now,

X;

- fun id x =
=fn:’'a->"a

> val id
defines a polymorphic identity. Further

- fun K x y = x;
>val K=fn:'a-> (b ->"a)

defines a polymorphi&’.

- K 7;
> fn :’a -> int

ML always usesy as the first free type, thef, and so on, so we don’'tgét : 'b -> int as we might
have expected.

- K 7 8.0;
> 7 :int

You may define your own datatypes:

- datatype Bool = True | False;
> datatype Bool = False | True
con True = True : Bool
con False = False : Bool
- True;
> True : Bool

The symboldrue andFalse are now constants of tyfgool , and there are no others of tyBeol . If it were legal
code, we might have definéct as

dataint .. | 2] -1]0]2]2]..

Our types are just as good as built-in ones:

67

- fun Not b = if b = True then False else True;
> val Not = fn : Bool -> Bool

- Not False;

> True : Bool

Currying in ML:

- fun curry f = fn x => fny => f(x, y);

> val curry = fn : ((a * ') ->'c) > (a -> (b -> 'c))
- fun sum(x:inty:int) = x+y;

> val sum = fn : (int * int) -> int

- val csum = curry sum;

> val csum = fn : int -> (int -> int)

- csum 7,

> fn @ int -> int

- csum 7 11,

> 18 : int

And back again:

- fun uncurry f = fn(x,y) => f x vy;

> val uncurry = fn : ('a -> (b -> '¢)) -> ((a * 'h) -> 'c)
- val add = uncurry csum;

> val add = fn : (int * int) -> int

- add(2,3);

> 5 @ int

Most of the time we don’t need to annotate types as ML can fithem out bytype analysisi.e., going through the
expression and determining what types everything must beod@asion, though, it needs a hint as to what we mean.
For example, you can't deduce types foandy in “z + y" as the+ operator is overloaded and can take arguments
of many types. On the other hand, from 4 1” we can deduce: must be an integer since the two arguments- dr

ML must be of the same type: there is no automatic coercion.

There’s a lot more to ML than this, in particular, definitiop pattern matching, abstract types, type constructors and
exceptions.

8.2 Haskell

A typed language with a syntax not unlike ML, but with lazy exadion. As previously mentioned, lazy evaluation is
an attempt to combine the best features of both applicatiifieiency) and normal (good semantics) order reductions.
“Haskell” is named after Haskell Curry.

Runhugs (Haskell User's Gofer Systgma Haskell interpreter

midge:22 % /u/ma/s/masrjb/Hugs/bin/hugs +t

W IIT T ||_|| Il _Hugs 98: Based on the Haskell 98 standard
| | 1 Copyright (c) 1994-2001
[1-I| _ World Wide Web: http://haskell.org/hugs

68

Il Il Report bugs to: hugs-bugs@haskell.org
[| || Version: February 2001

Haskell 98 mode: Restart with command line option -98 to enab le extensions
Reading file "/u/ma/s/masrjb/Hugs/hugs/lib/Prelude.hs
Hugs session for:
/u/ma/s/masrjb/Hugs/hugs/lib/Prelude.hs

Type :? for help

Prelude> 1+2

3 : Integer

Prelude> :quit

[Leaving Hugs]

Hugs requires definitions to be modulesIn a file Egs.hs put

module Egs where
{- this is a comment -}
inc x = x+1

and load into Hugs by
> :load Egs.hs

The 'E’in module Egs where mustbe upper case.

You can reload a module after changing it by
> :reload Egs.hs

or simply

> :reload

will reload the last module again. Definitions must be in nmedubut we can type expressions to be evaluated at the
prompt. Below we shall mix definitions and evaluations, but ynust separate them when actually using Hugs.

Haskell does everything ML does and more. Functions areeattfiy equations

inc x = x+1 -- definition in a module
> inc 3 -- typed in at prompt
= 4 : Integer -- result

which is short for
inc = \x -> x+1

with \x for Az. We can find the type of an object in Hugs by usihg

69

>t inc
= inc :: Num a => a -=> a

This can be read asy € Num.cv — «, which is to say “for all numerical types . ..". Haskell ldasses of typesvhich
are types of types, i.e., second order types. This is coadetith object oriented ideas. The cldésmcontains the
typesinteger , Float andDouble amongst others. These types are also in the @adsof objects that support
comparison, i.ex<. Use, e.g.;info Ord to see details of a class or any other object.

For

positive x = if x > 0 then True else False

or

|
x

\Y
o

positive x =
We get

> 't positive
= positive :: (Ord a, Num a) => a -> Bool

This is typeVa € 0rd N Num.cw — Bool. So this works for any numeric type that also has compariseea(l that
complex numbers don’t have comparison).

This way of defining functions extends:

len :: [a] -> Integer

len [] =0
len (x:xs) = 1 + len xs

The first line declares the type of the polymorpleic , while the others give the value &n of an empty list, and
len of a cons (Haskell uses infix for cons). This is an example of definition by pattern matghin

> :t len
= len :: [a] -> Integer

Here[a] is “list of o”. Asin ML, the empty list[] has typda] , whiletail [1] has typgInteger] , which
is not the same asil [1.0] of type[Double] . Sometimes.

Once given a value, a symbol cannot be reassigned (withindulap

X 1

X 2
ERROR haskell.hs:17 - "x" multiply defined

though it can be locally rebound

>let x =11in 2 *x+1
= 3 : Integer

70

The only way to change an assignment is to edit the module elodd it. This is so Haskell can have referential
transparency.

One of the important differences between ML and Haskellas Haskell is lazy:

from n = n : from(n+1)
> :t from
= from :: Num a => a -> [a]

This definedrom as a function returning an infinite list of numbers startirgin.

ints = from 0

> it ints

ints :: [Integer]
head ints

0 : Integer
head(tail ints)
1 :: Integer

v i v i

The map function acts as in Lisp and ML, taking a function and a listl applying that function to the values in the
list:

sqs = map (\x -> x *Xx) ints
> head(tail(tail sgs))
= 4 : Integer

Infinite loops:

loopy :: a -> a
loopy n

Names starting with capital letters are special in Haskédhy,

> k 1 (loopy 0)
= 1 : Integer

while

> k (loopy 0) 1

goes into a busy loop. HIC to interrupt.

Again, there is a huge amount of Haskell we have omitted tardes modules for structuring progranmapnads
(special structures that facilitate programming kindshofigs that are traditionally difficult in pure functionahla
guages, like state and 1/0), object orientation and clastgges, and more. It is claimed that some compilers for
Haskell produce code that is equal in speed to that from a Grano even though you have the power of functional
programming. It doesn’t seem to be about to replace traditianguages, though.

71

8.3 SECD and FAM

Rather than make hardware run functional languages natBEICD, CEK and FAM were attempts to give program-
ming languages that would efficiently implement functioo@hcepts.

These languages are quite low level, and can be thoughwiftaal machinesThe idea is that just as von Neumann’s
5 box model is a virtual machine for conventional languagempile to, so should these should play the same role
for functional languages. If you can efficiently compile say, FAM, and FAM is sufficiently low level that it can
be efficiently implemented on a real machine, then your lagguwill run efficiently on a real machine. FAM was
designed to implement ML.

As a language, FAM is quite low level like an assembler, agsttibes things like stacks, frame pointers and program
counters. However, the objects it acts upon are things lidsuces and functions. Abstractly, the machine state is
represented by a 7-tuple

(AS,RS,FR,PR,TS,ES, M)

for references to the
e argument stack
e return stack

e frame

program

trap stack

environment stack

e memory

Various operations change the values of these in given veags, push a value on to a stack. Precise semantics are
given for say, how to look up the value of a variable in the emwinent stack. Similarly, rules of how to compile ML
statements into FAM are given.

SECD (Store, Environment, Control, Duhwas one of the first virtual machine designs (1964). The YawiablesS,
E, C andD describe the state of the virtual machine. CEXoftrol, Environment, Kontinuatigwas designed in the
1980s as upgrade of SECD. It includeahtinuationsthat is an explicit notion of program control which unifids a
the ideas of jumps, loops, recursive functions and so on.

Seehttp://www.cs.nott.ac.uk/ ~gmh/faq.html for more information on functional languages.

9 Related Stuff

e type theory
e rewriting

e process calculi: CSP, CCg;calculus, ambient calculus. Where the subject of dis@igghe interaction
between processes

e logic
e category theory

e foundations

72

