
CM20167: Programming III

Russell Bradford

1 Introduction

1.1 Woffle

This course is regarded by some as “difficult”. The principalreasoning behind this seems not to be the nature of the
content, but rather the fact that you, the student, is expected to do some of the work for yourself.

This is not a course where you can attend the lectures, leave the coursework to the last moment and hope to understand
what is going on. You are now a 2nd year University student andshould not need handholding through every step of
the learning process.

You, the student, need to be involved in the learning process.

This is just newspeak for “you need to get down and do some work”.

I expect you to go away and do things for yourself, in particular the bulk of learning about Lisp, the language we shall
be highlighting in the course. This is all part of your “learning how to learn”. After all, in a business environment, you
will be given a problem to solve and then largely left to your own devices. Part of this course is for you to learn the
skills you will need to do that.

1.2 What is the course about?

The gap between theory and practice. How does the stuff on computability and decidability tie in with real program-
ming languages?

You have seen

• Assemblers (unstructured)

• C-like languages (procedural)

• Java or C++-like languages (object oriented)

• Perhaps Prolog (declarative languages)

• Event driven, such as used in User Interfaces

Next on the list is

• Lisp-like languages (functional)

There are four main aspects to this course:

• Practice: Lisp programming,

1

• Theory: Lambda Calculus (and more),

• The link between the above,

• Introduction to other functional languages.

No one style of programming is suitable for all jobs. Beware the person who says that “Java is the only language I
need”, as this is a sure sign of a bad computer scientist. Compare this with a plumber who says “A hammer is the only
tool I need”.

So:

Use the right tool for the job.

One of the main points to this course is to introduce the functional style. This style is not suitable for every pro-
gramming task, but it is another string to your bow that you can employ when appropriate. Even if you can’t use a
functional language for a project, many of the concepts transfer to other styles of programming and will improve your
programming in that style.

This course is 25% coursework and 75% exam. The coursework will be a programming exercise in Lisp.Don’t leave
the coursework until the last moment. There is a lot of “culture shock” involved in learning Lisp (or any functional
language) for people who have only encountered the OO or procedural styles. They spend more time trying to program
Lisp in a procedural style than learning the new style and this just doesn’t work.

You will need to learn a new style of programming.

Trying to force the old style is counterproductive. The moreopen you are to new concepts, the easier you will find this
course.

Some small easy exercises have been prepared for you to try: seehttp://www.bath.ac.uk/ ∼masrjb/CourseNotes/
cm20167.html

Do these exercises. It will pay you back multifold in the longrun, and not just in this course.

This web page also contains other items of interest regarding Lisp and Lambda Calculus. Do read some of the articles.

1.3 Books

For lambda calculus.

• H P Barendregt “The Lambda Calculus” Exhaustive, high level.

• J R Hindley and J P Seldin “Introduction to Combinators andλ-Calculus”

• The Web

For Lisp/Scheme.

• Abelson and Sussman “Structure and Interpretation of Computer Programs”

• a million books on Lisp

2

• http://www.bath.ac.uk/ ∼masrjb/Sources/eunotes.html

• http://www.bath.ac.uk/ ∼masjap/TYL/

“ Lisp is worth learning for the profound enlightenment experience you will have when you finally get it;
that experience will make you a better programmer for the rest of your days, even if you never actually
use Lisp itself a lot.”

Eric Raymond, ”How to Become a Hacker”.

2 Lisp and Scheme

2.1 A Brief History

Early history.

• Developed in 1956-1958 by John McCarthy. First “official” release 1959. Only Fortran and Algol 58 older.

• Symbolic processing oriented, not numerical.

• For the IBM 704. This had a 36 bit word and 15 bit registers in a 15 bit address space.

• List processor. 15 used to point to object, 15 bits used to point to rest of list. Usedaddress registeranddecrement
registerrespectively.

Note this the first hint of the functional style. A list is (a) empty, or (b) an object and the rest of the
list. A recursive approach (or inductive, for the Mathematicians) is central.

• Wanted higher order functions, adopted Church’s lambda calculus to notate functions.

• Natural use of recursion.n! = n× (n− 1)!

• Simple syntax: program and data look the same “parenthesised prefix”

• So programs can read and manipulate programs

• The eval function takes a piece of data (i.e., a list data structure) and executes it as a program.

• Thus can write a Lisp interpreter in Lisp.

• Garbage collection, so no worries about memory allocation in lists, etc.

Lisp has flexibility. Many new ideas tested in Lisp before becoming integrated in other languages. E.g., object oriented
techniques. All modern languages have something borrowed from Lisp.

Lisp diaspora. Common Lisp and Scheme. EuLisp. (ISLisp, Dylan, Java, Perl).

Lisp vs. Scheme.

2.2 Basic Introduction

BUCS:drscheme , euscheme .

3

Lambda Calculus
Church 1930s

Lisp 1
McCarthy 1959

Lisp 1.5 (1960) Lisp 2 (disaster)

Lisp 1.8+0.3i (~1970)

YKT Lisp

Lisp/VM

Cambridge Lisp

Cambridge Lisp
(Bath/Cambridge)

CSL

Standard Lisp

Standard Lisp
1976

1968

BBN Lisp
Stanford Lisp

IBMDEC 10

UCI/Rutgers

VLisp

LeLisp
PSL

CPSL
(closures)

EuLisp 1990
(lex, closures)

(lex, closures)

SchemeZetaLispNILSpice
(lex)

Franz

MacLisp

MacLisp

InterLisp
(closures)

InterLisp

(DARPA)

Common Lisp
book 1

(lex, closures)

Common Lisp
book 2

(lex, closures)

AllegroKCLLucidetc

OakLisp

R Scheme
n

Xerox

IBM

(speed) (semantic purity)

AI Symbolic Algebra

4

2.3 The Functional Style

• Functions as objects (first class objects)

• Recursion rather than iteration (e.g., traversing a tree)

• Avoid assignment (setq), use binding (let)

• Datastructures ”in the whole” (map)

• Avoid side effects (referential transparency)

3 Lambda Calculus

The theoretical basis for Lisp. First explored by Church in the 1930s as a way to investigate higher-order logic.

Motto: “Everything is a function”

We shall be describing a particular form of lambda calculus known aspure lambda calculus. Many variants exist, for
example typed lambda calculus (see later), but we start withthe simplest.

All formalisms like lambda calculus, and, indeed, set theory, start with a few basic symbols, rules on how to combine
them into valid formulas, and rules on how formulas transform into each other. We shall not be too formal in showing
proofs of things, though we ought to in order to treat the subject seriously.

3.1 Syntax

The syntax of lambda calculus is composed ofλ-terms.

We have an inexhaustible supply ofvariables, e.g.,x, y, z, and the special symbolλ.

Actually, using variables is a bad way to proceed and will cause us problems later. But better ways are
very difficult to typeset and manipulate.

A λ-term is defined as follows.

• a variable is aλ-term

• if M andN areλ-terms, so is(M)(N). This is called anapplication

• if M is aλ-term andv is a variable, thenλv.(M) is aλ-term. This is called anabstraction. Here,M is the
body, while v is theformal argument

• nothing else is aλ-term.

Examples.
x λx.(x) λx.(z) (λx.(y))(z)

(x)(x) (λx.(x))(λx.(x)) (λy.(y))(λx.(x)) (λz.(z)(z))(λz.(z)(z))

5

In that last example, thez in the right half is not the “same” as thez in the left half.

Note that we can apply something to itself:(x)(x), thisdoesmake sense ifx is, say, the identity function.

Also look atλx.(λy.(z)). This is a function (ofx) that when you apply it to an argument it returns a function, namely
λy.z. Functions are valid values: in fact functions are theonlyvalues!

As is usual with such things, we drop parentheses when we can.The convention is that

• application binds more tightly than abstraction, e.g.,λx.MN is λx.((M)(N)), not(λx.(M))(N),

• application associates left-to-right, e.g.,xyz is ((x)(y))(z).

Another notational convenience is collecting togetherλs: λxyz.M for λx.λy.λz.M , which is

λx.(λy.(λz.(M))).

Very important note:λxyz.M is not a function of three variables, it is just a simple way of writing the nested
lambda expression.

3.2 Free and Bound Variables

It is plain that the twoλ-termsλx.x andλy.y are both ways of writing the “same” function (the identity, in this case).
The fact we used anx in the first and ay in the second is somehow irrelevant. We had to usesomevariable, though.

On the other hand,λx.xy andλy.yy are definitely different, so we can’t just swap names around at random. We must
distinguish carefully between names that appear stuck to lambdas, and names that don’t.

Compare with code

int f(int x)
{

... x + y ...
}

and

int f(int y)
{

... y + y ...
}

A variable in the body of an abstraction that is also the formal argument of that abstraction is called aboundvariable
(in that abstraction).

Non-bound variables are calledfreevariables.

x x is free
λx.x x is bound
λx.xy x is bound,y is free
(λx.x)x thex within the body is bound, while the one on the outside is free

6

.)λ(

Figure 1: No names

This is a point of easy confusion: thex inside is “really” a different variable than thex outside, we have just been
perverse. We could equally have written

(λy.y)x

to mean the same thing, and now the difference is clear. Againin

(λx.(λx.x)x)x

the innerxs are bound while the outer is free. Note that, as with computer languages, the inner binding ofx shadows
the outer binding. A more readable version could be

(λy.(λz.z)y)x

In a C-like language we can write

... ...
{ int x; { int y;

... ...
{ int x; { int z;

... ...
use inner x use z
... ...

} }
... ...
outer x again use y
... ...

} }

This is bad coding style, but valid as a program.

It would be better not to have to use named variables for boundpositions for this reason, however it makes writing
down and understandingλ-terms that much harder.

For example, one alternative notation is to useλλ2 1 3 to meanλx.(λy.xyz). Andλy.(λx.yxz). Andλw.(λx.wxz).
And so on.

The integer indicates whichλ the position should be bound to: 1 for the closest, 2 for the next, and so on. A number
bigger than the depth of nesting ofλs denotes a free variable. Different free variables get different values.

We do not want to distinguish betweenλ-terms that only differ in consistent renamings of bound variables. This is
calledα renaming. Thusλx.x “is the same as”λy.y, and(λx.xx)z “is the same as”(λy.yy)z, but (λx.xx)z “is not
the same as”(λx.xx)w, andλx.xy “is not the same as”λy.yy. The last because the term on the lhs has a free variable
(y), but the term on the rhs does not. This is calledname capture, and is a thing to be avoided.

Alpha renaming isonly for bound variables.

7

.λ λ .

λ x . xy λ y . yy

Figure 2: Name capture

Now, if expressionA “is the same as”B thenB “is the same as”A; if A “is the same as”B andB “is the same as”
C thenA “is the same as”C. These statements are not entirely obvious and we really ought to prove them from our
definitions by considering carefully what we mean by “is the same as”.

So when expressionA “is the same as”B we can, up to a point, replaceA whereever we see it byB (we are glossing
over alot here), and we are therefore justified to callA andB (in some sense) “equal”.

So, the notation we use for “is the same as” isA =α B, or more commonly simplyA = B.

Notice what we are doing here: we aredefininga relationship betweenλ-terms thatbehaveslike an equality.. If we
risk confusion by using the familiar equals sign (=) we can use=α to make things clear. There is a separate notion of
structural identity, written≡, if we want to say two terms are completely identical. Soλx.x 6≡ λy.y, butλx.x = λy.y,
or λx.x =α λy.y if we are being fussy.

Reiterating an earlier point: we ought to prove at this pointthat=α is worthy of being called an equality, namely that
it has the properties we might expect from an equality. Some of these properties are

• Reflexive: a term is=α to itself,M =α M for all M . This is clear.

• Symmetric: ifM =α N thenN =α M . This is also clear.

• Transitive: ifM =α N andN =α P thenM =α P . This says a succesion of renamings is a renaming, so this
is OK.

There are other properties (namely substitionality, see later), but for now we can agree that calling=α and equality
makes sense.

Now, a term isclosedif there are no free variables. We writeFV (M) for the collection of free variables ofM .

Exercise: write down a formal definition ofFV . You will need to refer back to the definition of aλ-term and go
through each case of bound and unbound variables.

Answer:

FV (x) = {x} for a variablex
FV (MN) = FV (M) ∪ FV (N) for an application
FV (λx.M) = FV (M) \ {x} for an abstraction

ThusFV (λx.xy) = FV (xy)\{x} = (FV (x)∪FV (y))\{x} = ({x}∪{y})\{x} = {x, y}\{x} = {y}. Similarly,
FV ((λx.x)x) = FV (λx.x) ∪ FV (x) = (FV (x) \ {x}) ∪ {x} = ({x} \ {x}) ∪ {x} = ∅ ∪ {x} = {x}.

Exercise:write down a formal definition ofα equality of twoλ-termsM andN .

Answer:

• M is a variable,x, say. Return true ifN ≡M else return false.

• M is an applicationAB. Return true ifN is an applicationCD with A =α C andB =α D, else return false.

8

• M is an abstractionλx.A. Return false ifN is not an abstraction. SoN is λy.B, say.

– if x ≡ y returnA =α B.

– let z be some variable not appearing inAB. Replace all freexs inA by z givingA′ and all freeys inB
by z givingB′. ReturnA′ =α B

′

Note: this proof usesstructural recursion.

Exercise:Prove thatα equality has the behaviour you might expect from an equality, namely

• A =α A for all λ-termsA

• if A =α B thenB =α A for all λ-termsA andB

• if A =α B andB =α C thenA =α C for all λ-termsA,B andC

3.3 Substitution

Substitution captures the idea of replacing a variable witha value.

Givenλ-termsM andN and a variablev, we can substituteN for eachfreeoccurrence ofv in M , provided we don’t
accidentally bind any of the free variables inN . If there would be some name clashes, we can do someα renaming
first.

We write this as[N/v]M . Note in the special case thatv does not appear free inM we have[N/v]M = M (in fact,
[N/v]M ≡M).

Substitutiononlyhappens for free variables.

Examples.

[λy.y/x]x = λy.y
[λz.zz/x]λx.xy = λx.xy x is not free
[y/x]λz.(λx.xy)x = λz.(λx.xy)z the outerx is free, but the inner is bound
[y/x]λy.xy 6= λy.yy that unboundx became a boundy
[λz.x/y]λx.xy 6= λx.x(λz.x) thex in theλz.x accidentally got bound
[λx.x/y]λx.xy = λx.x(λx.x) the innerx is reboundand so is OK[y/x]λy.xy =α [y/x]λz.xz = λz.yz

In the last, we renamed the variable in the abstraction fromy to z to avoid a clash. The substitutions can be arbitrary
terms for the free variable, e.g.,

[λx.xz/x]λy.xyx = λy.(λx.xz)y(λx.xz).

Notationally,[] has very low precedence, so that[x/y]zw means[x/y](zw). Also, the form[N/x][M/y]P means
[N/x]([M/y]P)

Just to get a flavour of these things, we show the formal definition of substitution. In general, we shan’t be too formal.

The definition is in several cases:

• variable:[N/x]x = N

• variable:[N/x]a = a, for variablesa 6= x

9

• application:[N/x](PQ) = ([N/x]P)([N/x]Q)

• abstraction:[N/x](λx.P) = λx.P

• abstraction:[N/x](λy.P) = λy.[N/x]P if y 6= x andy 6∈ FV (N) or x 6∈ FV (P) (y is not free inN so can’t
be accidentally bound, orx doesn’t actually appear free inP)

• abstraction:[N/x](λy.P) = λz.[N/x][z/y]P if y 6= x andy ∈ FV (N) andx ∈ FV (P) (x really does appear
this time and would bind a freey in N)

In the last,z is some variable not inFV (NP). This is justα renaming inP to avoid capture of the freey in N .
For example,[y/x]λy.x. Note we only need to rename if (a)y appears free inN , and (b)x is free inP , i.e., some
substitution actually happens. In[y/x]λy.y there is no freex.

Note this is an inductive definition: given a termM one of the above must apply (recall the definition of aλ-term),
and then we get the substitution onM defined using the sub-terms ofM .

Everything in lambda calculus is defined formally, but we shall focus on the informal interpretations. For example, in
the last above,N has a variabley that clashes, so weα rename it toz first.

Exercise:From the above definition, prove that[N/x]P ≡ P if x 6∈ FV (P).

Answer: Do the cases!

1. variable

2. application

3. abstraction

3.4 Reduction

Reduction is the primary way of manipulatingλ-terms. It is what makes the lambda calculus a model of computation:
a reduction is like a computation.

A term of the form(λu.E)F is called aredex(reducible expression). Conceptually, this is a function being applied
to an argument. Thereduction[F/u]E (together with anyα renamings to make this safe) is sometimes called the
contractum. Reduction is equivalent to execution of a function to produce a result.

We say:M β-reduces toN in one stepif N results fromM after a reduction of some subterm ofM , and we write
M ≻1β N . Thus, for example,(λu.E)F ≻1β [F/u]E.

Examples.

(λx.y)z ≻1β y
x((λx.xy)z)y ≻1β x(zy)y
(λx.xy)(λz.zz) ≻1β (λz.zz)y ≻1β yy
(λx.xx)(λx.xx) ≻1β (λx.xx)(λx.xx) ≻1β . . .
x(λy.y)z has no reduction!

We writeM ≻β N , or evenM ≻ N , if there is a finite sequence of zero or more single reductions

M ≻1β M
′ ≻1β M

′′ ≻1β . . . ≻1β N,

and sayM β-reduces toN .

10

M

A B

N

Figure 3: Church Rosser

We also allow any number ofα renamings:

M ≻1β M
′ ≻1β M

′′ =α M
′′′ ≻1β . . . ≻1β N,

There can be zero reductions, so thatM ≻β M .

Note: in some sense “2 + 2 ≻ 4”. So 2 + 2 and4, while the same mathematically, differ by a reduction step in the
lambda sense.

3.5 Normal Forms

M is in normal formif it contains no redexes. Thusx, xy, x(λy.y)z are in normal form. On the other hand,(λy.y)z
andz((λy.y)z)λx.x are not.

Clearly, a term in normal form cannot beβ-reduced. A term not in normal formcanbeβ-reduced. A normal form
represents the end of a computation: the answer, if you like.

It would seem that to produce a normal form from a term we should just keep reducing it until we can go no fur-
ther. Unfortunately, this doesn’t work, as we have already seen(λx.xx)(λx.xx) reduces forever. Of course, some
computations never terminate either: think of infinite loops.

A further complication is that there is more than one way to reduce a term if it contains more than one redex.

(λx.(λy.xy)x)z ≻β (λy.zy)z

applying the outerλ, while
(λx.(λy.xy)x)z ≻β (λx.xx)z

applying the innerλ.

In this case, both further reduce tozz. In fact, this is generally true: there may be multiple ways to reduce, but you
can always end up at the same place.

3.6 Church-Rosser

One of the cornerstones of the lambda calculus is this theorem of Church and Rosser:

If M ,A andB are anyλ-terms withM ≻β A andM ≻β B, then there is aλ-termN with A ≻β N and
B ≻β N .

11

This is sometimes calledconfluence, or thediamond propertyof reductions.

A corollary is:

If M ,A andB are anyλ-terms withM ≻β A andM ≻β B, andA andB are both in normal form, then
A = B (up toα renaming, so this is reallyA =α B).

Notice this does not guarantee the existence of a normal form: it just says if a normal form exists, it is unique. Nor
does it guarantee a sequence of reductions will ultimately result in a normal form, even if that normal form exists.

For some terms we get the normal form regardless of the sequence of reductions, e.g.,(λx.(λy.xy)x)z, above.

Some terms do not have a normal form, e.g.,(λx.xx)(λx.xx). This particular term is a favourite, and is often called
Ω. Also, little ω = λx.xx, so thatΩ = ωω.

Some terms have a normal form, but it depends on the order of reductions whether we reach it or not. Of course,
the only way to fail to reach the normal form in this case is to have an infinite sequence of reductions. For example,
(λx.y)Ω = (λx.y)((λz.zz)(λz.zz)).

If we β-reduce theΩ, this term reduces to itself. If we reduce the firstλ we gety, the normal form.

Church-Rosser does guarantee if the normal form exists, we can always get to it from wherever we are. There are no
wrong paths, just some very long ones!

3.7 Applicative and Normal order

So what can we do about finding normal forms? Is there some mechanical way of always finding a normal form when
it exists? There are two (important) ways of doing reductions, calledapplicativeandnormalorders.

Consider the evaluation of a function:

(defun double (x) (+ x x))

(double (+ 2 3))

There are conceivably two ways to proceed:

• textually substitute the actual argument for the formal argument on the body, then reduce that

• reduce the actual argument, then substitute and reduce

Of course, real implementations of Lisp do the second. As do most, but not all, other languages.

Maple has a curious evaluation strategy. Algol 60 had call byname as well as call by value.

For the first way:

(double (+ 2 3)) ->
(+ (+ 2 3) (+ 2 3)) ->
(+ 5 5) ->
10

12

And the second

(double (+ 2 3)) ->
(double 5) ->
(+ 5 5) ->
10

We get the same answer. Note that we’re not guaranteed this, as with Church-Rosser, since Lisp is not pure lambda
calculus.

(setq n 0)
(defun inc ()

(setq n (+ n 1))
n)

What is(double (inc)) ?

With the first, callednormal order, or leftmost outermost, orcall by name, where we reduce the outermost lambda first
(i.e., thedouble), we might get

(double (inc)) ->
(+ (inc) (inc)) ->
(+ 1 2) ->
3

With the second, calledapplicative order, or leftmost innermost, or call by value, where we reduce the innermost
lambda first (i.e., the arguments), we get

(double (inc)) ->
(double 1) ->
(+ 1 1) ->
2

This divergence from Church-Rosser is very important, and we will return to it later when we talk about functional
programming.

What is the value of the following?

(setq n 0)
(list (inc) (inc))

Back to lambda calculus. We know that it theoretically doesn’t matter whether we use applicative or normal order
reduction as a normal form is unique. But there is one big practical difference:

normal order reduction will converge to the normal form, if it exists.

13

In general, it is undecidable whether a term has a normal form, but normal order reduction gives us asemi-decision
procedure. That is, a method that will find the normal form if it exists, but will never terminate it it doesn’t.

On the other hand, applicative order reduction has no such guarantee of getting to the normal form.

Look at(λx.y)Ω = (λx.y)((λz.zz)(λz.zz)).

Normal order reduces the first lambda:
(λx.y)Ω ≻ y

Applicative order reduces the inner lambda (inΩ):

(λx.y)Ω ≻ (λx.y)Ω ≻ . . .

So the moral of the tale is: use normal order reduction in lambda calculus!

This effect is reflected in Lisp, too. Consider

(defun foo (x y)
(if (zerop x) 0 y))

(defun bar () (bar))

(foo 0 (bar))

Under applicative order evaluation, this program never terminates. Of course, (most) programming languages use
applicative order as it is more efficient: it evaluates the arguments just once, rather than each time a formal argument
appears in the function body. Other languages, such as Haskell, approximate normal order reduction usinglazy
evaluation. See later.

Another example.

(defun try (a b)
(if (= a 0) 1 b))

(try 0 (/ 1 0))

This generates an error in Lisp since the(/ 1 0) is evaluated before theif . With normal order reduction, theif is
evaluated first, and the division by zero never happens.

In other words, in Lisp, and most other languages, thereareparts that use normal order reduction: namely
with if !

if (x == 0 || 1/x == 2.0) ...

3.7.1 A Test for Normal Forms?

Here is the first step in proving that the existence of normal forms is undecidable.

TheoremThere is noλ-termN that detects whether aλ-term has a normal form. That is such that for anyλ-termM ,

NM ≻ T if M has a normal form
NM ≻ F otherwise

14

HereT = λxy.x, F = λxy.y.

Proof Letω = λx.xx, Ω = ωω andI = λx.x. Note thatΩ has no NF, whileI is already in NF.

LetN be aλ-term that detects NFs, and setZ = λz.N(ωz)ΩI.

NowωZ ≻ ZZ ≻ N(ωZ)ΩI, soωZ has a NF if and only ifN(ωZ)ΩI does (by Church-Rosser).

1. SupposeωZ has a NF, soN(ωZ) ≻ T . But then

N(ωZ)ΩI ≻ TΩI ≻ Ω

which has no NF. Contradiction.

2. SupposeωZ does not have a NF, soN(ωZ) ≻ F . But then

N(ωZ)ΩI ≻ FΩI ≻ I

which is a NF. Contradiction, again.

So such aλ-termN cannot exist.

Now if we assume something is computable if and only if there is aλ-term with a normal form that represents it, we
can see that the existence of normal forms is not computable,i.e., undecidable.

3.7.2 Non-termination

Expressions that don’t have normal forms can fail to terminate in several ways:

• Simple Loops:

Theλ-termΩ β-reduces to itself in a single step. A related example is

(λxy.yxy)(λxy.yxy)(λxy.yxy)

which reduces to itself in two steps. And

(λxyz.zxyz)(λxyz.zxyz)(λxyz.zxyz)(λxyz.zxyz)

reduces to itself in three steps.

We can have arbitrary long loops: letL = λx1x2 . . . xn.xnx1x2 . . . xn. Then

Ln+1 = LL . . . L
︸ ︷︷ ︸

n+ 1 times

reduces to itself inn steps.

• A sequence of reductions, then a loop. A simple example couldbe (λx.x)(λx.x)Ω ≻β (λx.x)Ω ≻β Ω ≻β

Ω Clearly, this can be extended to an arbitrary number of steps before the loop.

• Non looping. This must necessarily be an expression that grows without limit. For example(λx.xxx)(λx.xxx) ≻β

(λx.xxx)(λx.xxx)(λx.xxx) ≻β (λx.xxx)(λx.xxx)(λx.xxx)(λx.xxx) ≻β Or (λx.xxy)(λx.xxy) ≻β

(λx.xxy)(λx.xxy)y ≻β (λx.xxy)(λx.xxy)yy ≻β

Note: there areλ-terms that grow arbitrarily before hitting a NF (see the exponential Church numeral, later) so we
can’t judge the existence of a NF on size alone.

15

A real answer to an exam question: “first try applicative; if that fails try normal”. How many ways is that
wrong?

3.8 Another Equality

We have seen various kinds of ways to transform oneλ-term into another

• α renaming: changing bound variables

• β-reduction: application ofλs

• substitution:[M/x]N

Sometimes we say things are equal, and use=. Other times we say things reduce, and use≻β. This is an important
distinction, sometimes glossed over in other branches of mathematics. For example, we say2 + 3 = 5 in arithmetic,
but would say2 + 3 reducesto 5 in the lambda world.

Why is this distinction made? Because reduction corresponds tocomputation. It is quite natural to replace2 + 3 by 5,
but quite unusual to replace 5 by2 + 3. So this equality is not really symmetric.

In the physical world, it appears that reversible and non-reversible computations really are quite different,
as the former necessarily consumes energy.

We shall now define another relationship between terms (adding to≡ and=α).

We define∼β byM ∼β N if there is a sequenceM = M0,M1,M2, . . . ,Mn = N with

Mi ≻β Mi+1 orMi+1 ≻β Mi orMi+1 is anα renaming ofMi

Now we claim that∼β is another “equality like” relation betweenλ-terms. For this to be a reasonable definition of an
equality, we have to prove it has the expected properties of an equality:

• M ∼β M

• if M ∼β N thenN ∼β M

• M ∼β N andN ∼β P impliesM ∼β P

• if M ∼β N then substitutingN for M in any expression leaves its value unchanged, i.e., the new expression is
∼β to the old (with the usual caveats aboutα renaming to avoid clashes during the substitution). This iscalled
substitionality. In an abuse of notation we might write “ifM ∼β N then[N/M]P ∼β P ”.

In this case everything works well, for there is a corollary of Church-Rosser that says

if M ∼β N then there is aT with M ≻β T andN ≻β T .

• The proof ofM ∼β M is easy: sinceM ≻β M with zero reductions.

• Similarly, if M ∼β N there is a sequence of reductions/renamings takingM toN . Just reversing the sequence
takes us fromN toM , showingN ∼β M .

16

• If M ∼β N andN ∼β P , there is a sequence fromM toN and a sequence fromN to p. Joining them together
gives us a sequence fromM toP , i.e.,M ∼β P .

• Here is an outline of a proof of substitionality: ifM ∼β N , thenM ≻β T andN ≻β T for someT .
SupposeM appears in some expression. . .M Now . . .M . . . ≻β . . . T . . . ≺β . . . N . . ., which is to say
. . .M . . . ∼β . . . N A real proof would have to worry aboutα substitutions to avoid name capture.

Thus it is reasonable to think of∼β as an equality ofλ-terms. Thus, the usual notation for this is actually=β , or
(again) simply= if we are being lazy.

So here is the definition again, written as you would normallysee it:

Define=β byM =β N if there is a sequenceM = M0,M1,M2, . . . ,Mn = N with

Mi ≻β Mi+1 orMi+1 ≻β Mi orMi+1 is anα renaming ofMi

A lot of people get confused about what is happening here, so we need to think carefully about what we are doing: we
have justdefinedwhat the symbol=β means. Just because it has some typographic similarity to the = symbol some
people expect that=β automatically has certain properties, for example ifM =β M for every expressionM . This
may or may not be true: we have toprovethat that equation is true, as we did above.

SayingM =β N is very different from sayingM ≡ N , or evenM =α N . These areall equalities, but they claim
different collections ofλ-terms are equal. It all depends on what you want to do at the time. Whether you want to
talk about equality of structure (≡), or equality up to inessential names (=α), or computational equality (=β). All are
valid, all are useful in different circumstances.

We have≡⇒=α⇒=β .

Examples:
(λx.(λy.xy))z ≻ (λy.zy)z ≻ λz.zz,

so(λx.(λy.xy))z =β λz.zz,.

(λx.y)Ω =β y

(λx.y)Ω =β (λz.(λz.y)z)Ω

Exercise:Give examples ofM andN such that

1. M =β N butM 6=α N andM 6≡ N .

2. M =β N andM =α N butM 6≡ N .

Answer: Nearly anything will do.

1. (λx.x)x =β x but (λx.x)x 6=α x and(λx.x)x 6≡ x.

2. λx.x =α λy.y butλx.x 6≡ λy.y.

17

3.8.1 No Decision Procedure

Now, while it is easy to determine if twoλ-terms are≡ or are=α, it is possible to show that there is no algorithm to
determine if twoλ-terms are=β . This follows from the halting problem for Turing machines.There is, however, a
semi-decision procedure.

A semi-decision procedureis something that, if it terminates, gives you the answer, but is not guaranteed to terminate.
Recall that if something is to be called an algorithm, or a decision procedure, itmustterminate on all inputs. Something
that is not guaranteed to terminate isnot an algorithm.

So the semi-decision procedure forβ-equality is to simply reduce both to normal form (when they exist), and see if
they are the same (namely,=α). Thus, sometimes we can show things to be equal, but we are not guaranteed to be
able to do so.

In fact, we already know that determining if aλ-term even has a normal form is also undecidable.

We might be able to determine when some other terms without normal forms are=β , for example we can easily see
that(λx.Ω)y =β Ω, but in general there is no hope.

It may seem strange to be using an equality where we can’t generally prove things to be equal, but in fact the same is
also true of the old familiar equality of numbers: it is possible to write down two numerical expressions that we can’t
prove are equal or not equal (proof by Dan Richardson). Of course, these equalities are practical enough to be useful
for many other things.

3.8.2 Extensionality

Another point to note is that to proveβ-equality of two expressions, you can only use the definitions above. It would
be tempting to have a proof that went

blah, blah, and soMX =β NX for all termsX . ThereforeM =β N .

This is calledextensionality, and is an analogue of

blah, blah, and sof(x) = g(x) for all x, thusf = g

in Set theory.

But extensionality does not hold for lambda calculus. For example, takeM = y andN = λx.yx. CertainlyM 6=β N
(both are in normal form), but

NX = (λx.yx)X =β yX = MX

for all X .

Computationally speaking, these terms are certainly different: N needs one more function application thanM . On
the other hand, their outcomes when applied to an argument are always the same:N just seems a less efficient way of
doing the same thing asM .

To think about: if two programs produce the same outputs for the same inputs for all inputs, are they the
same program?

We could define a kind of equality on programs, namelyN = M if N andM produce the same outputs
for the same inputs for all inputs, but it would be in general impossible to test two programs for equality
due to the Halting Problem. This is calledextensionalequality.

To gain extensionality, something extra has to be added to lambda calculus. One way is usingη-reduction.

18

3.8.3 η-reduction

η-reduction is
λx.Mx ≻η M wheneverx is not free inM.

Note that(λx.Mx)X ≻β MX for anyX , butλx.Mx 6≻β M .

Examples:λx.yx ≻η y; λx.(λx.x)x ≻η λx.x; butλx.xx 6≻η x.

Note also:λx.(λx.x)x ≻β λx.x byβ-reducing the inner redex. Similarly,λx.(λz.z)x ≻β λx.x whileλx.(λz.z)x ≻η

λz.z, but these are stillα-equal.

This is acknowledging thatM is independent ofx, and theλ is not really doing anything for us. Notice that this isnot
a reduction we could do previously, even though whenever we saw this termin someβ redex contextwe could have
reduced it.

It turns out thatη-reduction satisfies substitionality and the other properties expected of an equality, and so is “well
behaved,” but does alter the collection of things that can beproved in the lambda calculus. It is not a question of
whether it is “right or wrong” to useη-reduction, you just get a different range of theorems to explore.

Imagine changing the rules of Chess so that a pawn could always move one or two squares forward. This would be a
new game, not Chess, but would have substantial similarities to Chess. Some Chess strategies might be still relevant,
but others now fail. And some new strategies might work.

Similarly, some theorems from the pure lambda calculus might still be true: others can now be false. Or things that
were false previously might now be true (e.g., extensionality in the case ofη reduction).

Indeed, we have to go back to anything we have proven previously and re-prove it (if possible) for this new calculus.
For example, it turns out that Church-Rosser still holds in the presence ofη-reduction:

If M , A andB are anyλ-terms withM ≻βη A andM ≻βη B, then there is aλ-termN with A ≻βη N
andB ≻βη N .

Many popular theorems do remain true, but some of the deeper theorems break down, which lead some to avoid the
use ofη.

We use the notation≻βη for a sequence of zero or moreβ andη (andα) reductions. Similarly,=βη for a sequence of
zero or moreβ andη (andα) reductions or reverse reductions.

η-reductions do have these nice properties:

• aλ-term has aβη normal form if and only if it has aβ normal form.

• in a βη-reduction we can postpone theη-reductions to the end, that is ifM ≻βη N , then there is aP with
M ≻β P ≻η N .

So in some senseη is a very benign reduction, but there is one big benefit: lambda calculus withη-reduction has
extensionality. SinceMX =βη NX for all X implies

M =βη λx.Mx by reverseη, wherex 6∈ FV (MN)
=βη λx.Nx byMx =βη Nx and substitionality
=βη N by η

19

Some likenη-reduction to program optimisation: you take a program and alter it to be more efficient while still giving
the same answers. In this senseη does not model computation as doesβ.

We shall not be usingη-reduction, but shall stick to thepureλ-calculus.

3.8.4 δ reduction

Another form of reduction isδ reduction. This does not apply to the pure lambda calculus aswe have developed it,
but rather to an extended form that containsconstants. These are things like, for example, integers (which are distinct
from variables), perhaps together with some operations, say addition.

We get terms like
(λx.x + 1)2 ≻β 2 + 1 ≻δ 3

We shall look atδ reduction in detail later, in section 6.

3.9 Currying

What of multi-argument functions? For example, the summation function takes two arguments.

(defun sum (x y) (+ x y))

so that the value ofsum is

(lambda (x y) (+ x y))

and is called as

(sum 8 11) -> 19

Surely we can’t represent(lambda (x y) (+ x y)) asλ-terms only have one argument?

Now, we have already seen the notational convenience ofλxy.fxy to meanλx.(λy.fxy). Taking this as inspiration
we can definecsum as

(defun csum (x) (lambda (y) (+ x y)))

Now the value ofcsum is

(lambda (x) (lambda (y) (+ x y)))

namely a function of one argument that returns a function of one argument.

(csum 7) -> <function>

where the function takes one argument and returns that argument plus 7. So

20

((csum 7) 11) -> 18

This is calledCurrying, after Curry, who first thought of the idea.

In λ-terms:
(λx1x2 . . . xr.E)M1M2 . . .Mr ≻ [Mr/xr] . . . [M2/x2][M1/x1]E.

In Lisp, we can define a function

(defun curry (f)
(lambda (x)

(lambda (y)
(f x y))))

Now, curry is a function that takes a function of two arguments and returns that function curried.

(setq add7 ((curry sum) 7))

(add7 5) ->
12

(((curry sum) 7) 11) ->
18

In the opposite direction,

(defun uncurry (f)
(lambda (x y) ((f x) y)))

Here,uncurry takes a function of one argument that returns a function of one argument and returns a function of
two arguments.

(defun uncurry (f)
(lambda (x y)

((f x) y)))

(setq csum (curry sum))
(setq add (uncurry csum))

(add 2 3) ->
5

Currying proves that by restricting functions to a single argument does not reduce the expressive power of the lambda
calculus.

21

3.10 Y operator

When writing a recursive function in Lisp (or other language) we need a name for the function we are writing in order
to refer back to itself:

(defun fact (n)
(if (< n 2) 1 (* n (fact (- n 1)))))

Here the innerfact is a reference back to the function being defined. The problemwith lambda calculus is that we
can’t do this as lambdas don’t have names!

So we need some other way of doing things. Consider what happens in a simple recursive function.

(defun g (a) (h (g a)))

Hereh would include some conditional so that the recursion can terminate.

Expanding

(g a) -> (h (g a))
-> (h (h (g a)))
-> (h (h (h (g a))))
-> ...

When we applyg to some argument, it will only recurse to some finite depth (orelse the function fails to return!), but
we can’t tell in advance how deep it will go. So what we would like is to defineg as

(defun g (a) (h (h (h ... a))))

for an infinite depth. This may seem strange, but with normal order reduction, it isn’t so bad.

Let’s look atf where

(defun f (x) (lambda (a) (h (x a))))

Then

(f f) -> (lambda (a) (h (f a)))
(f (f f)) -> (lambda (a) (h ((lambda (a) (h (f a))) a)))

-> (lambda (a) (h (h (f a))))
(f (f (f f))) -> (lambda (a) (h (h (h (f a)))))

and so on. Thus, an-fold application off to f matches an-fold depth of recursion forg.

So again, nesting infinitely

(f (f ... f)) -> (lambda (a) (h (h (h ... a))))

22

which is the same as the functiong, as we will only ever recurse to a finite depth in an actual computation ofg.

Now, F = (f (f ... f)) has the curious property that

(f F) = F

F is called afixed pointfor f .

A fixed pointfor a functionf is a valuex such thatf(x) = x. Thus the (numerical) functionf(x) = x2 − 3x has
fixed point4 asf(4) = 42 − 3 × 4 = 16 − 12 = 4. It also has another fixed point, namelyx = 0. The function
f(x) = x + 1 has no fixed points, whilef(x) = x has an infinite number of fixed points. A numerical function can
have zero to infinity fixed points: in theλ calculus there is a significant difference.

Returning to ourF , if we could define such anF by some proper means, then we would haveg = F as our recursive
function.

In lambda calculus terms,g is
λa.h(h(. . . a))

which isnot aλ-term, as it is infinitely long(!), andf is

M = λxa.h(xa)

which is a perfectly respectable term.

Now we have
MM = (λxa.h(xa))M

≻ λa.h(Ma)
M(MM) = (λxa.h(xa))(λa.h(Ma))

≻ λa.h((λa.h(Ma))a)
≻ λa.h(h(Ma))

and so on. And then an infinite applicationF = M(M(. . .M)) does what we want. Again, we haveMF =β F , i.e.,
F is a fixed point for the termM .

It may seem impossible to figure out how to find a reasonable definition forF , but it turns out that there is a theorem.

Fixed Point Theorem:

Given anyλ-termM there is a termX (depending onM) such that

MX =β X

Thus: everyλ-term has at least one fixed point. This is different from normal, numerical, functions that might not
have a fixed point.

Proof:

LetW = λx.M(xx), andX = WW . Then

X = WW = (λx.M(xx))W ≻M(WW) = MX.

Examples.

M = x. We getW = λy.M(yy) = λy.x(yy) and soX = (λy.x(yy))(λy.x(yy)). Checking this:X ≻
x((λy.x(yy))(λy.x(yy))) = xX , i.e.,xX =β X , as required. Note thatX ≻ xX ≻ xxX ≻ xxxX

23

M = λx.x. NowX = (λy.(λx.x)(yy))(λy.(λx.x)(yy)) ≻ (λy.yy)(λy.yy) = Ω. As noted above, everything is a
fixed point of the identity function, but here we compute a specific example, which happens to beΩ.

Even better than the fixed point theorem, there is aλ-termY , aa fixed point operator, such that for anyM , YM is a
fixed point forM . In other words

M(YM) =β YM.

(In terms numerical functions, this would be a “function”y such thaty(f) is a number that is a fixed point forf , i.e.,
f(y(f)) = y(f). But no such “function”y exists.)

Hence, givenM , YM is the term we seek, and implements the recursive function weare looking for.

Fixed points are not unique: considerλx.x, for whicheverythingis a fixed point. Similarly, fixed point operators are
not unique. Two popular ones are due to Curry and Turing.

Curry:
Y = λx.V V whereV = λy.x(yy)

Turing:
Y = ZZ whereZ = λzx.x(zzx)

Taking Curry, for example, we have

YM = (λx.(λy.x(yy))(λy.x(yy)))M
≻ (λy.M(yy))(λy.M(yy))
≻ M((λy.M(yy))(λy.M(yy)))
≺ M((λx.(λy.x(yy))(λy.x(yy)))M)
= M(YM)

Reading this other way,YM is a fixed point ofM : M(YM) =β YM . Turing’s Y is somewhat better in that
YM ≻M(YM) rather than just=β:

ZZ = (λzx.x(zzx))Z
≻ λx.x(ZZx)

and so
YM = ZZM ≻ (λx.x(ZZx))M ≻M(ZZM) = M(YM).

In fact, fixed point operators are rather common. For example, if

A = λabcdefghijklmnopqrstuvwxyz.r(thisisafixedpointoperator)

and
B = AAAAAAAAAAAAAAAAAAAAAAAAAA

(26 times), thenB is a fixed point operator.

Example.

M = x. Then using Curry:YM = Y x = (λy.(λz.y(zz))(λz.y(zz)))x ≻ (λz.x(zz))(λz.x(zz)), as before. Using
Turing: Y x = ZZx = (λzy.y(zzy))Zx ≻ (λy.y(ZZy))x ≻ x(ZZx) = x(Y x). This doesn’t simplify to anything
particularly pretty.

TheY operator translates directly into Lisp. We can define

(defun Y (f) ((lambda (x) (f (lambda (y) ((x x) y))))
(lambda (x) (f (lambda (y) ((x x) y))))))

24

This is Turing’s operator. Curry’s doesn’t work with an applicative order Lisp. Then

(defun FACT (f) (lambda (n) (if (< n 2) 1 (* n (f (- n 1))))))

(setq fact (Y FACT))

(fact 5) ->
120

The point here is that the recursivefact has been defined, viaFACT, without self-reference. TheY ties the loop.

In general,

(defun foo (x) (... (foo ...) ... (foo ...) ...)

can be defined as

(defun FOO (f) (lambda (x) ... (f ...) ... (f ...) ...)

(setq foo (Y FOO))

For example, instead of

(defun len (l) (if (null l) 0 (+ 1 (len (cdr l)))))

We could have

(defun LEN (f) (lambda (l) (if (null l) 0 (+ 1 (f (cdr l))))))

(setq len (Y LEN))

More succinctly,

(setq len (Y (lambda (f) (lambda (l) (if (null l) 0 (+ 1 (f (cdr l))))))))

3.10.1 More onY

We can useY to solve equations:

for anyλ-termM the equation
xy1 . . . yn = M

has a solution forx. That is, there is anX such that

Xy1 . . . yn =β [X/x]M

Proof:

25

TakeX = Y (λxy1 . . . yn.M). Then(λxy1 . . . yn.M)X = X , so

Xy1 . . . yn = (Y (λxy1 . . . yn.M))y1 . . . yn

= (λxy1 . . . yn.M)Xy1 . . . yn

≻ (λy1 . . . yn.[X/x]M)y1 . . . yn

≻ [X/x]M

For example, find a solutionx to
xyz = zy.

(Note this is the equation(xy)z = zy.) We take

X = Y (λxyz.zy)
= (λx.(λy.x(yy))(λy.x(yy)))(λxyz.zy)
≻ (λw.(λxyz.zy)(ww))(λw.(λxyz.zy)(ww))
≻ (λw.λyz.zy)(λw.λyz.zy)
≻ λyz.zy

And, of course,
(λuv.vu)yz ≻ (λv.vy)z ≻ zy.

3.11 Relationship to Lisp

λ is lambda !

Lisp the language was first developed as a way of implementingthe lambda calculus. Over the years it has developed
into a powerful tool in its own right, which is a testament to its original design, and the flexibility of the lambda
calculus as a means of expressing concepts.

Unfortunately (or fortunately, depending on how you look atit), Lisp diverges from the pure lambda calculus. There
are minor differences, such a multiple argument functions,but we know this is not important because of currying. Itis
important in terms of efficiency, though. Multiple nested function calls are more expensive than multiple arguments.
In fact, most of the divergence of Lisp from lambda calculus is driven by efficiency concerns. The of recursion instead
of the Y operator is just the same.

There are major differences: Lisp has objects other than symbols; it has side effects; it can give values names; it uses
applicative order evaluation.

Lisp is unusual for a computer language in that it has symbols, corresponding to lambda calculus variables. In common
with other languages, though, it has numbers and lists (amongst other types), which do not appear in pure lambda
calculus. Though such things are representable in pure lambda calculus (see, for example, Church numerals, later) it
is somewhat involved, so for efficiency these are primitivesin Lisp.

Side effects are like the functioninc where

(setq n 0)
(defun inc ()

(setq n (+ n 1))
1)

26

Calling inc has the side effect of updating the variablen. Side effects are sometimes useful: for example, theprint
function has the side effect of updating the contents of the screen!

However, side effects breakreferential transparency. An expression is referentially transparent when its valueis
independent of its environment. Thus any part of a referentially transparent expression maybe replaced by something
which is “equal”, and the value of the expression is unchanged.

Thus, in (+ 1 (+ 2 3)) we can replace the(+ 2 3) by 5 giving the equivalent(+ 2 5) . But we cannot
replaceinc in (+ 1 (inc)) to get(+ 1 1) , even thoughinc always returns1. This is becausen would not be
updated.

The point of referential transparency is that

equals may be substituted for equals

That is, substitutionality.

This means analysing a program is much easier: the order of evaluation is unimportant and side effects do not compli-
cate things. For example, what is the value of(list (inc) (inc)) ?

Quite often, referential transparency is violated by the use of global variables. This is part of the approach of the object
oriented programming style: by keeping state in objects we are looking towards referential transparency, which means
we can understand a program just by looking at local sections, not having to comprehend the thing as a whole.

When Lisp was first developed, programmers did not have the knowledge of how to program efficiently in a referen-
tially transparent way, so the purity of Lisp was broken, as we see with theinc example. Nevertheless, even though
we canwrite programs in such a way, we should try to avoid such a use of global state (the variablen in this case).

Avoiding global state turns out to be a good thing generally,regardless of programming language. In fact,
one of the big benefits of OO programming is that it naturally avoids global state, bringing OO languages
closer to the referentially transparent ideal. This is tiedup with the idea of software reuse: a module is
self-contained and has no unexpected side-effects.

We have seen how applicative order evaluation means that some λ-terms do not translate well into Lisp. Of course,
this is an efficiency issue again, but it would be reasonably straightforward to change the evaluation in Lisp to normal
order.

4 Modelling Computation using Lambda Calculus

So what can we do with lambda calculus? We have seen how it can (impurely) be represented as Lisp, but there is also
a lot of other things we can do with it. In particular, we can model various aspects of mathematics and computing using
λs, and using these models we can prove things about mathematics and computing. Lambda calculus is a universal
model of computation, that is, any computation that can be expressed using a Turing machine can also be expressed in
the lambda calculus.

27

4.1 Church Numerals

You may have seen set theory being used as a foundation of mathematics. This starts by the definitions

0
def
= ∅

1
def
= {0}

2
def
= {0, 1}

3
def
= {0, 1, 2}
. . .

The we can define asuccessorfunction: S(n) = n ∪ {n}. Intuitively, this meansS(n) = n + 1, but we haven’t
defined addition yet. ThusS(2) = 2 ∪ {2} = {0, 1} ∪ {2} = {0, 1, 2} = 3.

Addition is a defined inductively:n + 0 = n andn + S(m) = S(n + m). So2 + 2 = 2 + S(1) = S(2 + 1) =
S(2 + S(0)) = S(S(2 + 0)) = S(S(2)) = S(3) = 4. We need to prove the various facts we expect of addition, e.g.,
n+m = m+n, n+(m+n) = (n+m)+n, and indeedS(n) = n+1 (sincen+1 = n+S(0) = S(n+0) = S(n)).
Next we can define other operations like multiplication and exponentiation. At each state we must prove that these
operators have the properties we expect of them.

Pairs can be defined as(a, b) = {a, {a, b}}. This has the expected property that(a, b) = (c, d) impliesa = c and
b = d. For consider{a, {a, b}} = {c, {c, d}} and supposea 6= c. Then we must havea = {c, d} andc = {a, b}. So
a = {{a, b}, d}, which contradicts the axiom of foundation. Soa = c. Then{a, b} = {c, d} = {a, d}, whenceb = d.

Exercise:find and fix the hole in this proof.
Answer: What if a = b?

Using integers we can define rationals as (classes of) pairs of integers. For example, the pair(1, 2) could be a represen-
tation of the fraction1/2. Again, we need to define addition and so on for our fractions:(a, b)+(c, d) = (ad+bc, db).
Real numbers can be defined as (classes of) sequences of rationals, then complex numbers as pairs of reals. Every
time we must include proof that the definitions are working well.

We shall now that we can use lambda calculus in place of set theory. That is, rather than using sets and set axioms as
primitives, we can useλs.

Definition:

0
def
= λxy.y

1
def
= λxy.xy

2
def
= λxy.x(xy)

3
def
= λxy.x(x(xy))
. . .

n
def
= λxy. x(x . . . (x

︸ ︷︷ ︸

n times

y) . . .)

= λxy.xny.

We use overlines to remind ourselves that they are Church numerals rather than simple numbers.

The alert philosopher should be worried that we seem to be using natural integers in the definitions of
Church numerals. Be assured that things can be formulated without any reference to Set theory.

In Set, “n” is “havingn things”, while in the Lambda Calculus it is “doingn things”.

28

These numerals are all in normal form. For any termsM andM we have

nMN ≻β M(M . . . (M
︸ ︷︷ ︸

n times

N) . . .),

which isM applied toN n times. So the Church numeraln is an “applyn times” operator.

For a numbern its successorSn is given by

S = λn.λxy.x(nxy),

(i.e., applyx n times, then one more time).

Example.
S2 = (λn.λxy.x(nxy))2

≻ λxy.x(2xy)
≻ λxy.x(x(xy)) as2xy ≻ x(xy)
= 3.

In general:
Sn = (λn.λxy.x(nxy))n

≻ λxy.x(nxy)
≻ λxy.x(xny)) asnxy ≻ xny
= λxy.xn+1y
= n+ 1.

That is
Sn ≻ n+ 1.

We can define addition in terms ofS
A = λmn.mSn,

(i.e., applyS m times ton; which means to add 1m times) or directly as

A = λmn.λxy.mx(nxy),

(i.e., applyn times, thenm more times) so thatAmn ≻ m+ n.

For example
A2 3 = (λmn.λxy.mx(nxy))2 3

≻ λxy.2x(3xy)
≻ λxy.x2(x3y)
= λxy.x5y
= 5

Exercise:proveAmn ≻ m+ n.

Similarly, multiplication is
M = λmn.λxy.m(nx)y,

(i.e., apply “applyn times”m times) so thatMmn ≻ mn.

29

For example
M2 3 = (λmn.λxy.m(nx)y)2 3

≻ λxy.2(3x)y
≻ λxy.(3x)(3xy)
≻ λxy.(3x)(x3y)
≻ λxy.x3(x3y)
= λxy.x6y
= 6

Exercise:proveMmn ≻ mn.

NowmnM ≻ n(n . . . (n
︸ ︷︷ ︸

m times

M) . . .) = nmM , so that exponentiation is

E = λmn.λxy.nmxy.

andEmn ≻ mn.

Sometimes you will see the the definitionE = λxy.yx. This almostworks with β reduction, but fails on0n ≻β

λz.z 6=β 1. On the other hand, we do haveλz.z =η 1, so if we allow ourselvesη reduction, we can use this simpler
form for exponentiation.

Exercise:Prove, without using any property of the (normal) integers,that

for all n An 0 = A0n = n n+ 0 = 0 + n = n
for all n andm Anm = Amn n+m = m+ n
for all n,m andp An(Amp) = A(Anm)p n+ (m+ p) = (n+m) + p
for all n Mn 0 = M0n = 0 n0 = 0n = 0
for all n Mn 1 = M1n = n n1 = 1n = n
for all n andm Mnm = Mmn nm = mn
for all n,m andp Mn(Mmp) = M(Mnm)p n(mp) = (nm)p
for all n En 0 = 1 n0 = 1
for all n > 0 E0n = 0 0n = 0
for all n En 1 = n n1 = n
for all n E1n = 1 1n = 1
for all n En 2 = Mnn n2 = n× n
for all n,m andp Mn(Amp) = A(Mnm)(Mnp) n(m+ p) = nm+ np
and so on.

(Of course, those=s above are actually=βs). The “cheating” proofs of these go like:An 0 = n+ 0 = n. However,
we can prove all these equalities without reference to the natural integers.

All of this works very naturally in Lisp:

(defun int2church (n)
(lambda (x)

(lambda (y)
(int2churchrec n x y))))

; apply x n times to y
(defun int2churchrec (n x y)

(if (= n 0)
y
(x (int2churchrec (- n 1) x y))))

30

; apply ‘‘add 1’’ to 0 n times
(defun church2int (n)

((n (lambda (x) (+ x 1))) 0))

(defconstant zero (int2church 0))
(defconstant one (int2church 1))
(defconstant two (int2church 2))
(defconstant three (int2church 3))

And then

; successor
(defun S (n)

(lambda (x)
(lambda (y)

(x ((n x) y)))))

; add
(defun A (m)

(lambda (n)
(lambda (x)

(lambda (y)
((m x) ((n x) y))))))

; multiply
(defun M (m)

(lambda (n)
(lambda (x)

(lambda (y)
((m (n x)) y)))))

; exponentiate
(defun E (m)

(lambda (n)
(lambda (x)

(lambda (y)
(((n m) x) y)))))

(church2int ((E two) three)) ->
8

A rather more elegant definition forint2church usesS

(defun int2church (n)
(if (= n 0)

(lambda (x) (lambda (y) y)) % viz 0
(S (int2church (- n 1)))))

31

Church numerals display an interesting property ofλ-terms, namely that their normal forms can be very large. Look
at the sequence

2, 2 2, 2(2 2), 2(2(2 2)), . . .

which areλ-terms of lengths roughly
3, 6, 9, 12, . . .

but whose normal forms (i.e.,λxy.x(x(x . . . (xy) . . .))) are of lengths roughly

2, 22, 222

, 2222

, . . .

So, while the original lambda terms increase linearly in length their normal forms are super-exponential in length.
This shows thatλ-term can have a normal form that is arbitrarily longer than itself. Calling this “reduction” is perhaps
a little misleading!

Subtraction comes later: it is surprisingly hard!

4.2 Cons, car, cdr as lambdas

We can make datastructures like lists using the lambda calculus.

Define thepair
<M,N> = λv.vMN,

wherev does not appear free inM orN .

Whenever we say “LetA = blah” what we mean is “I am going to useA as a shorthand for blah”. TheA
is notpart of theλ-calculus, but just convenient notation so we don’t have to write out the full expressions
everywhere.

Then define
P = λxy.λz.zxy
F = λp.p(λxy.x)
R = λp.p(λxy.y)

We get
PMN = (λxy.λz.zxy)MN

≻ (λy.λz.zMy)N
≻ λz.zMN
= <M,N>

F<M,N> = (λp.p(λxy.x))<M,N>
≻ <M,N>(λxy.x)
= (λv.vMN)(λxy.x)
≻ (λxy.x)MN
≻ (λy.M)N
≻ M

32

Similarly,
R<M,N> ≻ N.

Thus we haveP for pair (or cons),F for first (or car), andR for rest (or cdr).

Exercise:Prove<A,B> = <C,D> if and only ifA = B andC = D.

From the positive integers (Church numerals) and pairs, we can define the negative integers; from these we can define
rationals; and then reals and complexes. Lambda calculus can replace set theory as a foundation for arithmetic.

In Lisp:

; cons
(defun P (x)

(lambda (y)
(lambda (z)

((z x) y))))

; car
(defun F (p)

(p (lambda (x) (lambda (y) x))))

; cdr
(defun R (p)

(p (lambda (x) (lambda (y) y))))

4.3 Predecessor and Subtraction

Subtraction of Church numerals would be nice to have, as longas we take care not to end up with a negative number.
This can be built from a predecessor function, where we definethe predecessor of0 to be0.

First we define an operatorU on pairs such that

U<m,n> ≻ <n, n+ 1>

as the idea is to pairn+ 1 with its predecessorn.

We can define
U = λp.P (Rp)(S(Rp)),

i.e, the pair consisting of the cdr ofp and 1 plus the cdr of the pairp.

Next,
U(U(. . . U
︸ ︷︷ ︸

n > 0 times

<0, 0>) . . .) ≻ <n− 1, n>

But the operatorn applies somethingn times, so this is

nU<0, 0> ≻ <n− 1, n> if n > 0

33

So if we define

D = λn.F (nU<0, 0>)
= λn.(λp.p(λxy.x))

(n(λp.(λxy.λz.zxy)((λp.p(λxy.y))p)((λn.λxy.x(nxy))((λp.p(λxy.y))p)))
(λv.v(λxy.y)(λxy.y)))

when written out in full, we see that, for example,

D3 = (λn.F (nU<0, 0>))3
≻ F (3U<0, 0>)
≻ F (<2, 3>)
≻ 2

Now we can define a form of subtraction (truncated subtraction) by

T = λmn.nDm,

then

Tmn =

{
m− n if m ≥ n
0 otherwise

The toaster algorithm. How to make perfect toast when the toaster always overdoes it by 10 seconds. Get
a second identical toaster. Put bread in the first, wait 10 seconds, then put bread in the second. When the
first pops up with its overdone toast, extract the perfectly done toast from the second.

In Lisp:

(defun U (p)
((P (R p)) (S (R p))))

(defconstant zerozero ((P zero) zero))

; decrement
(defun D (n)

(F ((n U) zerozero)))

; truncated subtraction
(defun T (m)

(lambda (n)
((n D) m)))

(church2int ((T two) three)) ->
0

(church2int ((T three) two)) ->
1

34

4.4 Equality and Comparison

Now we can test for equality of Church Numerals. Define

Z = E0

so that
Zn = E0n

≻

{
1 if n = 0
0 otherwise

SoZ is a test for zero, where we are using1 to indicate true, and0 to indicate false. Next,

L = λmn.Z(Tmn)

has
Lmn ≻ Z(Tmn)

≻

{
Z(m− n) if m > n
Z0 otherwise

≻

{
0 if m > n
1 otherwise

=

{
1 if m ≤ n
0 otherwise

ThusLmn tests whetherm ≤ n.

Now,
Q = λmn.M(Lmn)(Lnm)

has
Qmn ≻ M(Lmn)(Lnm)

≻







M1 0 if m < n
M1 1 if m = n
M0 1 if m > n

≻

{
1 if m = n
0 otherwise

And soQ is a test for equality of Church numerals. Note that we can’t test arbitraryλ-terms for equality! Since all
Church numerals have normal forms, we could check that way: find normal form then check forα-equality. On the
other hand,Q gives us a computed value without having to look at the structure of the terms.

In Lisp:

; = 0
(defconstant Z (E zero))

; <=
(defun L (m)

(lambda (n)
(Z ((T m) n))))

; =
(defun Q (m)

(lambda (n)

35

((M ((L m) n)) ((L n) m))))

(church2int ((Q one) one)) ->
1

(church2int ((Q one) three)) ->
0

4.5 Booleans

The notion of Booleans can be taken further. For example, we may define an AND operator

AND = M,

as multiplication does the right thing on0 and1.

However, there is an alternative formulation of Booleans that tends to be more useful. This starts with

T = λxy.x
F = λxy.y

T picks the first, whileF picks the second:TMN ≻ M , whileFMN ≻ N . Note these are the same as the car and
cdr operators!

Then the Boolean operations are
AND = λmn.mnF
OR = λmn.mTn

NOT = λm.mFT

This aligns more closely with the way we tend to think of the Boolean operations. Ifm is true thenmANDn is true
exactly whenn is true, elsemANDn is false: ifm is true thenmnF picks then, otherwise it picks theF . This is
the view thatmANDn is “if A thenB elseF ”.

Now we can prove the usual things about Boolean operators, like commutativity, associativity, idempotency, identities,
distributivity, de Morgan, and so on.

Exercise:do this.

4.6 Other Datatypes

It is easy to see how we may construct other datatypes. For example, a string could be a list of numbers (where a list
is a sequence of pairs, just as you might expect).

Aggregate types can be make out of simple ones using lists, and so on.

4.7 Control Structures

In Lisp there is no real distinction between program and data: they look alike. The same is true in the Lambda calculus:
just as data can be modelled byλ-terms, so can program.

Here we model if-then-else:

36

IF = λm.λxy.mxy

That’s all there is to it!

We find that
IF TMN ≻ (λxy.Txy)MN

≻ TMN
≻ M

and
IF FMN ≻ (λxy.Fxy)MN

≻ FMN
≻ N

ThusIF BMN acts like the Lisp(if B M N) .

4.8 Summary

Thus we have built all the constructs we need in a computer language: numbers, comparisons, recursive functions and
conditionals. This means that we can take an arbitrary algorithm and implement in the lambda calculus, and then use
the tools of reduction to analyse the algorithm.

5 Combinators

The idea of taking operators and giving them names (e.g., theA andM operators on Church Numerals) can be taken
a long way.

The purpose ofcombinatorsis to package up some useful operators and to do lambda calculus (initially) without
variables. This was developed by Schönfinkel in the 1920s and later by Curry.

A lambda abstraction without any free variables is known as acombinator. For example,

S = λxyz.xz(yz) K = λxy.x I = λx.x

These three are not independent, for consider

SK = (λxyz.xz(yz))(λxy.x)
≻ λyz.(λxy.x)z(yz)
≻ λyz.(λy.z)(yz)
≻ λyz.z

So
SKK ≻ (λyz.z)(λxy.x)

≻ λz.z
= I

In summary,
SKK =β I

37

Rather than definingS andK in terms of lambdas, we can go in the opposite direction, and haveS andK as primitives,
forgetting, for a moment, the existence of the lambda calculus. Thecombinator calculusis defined as strings ofSs,
Ks, and optionallyIs, with parentheses for grouping.

A combinator termis

• anS or aK or (optionally) anI, or

• (ab) wherea andb are combinator terms.

Thus, for example,I, (SK), ((SK)K), ((SS)(II)) are combinator terms.

As usual, we drop parentheses and associate to the left, soSKK means((SK)K).

There are a few reduction rules and nothing else:

((Ka)b) ≻ a
(((Sa)b)c) ≻ ((ac)(bc))

(Ia) ≻ a

or, dropping parentheses:
Kab ≻ a
Sabc ≻ ac(bc)
Ia ≻ a

where lower case letters represent arbitrary expressions.Note that these arenot β reductions: this isnot Lambda
calculus, but theCombinator calculus.

Note that the wordcombinatornow has two meanings: firstly, aλ-term with no free variables; and
secondly a term as defined above. Usually, you can tell by the context, but it is important to know which
you are talking about.

Note that

1. there are no variables;

2. there is noα renaming;

3. there is no substitution.

Just as in the lambda calculus, we use= for a sequence of reductions or reverse reductions.

The reduction rules allow us to prove things like

SKKx ≻ Kx(Kx) ≻ x ≺ Ix,

for all combinator termsx, thus
SKKx = Ix ∀x

so we could useSKK in place ofI. In fact, most definitions of combinators just useS andK, and then defineI as
syntactic abbreviation forSKK. We caneither

• choose to haveS,K andI and note thatSKK andI have the same properties but are not equal (no extension-
ality), or

38

• have justS andK and defineI to be convenient abbreviation ofSKK.

Another reduction isSIIa ≻ Ia(Ia) ≻ aa, soSII is like ω = λx.xx. And thenSII(SII) ≻ SII(SII) is an
infinite loop, just likeΩ = ωω.

Notice that lambda calculus and combinators are not completely the same, since in lambda calculus we canprovethat
SKK = I, while the combinator rules don’t let us do this.

If we haveX = λx.xKSK, thenXXX ≻ K andX(XX) ≻ S soX(XX)(XXX)(XXX) ≻ I. But
there doesn’t seem to be a nice combinator-style definition forX .

XX = (λx.xKSK)(λx.xKSK) ≻ (λx.xKSK)KSK ≻ (KKSK)SK ≻ KKSK ≻ KK so
XXX ≻ KKX ≻ K andX(XX) ≻ X(KK) ≻ KKKSK ≻ KSK ≻ S.

5.1 Other Properties

5.1.1 Normal Forms, Church-Rosser

Just as in lambda calculus we have normal forms. These are when we don’t have aKab or aSabc to reduce.

For exampleKS andSKK.

Next, we can prove a Church-Rosser theorem:

if u ≻ x andu ≻ y then there is az with x ≻ z andy ≻ z.

So again, if a term has a normal form, it is unique. We see fromSII(SII) that normal forms need not exist.

5.1.2 Applicative and Normal Order Reduction

We can reduce inside-out (applicative order) or outside-in(normal order), just as before. Normal order reduction will
reach a normal form, if it exists.

Example:KI(SII(SII)) ≻ KI(SII(SII)) ≻ . . ., for applicative order, whileKI(SII(SII)) ≻ I for normal
order.

5.1.3 Church Numerals

We can define0 = KI, 1 = S(S(KS)K)(KI), 2 = S(S(KS)K)(S(S(KS)K)(KI)), and so on. HereS(S(KS)K)
is a successor combinator.

More succinctly, letB = S(KS)K, thenn = (SB)((SB)((SB) . . . (KI))) = (SB)n(KI).

Note thatBxyz = S(KS)Kxyz = KSx(Kx)yz = S(Kx)yz = Kxz(yz) = x(yz).

Just as for lambda numerals, we find
nFx = Fnx.

Exercise:Define addition, multiplication, etc.

39

5.1.4 Datastructures

Exercise:Define pairs, car and cdr.

5.1.5 Booleans

Exercise:Definetrueandfalse, and the boolean operators.

Answer: T = K, F = KI.

5.1.6 Fixed Points

Let
V = S(S(KS)K)(K(SII))

and then
Y = SV V

has
Ym = m(Y m),

as before. This combinator is derived from Curry’sY . We can use thisY in the same way to define recursive functions
and solve equations.

We find
V m = S(S(KS)K)(K(SII))m

= S(KS)Km(K(SII)m)
= KSm(Km)(SII)
= S(Km)(SII)

And then
V mn = S(Km)(SII)n

= Kmn(SIIn)
= m(In(In))
= m(nn)

So
Y m = SV V m

= V m(V m)
= m(V m(V m))
= m(SV V m)
= m(Y m)

5.1.7 Extensionality

The combinator calculus is not extensional. For example,S(KK)Ix = KKx(Ix) = Kx for all x, butS(KK)I 6= K
(both sides are in normal form).

Adding extensionality to combinators is much harder than for the lambda calculus, and involves ideas that we don’t
have time for here.

40

5.2 Extended Combinators and Equivalence to Lambda Calculus

One of the major benefits of the combinator calculus is that itdoes not have variables: this makes everything nice
and simple. We want to show that the Lambda Calculus and the Combinator Calculus are “equivalent,” in the sense
that they have equal expressive power. To do this we need to model combinators asλs andλs as combinators, which
requires introducing variables to combinators.

Extending the combinator calculus with variables is easy: just include symbols likea, b, c alongsideS andK. There
are no bound variables and no substitution. The reduction rules are unchanged.

It is now possible to show that the combinator calculus usingjustS andK (orS,K andI) has equal expressive power
to the lambda calculus.

Theorem: for everyλ-term there is an equivalent (extended) combinator term.

Closedλ-terms are equivalent to pure combinators.

Translation of combinators toλ-terms is simple: use the lambda calculus definitions forS andK (andI) above:

S → λxyz.xz(yz)
K → λxy.x
I → λx.x

It is easy to see that the behaviour of the translations is thesame as the behaviour of the combinators. After all, that’s
how we started.

combinator λ-term

m
λ

- M

n

reduce

? λ
- N

β reduce

?

Each reduction in the combinator calculus is reflected by a reduction in the Lambda calculus.

Translation ofλ-terms to combinators is harder. DefineC andA by

• C(x) = x for a variablex

• C(c) = c for a constantc (i.e., onlySs orKs)

• C(MN) = C(M)C(N) application

• C(λx.M) = A(x,C(M)) abstraction

• A(x, x) = I

• A(x, c) = Kc for a constantc (this is actually a special case of the next rule)

• A(x,M) = K C(M) for x 6∈ FV (M)

• A(x,MN) = S A(x,M)A(x,N)

41

Note thatA(x,M)x = M for any combinator expressionM :

• A(x, S)x = K C(S)x = KSx = S

• A(x,K)x = K C(K)x = KKx = K

• A(x, x)x = Ix = x

• A(x, y)x = KC(y)x = Kyx = y

• A(x,MN)x = S A(x,M)A(x,N)x = A(x,M)x(A(x,N)x) = MN , by structural induction

This is sometimes calledcompilingλ-terms. If we were proving things, we would now have to finish showing how
the resultingλ-terms behave in the same way as the original combinators.

λ-term combinator

M
compile

- m

N

β reduce

? compile
- n

reduce

?

Each reduction in the Lambda calculus is reflected by a reduction in the combinator calculus.

Example. Compileλxy.y.
C(λxy.y) = A(x,C(λy.y))

= A(x,A(y, C(y)))
= A(x,A(y, y))
= A(x, I)
= KI

AndKIxy = Iy = y.

Example. Compileλx.y. This has a free variable.

C(λx.y) = A(x,C(y))
= A(x, y)
= Ky

AndKym ≻ y as required.

Example. Compileλxy.x.
C(λxy.x) = A(x,C(λy.x))

= A(x,A(y, C(x)))
= A(x,A(y, x))
= A(x,Kx)
= S A(x,K)A(x, x)
= S(KK)I

We might have expected this to produceK, but we haveS(KK)I which does not reduce. Note, though, that
S(KK)Ix = KKx(Ix) = K(Ix) = Kx for all x. So, WhileS(KK)I andK have equivalent behaviour, they
are not actually equal. This is lack of extensionality again.

42

Example. Compileλx.Mx, wherex 6∈ FV (M). This term was important regarding extensionality in the lambda
calculus.

C(λx.Mx) = A(x,C(Mx))
= A(x,C(M)C(x))
= A(x,mx) wherem = C(M)
= S A(x,m)A(x, x)
= S(Km)I

And S(Km)Iy = Kmy(Iy) = my for all y. We might hope that one possible way of adding extensionality to
combinators would be to add the rule

S(Km)I ≻ m

for all m. This new rule does allow us to prove

xm = xn for all x impliesm = n

sincem = S(Km)I = S(Kn)I = n. Though this is not quite what we want. And proving that adding this new rule
is consistent is harder.

The above is just one way of compilingλ-terms to combinators. There have been many attempts to derive compilation
rules that produce simpler combinators. Most schemes introduce new combinators, as discussed below.

How can we reconcile the fact thatSKK is irreducible in the combinator calculus, while(λxyz.xz(yz))(λxy.x)(λxy.x)
simplifies in the lambda calculus with this equivalence?

SKK
λ

- (λxyz.xz(yz))(λxy.x)(λxy.x)

?

reduce

?

�
compile

(λyz.(λxy.x)z(yz))(λxy.x)

β reduce

?

If the λ-term on the right reduces, the equivalence says the combinator term on the left must reduce?

43

In reality, this is not a true picture. It is actually

SKK

nasty� (λxyz.xz(yz))(λxy.x)(λxy.x)

-

nasty
?

� (λyx.(λxy.x)z(yz))(λxy.x)
?

. . .
?

. . .
?

I
?

� λx.x
?

Theλ-term on the right compiles to something big and nasty on the left. Whatever it is, it can reduce toI. This nasty
thing has the same behaviour asSKK, but is not equal to it.

In fact, a moment’s reflection shows that there cannot be a compilation scheme that maps(λxyz.xz(yz))(λxy.x)(λxy.x)
to SKK, as the former reduces and the latter does not.

We have equivalence, not an isomorphism: ifF : combinator→ λ andG : λ → combinator, then
GF 6= identity, for exampleGF(K) = G(λxy.x) = S(KK)I 6= K.

However, we always find thatGF(c) = something with equivalent behaviour toc.

Note, also, thatFG(L) ≻βη L for all λ-termsL if we allow η reduction, asη reduction says “allλ-terms
with the same behaviour reduce to the sameλ-term”.

5.3 Combinators for Computation

Turner 1979. Conversion of a program to combinators. Reducethe combinators to execute the program. Extend
combinators with variables, integers,+, =, cond,Y , I, etc.

If we let

F = S(K(S((S((S(K if))((S <)(K2))))(K1))))(S(K(S∗))(S(S(KS)K)(K((S−)(K1)))))

then
f = Y F

is the factorial function. In this,if would be the compilation of theλ-term for if-then-else;2 the Church numeral;
and* etc. the Church numeral arithmetic operators. Alternatively, we add these constructs as natives to the language.

44

@

M x

@

Figure 4: Shared Structure

5.3.1 Hardware Implementations

This idea behind combinator computation is that you can use parallel reduction to increase speed of execution. In an
expression like

(II)(KII)

we can reduce theI simultaneously with theK as we know that there can be no interaction between the two parts, or
any side effects to confuse things. Thus, if we have a computer with more than one processor, we can trivially increase
the speed of execution by parallel reduction.

Similarly, inS(SSSI)(SSSI) we know that any reduction of the first part can be mirrored in the second part, that is,
we can reduce the first as far as we like, and simply copy the result over to the second. Computationally, we can go
further: make both partss pointers to thesame structure, so that reduction of the firstis reduction of the second. This
structure sharing reduces space and increases speed again.

This leads naturally to the idea of representingλ-terms as graphs:M(Mx) becomes the graph in Figure 4.

Here@means “apply”.

There were several projects that aimed to implement these ideas in hardware. The vision was to gain speed over
conventional architectures from parallel reduction.

ALICE (Applicative Language Idealised Computing Engine),designed by Darlington and Reeve at Imperial College
in 1981. Intention to implement in VLSI, but only ever used discrete components.

The graph reducer GRIP (Graph Reduction in Parallel) was built from a distributed network of conventional processors.

SKIM (The SKI Machine). For reducing pure combinators.

But there is a problem that all these had, namely quadratic expression swell (in the number of abstractions). When we
compile to combinators we find that the size of expressions grow immensely. For example

C(λxyz.xz(yz)) = S(KS)(S(K(KS))(S(KS)(S(S(KK)(S(KK)I))
(K(S(KS)(S(KI)(S(KS)(S(S(KK)I)(KI)))))))))

rather than justS.

If a λ-term isO(n) in size, then the compiled combinator is oftenO(n2).

Adding a new rule

• A(x,Mx) = C(M), whenx 6∈ FV (M)

can help sometimes. We know thatλx.Mx has the same behaviour asM (they are extensionally equal) so we might
as well compile to the simpler form. So adding this rule produces combinators with equivalent behaviour.

With this rule, we find thatC(λxyz.xz(yz)) = S, which is considerably better!

45

However, we now also need to allowη reduction in theλ-terms. For example:

C(λxy.xy) = A(x,A(y, xy))
= A(x, x) by application of the new rule
= I

andλxy.xy = λx.(λy.xy) ≻η λx.x. On the other hand, we get(S((KS)(S((S((KK)I))(KI))))) without the new
rule.

Exercise:Reworkλxy.y, λx.y, λxy.x, λx.Mx using this rule.

Answer: KI,Ky,K,m.

They needed more optimisations to be practical. So they added operators likeBabc = a(bc), Cabc = (ac)b and rules

S(Ka)(Kb) → K(ab)
S(Ka)I → a
S(Ka)b→ Bab
Sa(Kb) → Cab

Shared structure helps a little: we have

S(S(KS)(SK(K(SII))))(S(KS)(SK(K(SII)))) = SV V,

whereV = S(KS)(SK(K(SII)), is about half the length again (as stored in memory), but still the expressions are
larger than they really ought to be.

Another approach is to definereaching combinators:

• S′pabc ≻ p(Sabc) ≻ p(ac(bc))

• K ′pab ≻ p(Kab) ≻ pa, and

• I ′pa ≻ p(Ia) ≻ pa

It turns out that when we use reaching combinators, we only get linear expression swell, not quadratic.

5.3.2 Supercombinators and Lambda Lifting

Hardware reduction machines never really took off as they were rapidly superceded by new compilation techniques
based aroundsupercombinators(Hughes 1984). These are combinators that do a lot more work than simple combina-
tors: in essence they are function definitions. For example,the program

(defun double (a) (+ a a))
(double 4)

We regarddouble as a (super)combinator with a reduction rule

(double n) -> (+ n n)

46

Thinking of combinators at this level is a whole lot easier than the low-levelS andK, and is much easier to compile
and optimise.

Compilation of supercombinators requires a technique known aslambda lifting. As a combinator has no free variables,
we will have to manipulate code that contains free variablesto eliminate them before we compile.

For example, inH = λx.y we want to rewrite this using supercombinators, buty is free inside the lambda and
combinators don’t have free variables. We can fix this by

λx.y =β (λu.(λx.u))y = (λux.u)y

So now we can now writeH = Gy, whereG = λux.u is a supercombinator.

If λx.y =β Gy appears inside some other lambda,λz.z(λx.y) =β λz.z(Gy), say, we can lifty again

λz.z(Gy) =β (λvz.z(Gv))y = Fy,

for the supercombinatorF = (λvz.z(Gv)). Clearly,y can be lifted as far as we need, until it is bound in someλ or
we reach the top level of the program.

This idea is used in languages like Haskell and others and hasdeveloped into a technique used in compilers of standard
languages.

6 Lambda Calculus with Constants

As previously mentioned, this takes the pure (orη) lambda calculus and adds new objects calledconstants. These
differ from variables in that they cannot be bound. For example, we could have constants 0, 1, 2, . . . ,+. Note that
we regard+ as a constant (after all, it is a constant function in the sense that its defintion never changes!). Another
example is when we have constantstrue, false, and, not.

More formally, we could take our definition of the pure lambdacalculus and add to it:
A λ-term with constants is defined as follows.

• a constant is aλ-term

• a variable is aλ-term

• if M andN areλ-terms, so is(M)(N). This is called anapplication

• if M is aλ-term andv is a variable, thenλv.(M) is aλ-term. This is called anabstraction. Here,M is the
body, while v is theformal argument

• nothing else is aλ-term.

For readability, we shall use infix notation such as1 + 2 rather than+1 2, though you will occasionally see people
using the latter. This actually means, of course,(+1)2, or the constant+ being applied to the constant1 which in turn
is applied to the constant2. So this is actually the Curried version of+.

Note that the rules for constructingλ-terms do not stop us writing down terms like2+ or +1 2 even if we want infix
notation.

When given a collection of constants we generally have some ulterior motive lurking about as to what they “really
mean”. For example, we like to think of 0, 1, and 2, as integers, and+ as addition of them. To capture this meaning
we haveδ-reduction rules. An example could be the rule

47

n+m
︸ ︷︷ ︸

lambda term

≻δ n+m
︸ ︷︷ ︸

integer sum

for constantsn andm. Perhaps this would be easier to interpret if we wrote

(+n)m ≻δ n+m

or even
n+m ≻δ the sum ofn andm

The function over the integers is called anexternalfunction (i.e., external to the calculus), while theδ-reduction is the
internal form, or itsinternalisation.

n+m
︸ ︷︷ ︸

internal

≻δ n+m
︸ ︷︷ ︸

external

This is actually an infinite number of reduction rules, one for each possible pairing ofn andm. This is called arule
schema.

More generally, we can have multiple functions, and each need their ownδ rule or rule schema. Strictly speaking,
each function has adifferentδ, like δ+, δ× with reductions≻δ+

, ≻δ× and so on.

Example. Constantstrue, false, and, not. Reductions

not true ≻δ false
not false ≻δ true

false and false ≻δ false
false and true ≻δ false
true and false ≻δ false
true and true ≻δ true

Again, “false and true” is a notational convenience for “((and false) true)”. Combining withβ-reduction we have
≻βδ. We find that (Mitschke, 1976)

Let f be an external function on the constants. Then Church-Rosser holds for≻βδf
-reduction.

Now we can do all the usual stuff like normal forms, which can be found by normal order reduction when they exist.

More general forms ofδ-reduction allow us to apply functions to closedλ-terms as well as constants. An early example
of δ-reduction was used by Church:

CMN ≻δC true if M ≡ N
CMN ≻δC false if M 6≡ N

whereM andN are closedλ-terms in normal form, andC a constant that models a conditional. This only works on
closed normal forms, since

(λxy.Cxy)II ≻β CII ≻δC true,

while
(λxy.Cxy)II ≻δC (λxy.false)II ≻β false.

The power of lambda calculus with constants is that (a) we have the computational efficiency of the external function,
and (b) we can mix things as we see fit. For example, have integersandbooleans. Or have arithmetic with errors:

48

constants:n for eachn ∈ Z, +, −, ∗, /, error .

δ-schema: as expected for+, −, ∗, but also

n/m ≻ integer quotient ifm 6= 0
≻ error if m = 0

n+ error ≻ error
error + n ≻ error
n ∗ error ≻ error

. . .

and so on. This all fits together naturally, unlike set theorywhere addingerror is somewhat a kludge as it changes the
domains and codomains of all our functions.

7 Typed Lambda Calculus

The lambda calculus, although very powerful, does not really reflect the commonly held view of a function as some-
thing with a specified domain and range and a rule to get from one to the other. Thus the functionsf : Z → Z : n 7→ n
andg : Z → R : n 7→ n are different, even though “they do the same thing”. The functions

int f(int n)
{

return n;
}

and

double g(int n)
{

return (double)n;
}

are really quite different asg requires the conversion of anint (possibly a 32 bit signed integer) to adouble
(possibly a 64 bit IEEE).

Peculiarities like infinite reductions and functions beingapplied to themselves seem a bit strange, and do not fit well
with ideas of set theory. Further, most modern computer languages aretyped, i.e., there is a concept of a type of an
object and this prevents some of the pure lambda calculus ideas being directly applicable. For example, applying a
lambda to itself.

For some computer languages (like C, Java, etc.) the types are in the variables: the type of an object in inferred from
the type of the variable that contains it. If you can squeeze an object into anint variable, then what you read of the
the variable is anint . For others (like Lisp) the type is in the object itself and a variable can hold an object of any
type.

There areuntypedlanguages of course, assembler being one in point. More significantly, there are untypedhigh level
languages, BCPL being the most visible example.

Thetyped lambda calculusattempts to regain some of the classical intuition of functions with types.

49

7.1 Types

Types capture the idea of domains and ranges.

We start with some collection of symbols that we shall callatomic types. These symbols are different from the ones
we shall be using for variables.

A typeis defined by

• an atomic type is a type, and

• if α andβ are types, then(α→ β) is a type, called acompound type.

You may like to think of an atomic type as a set, and a compound type(α→ β) as the collection of functions fromα
to β. For example, the setZ → Q would be the collection of all functions from the integers tothe rationals.

Alternatively, as some specific collection of functions, e.g., α andβ are groups, andα → β is the
collection of all group homomorphisms fromα to β; or α andβ are vector spaces, andα → β is the
collection of all linear maps fromα to β.

Orα andβ are Booleans (true or false) andα→ β is an implication.

One point, to become important later, is thatall types are of finite length, whereα has length 1,α → β length 2, and
so on.

As always we drop parentheses:

• α→ β means(α→ β)

• α→ β → γ means(α→ (β → γ))

i.e., associate to the right.

Another common notation for compound types isβα for α→ β.

7.2 Typedλs

We now define the syntax of typedλs.

For each typeα (atomic or compound) we have infinitely many variables, writtenvα. The variablevα is distinct from
vβ if α 6= β. In fact, to avoid confusion, we won’t even use bothvα andvβ in the same equation. Occasionally we
will use the notationx : α for xα.

A typedλ-term is defined as follows

• eachvα is a typedλ-term of typeα (atomic or compound)

• if Mα→β andNα are typedλ-terms of typesα → β andβ respectively, then(Mα→βNα)β is a typedλ-term
of typeβ (application)

• if xα is a variable of typeα, andMβ is a typedλ-term of typeβ, then(λxα.Mβ)α→β is a typedλ-term of type
α→ β (abstraction)

50

• nothing else is a typedλ-term.

In the above definitions of typedλ-terms it is important to note that theαs andβs stand for arbitrary types, both atomic
and compound. Thus(x(α→β)→(γ→δ)yα→β)γ→δ is a valid application. It is slightly confusing to be using,say,α both
as an atomic type and as a type variable representing any type, but this is normal usage.

Notice that in the construction of the abstractionMN , the type ofM mustbe a compound typeα → something, and
the type ofB mustbe exactlyα. This corresponds to the intuition that a function that takes arguments of typeα can
only be applied to an object of typeα. The formMα→βNγ is not a valid typedλ-term ifα 6= γ.

The application rule takesNα (if you like, something in the domain setα) and a functionMα→β (one of the functions
fromα→ β) and produces an object of typeβ (something in the range setβ).

Similarly, abstraction creates a function of typeα→ β which takes a value of typeα and produces a value of typeβ.

To avoid things getting too complex, superscripts are oftenomitted. Other conventions, such as dropping parentheses,
are as before.

Example. The identity function onα (any type, atomic or compound)

Iα = (λxα.xα)α→α

= λxα.x

This has typeIα : α→ α. Iα is differentfrom Iβ whenα 6= β.

Thus we can haveIα→β(λxα.yβ)α→β ≻β λx
α.yβ Note that ifIαxβ is a valid typedλ-term only ifα = β.

Example.
Kαβ = (λxα.(λyβ .xα)(β→α))(α→(β→α))

= (λxαyβ .xα)α→β→α

= λxαyβ.x

when abbreviated. We haveKαβ : α→ β → α = α→ (β → α)

Example.
Sαβγ = λxα→β→γyα→βzα.xz(yz)

Sαβγ has type(α→ β → γ) → (α→ β) → α→ γ = (α→ (β → γ)) → ((α→ β) → (α→ γ)).

In the abbreviated form we only drop as much annotation as to keep the meaning unambiguous. For example,λxα.x
is OK, as we can deduceλxα.x = λxα.xα = (λxα.xα)α→α. On the other hand,λx.x gives us no starting point to
deduce the type ofx, so this is a bad abbreviation.

Similarly,λxαyβ .x = λxαyβ .xα = λxα(λyβ .xα)β→α = (λxα.(λyβ .xα)β→α)α→(β→α). On the other handλxαyβ .z
is not enough.

The process of deducing incompletely specified types is called type inference, and is very important in computer
languages, where the habit is to leave as much as possible unspecified and let the compiler figure things out.

Given:

• Mα→β andNα we can deduce that the applicationMN has typeβ

• (MNα)β we can deduce thatM : α→ β

• Mα→βN we can deduce thatN : α andMN : β

51

• Mα→βNγ we can deduce thatα = γ

• Mβ andxα we can deduce the abstractionλx.M has typeα→ β

• (λx.M)α→β we can deduce thatx : α andM : β.

And so on.

Example. We have seenIα = λxα.x. Step by step:

• Thexs must match, soIα = λxα.xα

• Iα takesxα and returnsxα, soIα has typeα→ α, or Iα = (λxα.xα)α→α.

A harder example:S = λxyz.xz(yz).

• As a completely unannotated term we need to make an initial assumption. So supposez has typeα

• Theny must beα→ β for someβ as we have an applicationyz. Soyz : β

• And x must beα→ ψ for someψ as we have an applicationxz. Soxz : ψ

• But, also, the applicationxz(yz) tells us thatψ = β → γ for someγ. Sox : α→ β → γ andxz(yz) : γ

ThusS = λxα→β→γyα→βzα.xz(yz), andS : (α→ β → γ) → (α→ β) → α→ γ.

7.3 Alpha Renaming

Just as before, but with one wrinkle: the destination variable must be of the same type as the source variable. So
λxα.x =α λy

α is OK, butλxα.x =α λy
β is not (whenα 6= β).

Here is more opportunity for confusion: theα type is not the same as theα in alpha equality!

7.4 Substitution

This is quite straightforward, and is defined in pretty much the same way as before. The only difference is the type of
the substitution must match that of the variable:

[Nα/xα](Mβ)

The result is of typeβ.

If the type ofN differs from the type ofx, then[N/x]M is not defined. This never arises in practice, as we can’t even
construct aλ-term with a mis-typed redex.

7.5 Reduction

We can now defineredex, contractumandreductionas before. Similarly, forβ normal forms.

It can be shown that ifMα ≻β N
γ , thenα = γ, so that reduction does not change the type of aλ-term.

52

7.6 Typed Church-Rosser and Normal Forms

Church-Rosser still holds, so we still have unique normal forms. But better still, we find that

in the typed lambda calculus there are no infiniteβ reductions.

This is thestrong normalisation theorem for typedλ-terms.

So what aboutΩ? Look atω = λx.xx. What, possibly, could be the type ofω? Supposex has typeα, soω =
λxα.xαxα. But the applicationxx tells usα = α → β for someβ, asx is a function that takes an argument of type
α. But thenα = α → β = (α → β) → β = ((α → β) → β) → β = . . ., which is not a valid type. The conclusion
we are forced to make is:ω is not a valid typedλ-term. Thus the typedλ calculus simply outlawsω, and therefore
alsoΩ.

A corollary of the SNT and Church-Rosser is thenormalisation theorem:

every typed term has a unique normal form.

To imagine why the strong normalisation theorem might be true think of the types involved in a reduction:

Mα→βNα ≻β P
β

Every reduction reduces the length of a compound type, e.g.,α → β becomesβ, and a term can’t have an infinite
length compound type or an infinite number of finite length compound types by construction of typedλ-terms. So
eventually we must stop reducing.

We can define an=β as before, and now we have analgorithm that will determine equality of terms: simply reduce
both terms until we can go no further and see if the normal forms are the same. There is no non-termination to worry
about.

And what’s more, it doesn’t matter if we use applicative or normal order reductions!

7.7 Church Numerals

Typed Church numerals are possible. For each typeα we can definenα = λxα→αyα.xny, a term of type(α→ α) →
α→ α = (α→ α) → (α→ α). Then we can define (for eachα) addition, multiplication and so on as before. Notice
that we can’t mix numerals of different types. Also, innMN ≻ MnN we must have matching types forn andM ,
namelynαM

α→αNα.

7.8 Typed Combinators

The idea of types translates directly to combinators. For eachα, β andγ define operators

Kαβ : α→ (β → α) Sαβγ : (α→ (β → γ)) → ((α→ β) → (α→ γ))

or
Kαβ : α→ β → α Sαβγ : (α→ β → γ) → (α→ β) → α→ γ

without the extra parentheses.

53

Notice that these are separate operators for each combination of α, β andγ, so we will have an infinite number of
operators (one per type, atomic or compound). Reduction rules are

KαβMN ≻M SαβγMNL ≻ML(NL)

whereM ,N andL are of appropriate types.

Exercise:Write these out in full with all their types.

Answer:

Kα→β→α
αβ MαNβ = Mα

S
(α→β→γ)→(α→β)→α→γ

αβγ Mα→β→γNα→βLα = Mα→β→γLα(Nα→βLα)

Just as for the lambda calculus, types restrict what combinators can do. For example, althoughKI is a simple untyped
combinator with a reductionKIx = I, it is much more complicated when typed. In the applicationKα→β→α

αβ Iγ→γ
γ ,

we must haveα = γ → γ for the types to match. So this is actually

K(γ→γ)→β→γ→γIγ→γ : β → γ → γ

and this reduces as
K(γ→γ)→β→γ→γIγ→γxβ = Iγ→γ

Now, even thoughxβ is not “used” in the above, itmustbe of typeβ.

Notice that, as statements in logic,α ⇒ (β ⇒ α) and(α ⇒ (β ⇒ γ)) ⇒ ((α ⇒ β) ⇒ (α ⇒ γ)) are tautologies,
that is, for every possible true or false value ofα andβ the implictions are true:

α β β ⇒ α α⇒ (β ⇒ α)
F F T T
F T F T
T F T T
T T T T

This is not a coincidence! There is a strong connection between lambda calculus and logic: the Curry-Howard iso-
morphism says that every valid proof of a theorem in logic corresponds to aλ-term reduction, and vice versa. Thus
there is a link between logic and computation.

There is a closedλ-term with a particular type only if the type corresponds to atheorem of logic. Soα⇒ β ⇒ α is a
theorem, corresponding toK. On the other hand there is no closedλ-term of typeα→ β asα⇒ β is not a theorem.
(Note that, conversely, given a theorem there is not necessarily a λ-term of that type, e.g.,((α ⇒ β) ⇒ α) ⇒ α is a
theorem, but there is no correspondingλ-term.)

We know that fromα⇒ β andα we can deduceβ: this is just the reductionMα→βNα ≻ P β!

54

7.9 Typed Lambda Calculus with Constants

We can give types to constants, too. For example, we can have some integer constants0Z , 1Z , etc., and boolean
constantstrueB andfalseB. Types ofδ-rules could be

notB→B andB→B→B

+Z→Z→Z ∗Z→Z→Z

error Z equalZ→Z→B

And so on.

7.10 Polymorphic Lambda Calculus

Also calledsecond order typedlambda calculus. This promotes types to first-class status,and allows them to be bound
in λs.

The identity functionIα is defined
Iα = λxα.x

with typeα → α. Now, as always,Iα 6= Iβ whenα 6= β, but there is no essential difference between all theIs: they
are all an identity. The problem is that the type system is forcing us to define a separateIα for eachα.

Compare this with a similar situation in C (Note! The following is actuallyoverloading, but we shall momentarily
blur over this for the sake of an example)

int idint(int v)
{

return v;
}

double iddouble(double v)
{

return v;
}

...

n = idint(1);
x = iddouble(1.0);

There is no essential difference betweenidint and iddouble , but C’s type system makes us write out the same
function twice, and with different names. In C++ there is some help in this direction, as we can write

int id(int v)
{

return v;
}

double id(double v)
{

55

return v;
}
...

n = id(1);
x = id(1.0);

and the compiler can work out from the context by type inference whichid we mean when we use it. But we still are
writing the same code twice. So C++ introduced the idea oftemplates

template <class T>
T id(T v)
{

return v;
}
...

n = id(1);
x = id(1.0);

Now T is a type variable (just like we have been usingα) and the C++ compiler again works out what we mean from
the context.

Java has a related thing calledgeneric types, but with the usual kludges. ThusList<Integer> is OK, but
List<int> is not.

Of course, Lisp programmers don’t even realise there is an issue here and write

(defun id (v) v)

This last function ispolymorphic. A polymorphic function doesn’t care about the type of its arguments but does the
same thing regardless. Thus, thelength function is polymorphic for lists as it does not care what thetypes of the
objects in the list are. Similarly,cons does not care what it is making a pair of.

The opposite of polymorphic ismonomorphic.

Note that+ is not polymorphic even though we writex + y regardless of the types ofx andy. This is because if we
were to look inside the definition of+, the code to add two integers (say as 32 bit representations)is quite different
from the code to add two floating point numbers (say as 64 bit representations). This is calledoverloading. For
example, the (non-template)id in the C++ above is actually overloaded as we could have different codebodies for
each type. You can’t properly do polymorphism in C/C++/Java without breaking the type system.

On the other hand, polymorphic functions just don’t care about their arguments.

Back to lambda calculus. We would like ourIα to be polymorphic, but the standard typed lambda calculus won’t let
us. Thesecond order typed lambda calculusintroduces polymorphism.

We may define
I = Λt.λxt.x

wheret ranges over all possible types. The capitalΛ indicates a type variable, while the smallλ is for the usual
variables. And now

Ixα ≻β x
α

56

whatever theα. The type ofI is written
∀t.t→ t

namelyt→ t for all typest.

We could at this point define the syntax for polymorphic typedlambda calculus, but instead we shall just use our
intuition. In particular, in the application

(Λt.λxt.x)Mα

we see that we shall have to do substitutions[α/t] and[M/x].

A polymorphic function can beinstantiatedat a type:

I[α] = λxα.x

andI[α] : α→ α is a monomorphic typedλ-term.

Example.
Tα = λfα→αxα.f(fx)

Tα has type(α → α) → α → α, and takes a functionf of typeα → α and returns the function that isf applied
twice. We can define a polymorphic

T = Λt.λf t→t.λxt.f(fx)

andt is a type variable, whilef andx are normal variables. The type ofT is

T : ∀t.(t → t) → t→ t

Example. We can define polymorphic Church numerals

n = Λt.λxt→tyt.xny

with type∀t.(t → t) → t → t, and polymorphic operators to add, multiply and so on. This is a more natural way to
define integers thannα as there is only one kind of integer (not one per type), and thepolymorphicn can be applied
to any function

nMα→αNα ≻MnN

Example. Polymorphic combinators. We have seenI already.

K = Λst.λxsyt.x

with type∀st.s→ t→ s, and
S = Λrst.λxr→s→tyr→szr.xz(yz)

with type∀rst.(r → s→ t) → (r → s) → r → t.

Thus polymorphism regains us some of the flexibility that theuntyped lambda calculus has.

The notion of polymorphism is widely used in computer languages as a means to reduce the amount of code you you
have to write. An additional benefit is your compiled programshould be smaller, too. In certain languages, e.g., Lisp,
it happens naturally. In some, such as C and Pascal, it is either weakly or not supported. In others, such as C++ there
are curious syntax wranglings to make it appear possible.

57

In fact, C++ cheats and uses overloading. If a C++ compiler comes across a definition likeid above,
and then a useid(1) , it effectively writes out the code

int id(int v)
{

return v;
}

and compiles and uses that. Each timeid is used on a new type it writes out the whole function again with
the appropriate types inserted. This means that there is no code sharing going on at all. The programmer
does get the benefit of writing the source just once, though.

7.11 Conclusion

We do lose some things, of course. We can’t apply a function toitself: think of the type that such a function should
have. Thus we lose things like theY operator and guaranteed fixed points. Recursive functions are generally not
possible: a recursive program could loop forever, but we can’t have non-terminating reductions.

There are many extensions, for exampleproduct types. Given typesα andβ we can form a new type with nameα× β
(just as previously given typesα andβ we formed a new type with nameα→ β) together with projection and pairing
operations. This is the natural way of thinking about pairs of objects. For example(2, 3.4) has typeint × double.
A function of two objects can be expressed as a function of onepair: isf(x, y) a function of bothx andy or of the
single(x, y)? Product types are available in C/C++ usingstruct :

struct prod {
int a;
double b;

}

and Java usingclass

class prod {
int a;
double b;

}

Currying can now be expressed using product types:(α × β) → γ vsα → β → γ, or in a rather more suggestive
notation:γα×β vs (γβ)α.

There are alsosumtypes,α + β. This is something that is anα or a β (but not both). C/C++ has sum types using
union

union sum {
int a;
double b;

}

58

An element of this type can store anint or a double , but not both at the same time.

Much fun can be had deciding whether equations likeα× (β + γ) ∼= (α × β) + (α × γ) hold in your system for all
typesα, β andγ.

For example, is the type

struct T1 {
char a;
union {

int b;
double c;

} u;
};

the “same” as the type

union T2 {
struct {

char a;
int b;

} s1;
struct {

char a;
double c;

} s2;
};

?

Of course, the answer depends on what you mean by “the same”, i.e., what properties of the types you are considering.

Polymorphism is not the end of the story. Consider the function if . It certainly has typeB → something, so why not
regard it as polymorphic with type∀t.B → t? Well, consider the perfectly valid Lisp

(if (foo) 1 1.0)

This does not return an object of a fixed type. Sometimes it returns anint , sometimes adouble and so is not of
the type∀t.B → t. One solution (as used in ML and Haskell, below) requires thetwo branches of theif to be of the
same type

if foo() then 1 else 1.0

would be invalid, uncompilable code. Perhaps sum types can be employed:if : ∀s, t.B → s + t, but this gets
unwieldy very quickly. The other solution, as adopted by Lisp, is beyond polymorphism.

The hierarchy does not stop with second order types as there are higher order: we can haveclassesof types, for
example we can haveNumwhich containschar , int anddouble . Then we can talk about thingsfor all numeric
types.

59

8 Functional Programming

Some people were unhappy with procedural languages since they are so hard to understand and compile. The presence
of side effects means that certain optimisations cannot be made and compilers can’t produce perfect code.

These people argued that if you disallowed side effects you could get a faster running program. Also, because of
referential transparency, programs would be easier to write and debug though natural use of modularity. Thus was
born the functional style.

The functional style of programming is one that emphasises the evaluation of expressions rather than the execution of
commands. A functional programming language is one that supports such a style.

You can program, more or less, in a functional style whateverthe language, but some languages actively
help you. For example, higher order functions are pretty much necessary to program in a functional style.

This contrasts the C

sum = 0;
for (i = 0; i < 10; i++)

sum += i;

with, say,

(reduce + (intlist 0 10))

whereintlist would be a function that produces a list of integers, andreduce a function that repeatedly applies
a function to a list.

Outline implementations (not complete!):

(defun intlist (a b)
(if (< a b)

(cons a (intlist (+ a 1) b))
()))

(defun reduce (f l)
(if (= (length l) 1)

(car l)
(f (car l) (reduce f (cdr l)))))

Notice the compactness of the functional version, and also its use of higher order functions (reduce). Thepurefunc-
tional programming style also rejects the use of assignments, likesetq or = in C. This is for referential transparency:
when you see a variable (in a given block, or, in lambda calculus terms, within the scope of a lambda) it always has
the same value.

In the functional style, variables do not vary!

We note at this point the difference betweenbindingandassignment. Assignment is the traditional way of updating
the value of a variable

60

x 42 x 42

variable memory
cell

x

x

23

23

assignment overwrites
value

binding makes new
association

Figure 5: Assignment and Binding

(setq x 3)

and does not have a lambda calculus equivalent. On the other hand, binding is the direct equivalent of a bound variable
in aλ:

(let ((x 3))
...)

The binding has the limited scope of the body, and the variablex is independent of any other variables presently named
x (when using lexical scope).

In a C-like language this becomes:

x = 3

for assignment and

{
int x = 3;

...
}

for binding. The syntax in C tends to obscure the difference.

In assignment, an existing memory location is updated. In binding a new memory location is associated with the
variable name and it is initialised with a value: nothing is overwritten. This is the essence: assignment destroys the
old value, while binding is non-destructive. With binding the old variable-value association can be retrieved.

Notice the relationship betweenlet andlambda

((lambda (x)
...)

3)

does exactly the same as thelet above. In fact, some Lisps implementlet in just this way!

It may seem weird to outlawsetq , but if you think truly in the functional style, you discoverthat you rarely need it.
There are occasions when you do, of course, but these are usually due to efficiency concerns, or it makes your program
just toocontorted to avoid it.

61

Sometimes it is good to usegoto , too!

Of course, Lisp was the first language that was extensively used to explore functional ideas, though other specifically
functional language sprang up, e.g., ML, Miranda, Haskell.

The Haskell designers also wanted to support normal order reduction, but we know that isn’t very efficient. So instead
they uselazy reduction, also known ascall by need. This is like normal order in that you do not evaluate arguments,
but if we do evaluate an argument we remember the result and reuse it. In the absence of side effects this is identical
to normal order reduction.

The opposite of lazy iseager. Closely related terms arestrict, for languages that always evaluate arguments; and
non-strictfor those that don’t.

Example. Suppose we had a Lisp with lazy evaluation. Then

(defun hi ()
(print "hello")
7)

(hi) ->
hello
7

(defun lazy (a b)
a)

(lazy 9 (hi)) ->
9

The call tohi is not expanded.

(defun lazy2 (a)
(list a a))

(lazy2 (hi)) ->
hello
(7 7)

The call tohi is expanded just once. In a pure normal order reduction the(hi) would be evaluated twice in the
expansion(list (hi) (hi)) andhello would be printed twice.

In

(defun loop () (loop))

(defun foo (n) 42)

The function call(foo (loop)) will return 42 even thoughloop would never return if we called it. This is a
direct equivalent of(λx.y)Ω.

62

Exercise: (difficult) Write down a Lisp expression that printsapplicative if it is evaluated applicatively,lazy if
evaluated lazily, andnormal if evaluated in normal order.

Answer:

(setq n 0)

(defun inc ()
(setq n (+ n 1))
n)

(defun foo (a)
(setq n 10)
(if (= a 11)

(if (= a a) "lazy" "normal")
"applicative"))

(foo (inc))

The idea behind lazy evaluation is that you only execute those expressions that are actually needed. If an expression is
never needed, you don’t waste time executing it. You get the efficiency of single evaluation you get from applicative
order, but you get the semantics of normal order.

In practice

• the overhead of lazy evaluation (carrying around expressions, etc.) is pretty high

• the overhead of checking an expression to see if it has already been evaluated is non-trivial

• most of the time youdo require the value of most expressions so you don’t gain as much as you might think
from less re-evaluation.

So lazy evaluation does not gain you much in terms of speed. Itdoes give you the semantics of normal order reduction,
though.

It does allow you to programinfinite data structures(note: this program won’t work in normal Lisps!)

(defun intlist (n)
(cons n (intlist (+ n 1))))

(setq l (intlist 0))

(car (cdr l)) ->
1

This is because the call tointlist in (setq l (intlist 0)) is not evaluated until needed. When we do
(cdr l) this expands into(cdr (cons 0 (intlist 1))) which evaluates to(intlist 1) . And then
car of that expands again to(car (cons 1 (intlist 2))) which gives us 1.

Thus(intlist 0) has all the properties of the infinite list

(0 1 2 3 4 5 6 ...)

without, of course, taking up an infinite amount of storage.

63

8.1 ML

Roughly speaking, ML (formeta language) is a typed version of Lisp, though with a decidedly harder syntax. Simi-
larly, it uses eager evaluation. You can run ML on the BUCS machines by typingsml

midge:1 % sml

Edinburgh Standard ML (core language) (C) Edinburgh Univer sity

- 1+2;
> 3 : int
- ˆD
ML exit

As with Lisp, this is a read-eval-print loop: type an expression, it reads, evaluates and prints the result. The- is a
prompt, while the> introduces the result.

A very brief introduction.

• Variables

- val x = 5;
> val x = 5 : int
- x;
> 5 : int

Everything gets annotated with its type.

• Functions

- fun f x = 2 * x;
> val f = fn : int -> int

Note that ML has inferred the type off from the2* x . Herex must be of the same type as2, namelyint . And
thenf returns anint .

Arguments must have the right type

- f(1.0);
Type clash in: (f 1.0)
Looking for a: int
I have found a: real

• Local Variables

- let val y = x+1 in 2 * y+3
= end;
> 15 : int

The= is a continuation prompt.

• Type Inference

64

- fun add x y = x+y;
Type checking error in: (syntactic context unknown)
Unresolvable overloaded identifier: +
Definition cannot be found for the type: (’a * ’a) -> ’a

ML cannot work out what typeadd should be. It uses’a for α, ’b for β, etc., as type variables. It can figure
out thatx andy must be of the same type, but no more than that.

- fun add (x:int) (y:int) = x+y;
> val add = fn : int -> (int -> int)

Annotating some types helps ML. We could actually do

- fun add (x:int) y =x+y;
> val add = fn : int -> (int -> int)

ML works out the type ofy by type inference.

Notice thatadd is a function of one variable, returning a function of one variable.

- add;
> fn : int -> (int -> int)
- add 3;
> fn : int -> int
- add 3 4;
> 7 : int

Note the lack of parentheses in the call ofadd .

ML does allow functions of more than one argument

- fun add2(x:int,y:int) = x+y;
> val add2 = fn : (int * int) -> int
- add2(1,2);
> 3 : int

Actually, it doesn’t: the parentheses() make a pair of their contents, so(1,2) is a single object of type pair
of int or int * int . This is an example of aproduct type.

Note that writingadd(1,2) is an error: you are passing an object of typeint * int to add , which is a
function of typeint -> (int -> int)

- add(2,3);
Type clash in: (add (2,3))
Looking for a: int
I have found a: int * int

• Lists

- [1,2,3];
> [1,2,3] : int list

All the elements in a list must be of the same type. We havehd , tl , null (test for[]), an infix :: for cons

65

- 1 :: [2,3];
> [1,2,3] : int list

Notice thelist here is acting like a function on types: it take a type and returns a new type that is lists of that
type. This is called atype constructor: a fancy name for a function from types to types.

• Lambdas

- fn x:int => x+1;
> fn : int -> int

As in Lisp, fun f x ... is the same asval f = fn x =>

• Conditionals

- val x = if 1 = 1 then 2 else 3;
> val x = 2 : int

The values in each branch must have the same type

- if 1 = 2 then 3 else 1.0;
Type clash in: (if (1 = 2) then 3 else 1.0)
Looking for a: int
I have found a: real

• Booleanstrue andfalse .

- true;
> true : bool
- not true;
> false : bool

• Recursion

- fun fact n = if n < 2 then 1 else n * fact(n-1);
> val fact = fn : int -> int
- fact 10;
> 3628800 : int

No need forY . The existence of recursion shows that ML is not a faithful rendition of the typed lambda calculus.

• Polymorphism.

Functions likehd , tl and:: are polymorphic, as they can be used on all list types

- hd;
> fn : (’a list) -> ’a

The type ofhd uses the type variableα. The empty list[] has type’a list , but it is also possible to have
empty lists of any type, which causes some peculiarities:

66

- val nilint = tl [1];
> val nilint = [] : int list
- val nilreal = tl [1.0];
> val nilreal = [] : real list
- nilint = [];
> true : bool
- nilreal = [];
> true : bool
- nilreal = nilint;
Type clash in: (nilreal = nilint)
Looking for a: real
I have found a: int

Now,

- fun id x = x;
> val id = fn : ’a -> ’a

defines a polymorphic identity. Further

- fun K x y = x;
> val K = fn : ’a -> (’b -> ’a)

defines a polymorphicK.

- K 7;
> fn : ’a -> int

ML always usesα as the first free type, thenβ, and so on, so we don’t getfn : ’b -> int as we might
have expected.

- K 7 8.0;
> 7 : int

You may define your own datatypes:

- datatype Bool = True | False;
> datatype Bool = False | True

con True = True : Bool
con False = False : Bool

- True;
> True : Bool

The symbolsTrue andFalse are now constants of typeBool , and there are no others of typeBool . If it were legal
code, we might have definedint as

data int ... | -2 | -1 | 0 | 1 | 2 | ...

Our types are just as good as built-in ones:

67

- fun Not b = if b = True then False else True;
> val Not = fn : Bool -> Bool
- Not False;
> True : Bool

Currying in ML:

- fun curry f = fn x => fn y => f(x, y);
> val curry = fn : ((’a * ’b) -> ’c) -> (’a -> (’b -> ’c))
- fun sum(x:int,y:int) = x+y;
> val sum = fn : (int * int) -> int
- val csum = curry sum;
> val csum = fn : int -> (int -> int)
- csum 7;
> fn : int -> int
- csum 7 11;
> 18 : int

And back again:

- fun uncurry f = fn(x,y) => f x y;
> val uncurry = fn : (’a -> (’b -> ’c)) -> ((’a * ’b) -> ’c)
- val add = uncurry csum;
> val add = fn : (int * int) -> int
- add(2,3);
> 5 : int

Most of the time we don’t need to annotate types as ML can figurethem out bytype analysis, i.e., going through the
expression and determining what types everything must be. On occasion, though, it needs a hint as to what we mean.
For example, you can’t deduce types forx andy in “x + y” as the+ operator is overloaded and can take arguments
of many types. On the other hand, from “x+ 1” we can deducex must be an integer since the two arguments of+ in
ML must be of the same type: there is no automatic coercion.

There’s a lot more to ML than this, in particular, definition by pattern matching, abstract types, type constructors and
exceptions.

8.2 Haskell

A typed language with a syntax not unlike ML, but with lazy evaluation. As previously mentioned, lazy evaluation is
an attempt to combine the best features of both applicative (efficiency) and normal (good semantics) order reductions.

“Haskell” is named after Haskell Curry.

Runhugs (Haskell User’s Gofer System), a Haskell interpreter

midge:22 % /u/ma/s/masrjb/Hugs/bin/hugs +t
__ __ __ __ ____ ___ ____________________________________ _____
|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard
||___|| ||__|| ||__|| __|| Copyright (c) 1994-2001
||---|| ___|| World Wide Web: http://haskell.org/hugs

68

|| || Report bugs to: hugs-bugs@haskell.org
|| || Version: February 2001 ___________________________ ______________

Haskell 98 mode: Restart with command line option -98 to enab le extensions

Reading file "/u/ma/s/masrjb/Hugs/hugs/lib/Prelude.hs ":

Hugs session for:
/u/ma/s/masrjb/Hugs/hugs/lib/Prelude.hs
Type :? for help
Prelude> 1+2
3 :: Integer
Prelude> :quit
[Leaving Hugs]

Hugs requires definitions to be inmodules. In a fileEgs.hs put

module Egs where
{- this is a comment -}
inc x = x+1

and load into Hugs by

> :load Egs.hs

The ’E’ in module Egs where must be upper case.

You can reload a module after changing it by

> :reload Egs.hs

or simply

> :reload

will reload the last module again. Definitions must be in modules, but we can type expressions to be evaluated at the
prompt. Below we shall mix definitions and evaluations, but you must separate them when actually using Hugs.

Haskell does everything ML does and more. Functions are defined by equations

inc x = x+1 -- definition in a module
> inc 3 -- typed in at prompt
= 4 :: Integer -- result

which is short for

inc = \x -> x+1

with \x for λx. We can find the type of an object in Hugs by using:t

69

> :t inc
= inc :: Num a => a -> a

This can be read as∀α ∈ Num.α→ α, which is to say “for all numerical types . . . ”. Haskell hasclasses of types, which
are types of types, i.e., second order types. This is connected with object oriented ideas. The classNumcontains the
typesInteger , Float andDouble amongst others. These types are also in the classOrd of objects that support
comparison, i.e.,<. Use, e.g.,:info Ord to see details of a class or any other object.

For

positive x = if x > 0 then True else False

or

positive x = x > 0

We get

> :t positive
= positive :: (Ord a, Num a) => a -> Bool

This is type∀α ∈ Ord ∩ Num.α → Bool. So this works for any numeric type that also has comparison (recall that
complex numbers don’t have comparison).

This way of defining functions extends:

len :: [a] -> Integer
len [] = 0
len (x:xs) = 1 + len xs

The first line declares the type of the polymorphiclen , while the others give the value oflen of an empty list, and
len of a cons (Haskell uses infix: for cons). This is an example of definition by pattern matching.

> :t len
= len :: [a] -> Integer

Here[a] is “list of α”. As in ML, the empty list[] has type[a] , while tail [1] has type[Integer] , which
is not the same astail [1.0] of type[Double] . Sometimes.

Once given a value, a symbol cannot be reassigned (within a module)

x = 1
x = 2
ERROR haskell.hs:17 - "x" multiply defined

though it can be locally rebound

> let x = 1 in 2 * x+1
= 3 :: Integer

70

The only way to change an assignment is to edit the module and reload it. This is so Haskell can have referential
transparency.

One of the important differences between ML and Haskell is that Haskell is lazy:

from n = n : from(n+1)
> :t from
= from :: Num a => a -> [a]

This definesfrom as a function returning an infinite list of numbers starting fromn.

ints = from 0
> :t ints
= ints :: [Integer]
> head ints
= 0 :: Integer
> head(tail ints)
= 1 :: Integer

Themap function acts as in Lisp and ML, taking a function and a list and applying that function to the values in the
list:

sqs = map (\x -> x * x) ints
> head(tail(tail sqs))
= 4 :: Integer

Infinite loops:

loopy :: a -> a
loopy n = loopy n
k x y = x
> :t k
= k :: a -> b -> a

Names starting with capital letters are special in Haskell.Now,

> k 1 (loopy 0)
= 1 :: Integer

while

> k (loopy 0) 1
=

goes into a busy loop. HitˆC to interrupt.

Again, there is a huge amount of Haskell we have omitted to describe: modules for structuring programs,monads
(special structures that facilitate programming kinds of things that are traditionally difficult in pure functional lan-
guages, like state and I/O), object orientation and classesof types, and more. It is claimed that some compilers for
Haskell produce code that is equal in speed to that from a C program even though you have the power of functional
programming. It doesn’t seem to be about to replace traditional languages, though.

71

8.3 SECD and FAM

Rather than make hardware run functional languages natively, SECD, CEK and FAM were attempts to give program-
ming languages that would efficiently implement functionalconcepts.

These languages are quite low level, and can be though of asvirtual machines. The idea is that just as von Neumann’s
5 box model is a virtual machine for conventional languages to compile to, so should these should play the same role
for functional languages. If you can efficiently compile to,say, FAM, and FAM is sufficiently low level that it can
be efficiently implemented on a real machine, then your language will run efficiently on a real machine. FAM was
designed to implement ML.

As a language, FAM is quite low level like an assembler, as it describes things like stacks, frame pointers and program
counters. However, the objects it acts upon are things like closures and functions. Abstractly, the machine state is
represented by a 7-tuple

(AS,RS, FR, PR, TS,ES,M)

for references to the

• argument stack

• return stack

• frame

• program

• trap stack

• environment stack

• memory

Various operations change the values of these in given ways,e.g., push a value on to a stack. Precise semantics are
given for say, how to look up the value of a variable in the environment stack. Similarly, rules of how to compile ML
statements into FAM are given.

SECD (Store, Environment, Control, Dump) was one of the first virtual machine designs (1964). The fourvariablesS,
E, C andD describe the state of the virtual machine. CEK (Control, Environment, Kontinuation)was designed in the
1980s as upgrade of SECD. It includedcontinuations, that is an explicit notion of program control which unifies all
the ideas of jumps, loops, recursive functions and so on.

Seehttp://www.cs.nott.ac.uk/ ∼gmh/faq.html for more information on functional languages.

9 Related Stuff

• type theory

• rewriting

• process calculi: CSP, CCS,π-calculus, ambient calculus. Where the subject of discourse is the interaction
between processes

• logic

• category theory

• foundations

72

