
Introductory Lisp Exercises

Write some Lisp code to:

1. Find the length of a list

2. Reverse a list

3. Reverse a list and all its sublists

4. Take a list, and return a list containing all prefix sublists: (a b c) -> ((a) (a b) (a b c))

5. Flattens a list, e.g., ((a b) ((c)) d) -> (a b c d)

6. Take two lists and return their Cartesian product, e.g., (a b c) and (1 2) ->
((a 1) (a 2) (b 1) (b 2) (c 1) (c 2))

7. Compute the sum of all integers from 1 to n

8. Find the largest value in a list of numbers

9. Find the middle value in a list of numbers

10. Determine whether some value is a member of a list

11. Determine whether some value is a member of a list or any of its sublists

12. Take a value and a list and returns the list with all occurences of that value removed

13. Take two values and a list and returns the list with all occurences of the first value replaced by the
second

14. Take a list and return a new list with all duplicated values removed

15. Define equal using only eq, =, string= and similar

16. Bubblesort a list of numbers

17. Quicksort a list of numbers

18. Sort a list of strings lexicographically

19. Take a list of values and a comparison function, and return the values sorted according to the function,
e.g., (3 2 1) and < -> (1 2 3)

20. Take a predicate function and a list and return a new list of those elements of the list for which the
predicate returns true

21. Take a function and a list and apply that function to each value in the list, returning a new list of the
results

22. Return true is a list is a palindrome, e.g., (1 2 a b a 2 1) (do not use reverse)

23. Compute the gcd of two integers

24. Implement rationals as pairs of integers, and implement +, -, * and /

25. Evaluate simple prefix arithmetic expressions, e.g., (+ (* 2 3) 5)

26. Evaluate simple infix arithmetic expressions, e.g., ((2 * 3) + 5)



27. Take two functions f and g of one argument and return a function of one argument that is the function
composite f ◦ g

28. Take a function f of two arguments and returns a function fc of one argument that takes a value and
returns a function that, when applied to a second value returns the value that f applied to the two
values would have returned; i.e., fc(x)(y) = f(x, y)

29. Take a function like fc above, and returns a function f of two arguments such that f(x, y) = fc(x)(y)

30. Take a function f of one argument and a non-negative integer n, and returns a function fn such that
fn is f applied n times; i.e., fn(x) = f(f(. . . (f(x)) . . .))

Course Web page: http://people.bath.ac.uk/masrjb/CourseNotes/cm20214.html

2


