Limbering-Up Exercises in β -reduction

 β -reduce each of the following by one step.

- 1. $\lambda x.x$
- 2. $x(\lambda x.x)(\lambda x.x)$
- 3. $(\lambda x.x)(\lambda x.x)$
- 4. $(\lambda x.x)(\lambda x.x)(\lambda x.x)$
- 5. $(\lambda x.xx)(\lambda x.xx)$
- 6. $x((\lambda x.xy)z)y$
- 7. $(\lambda x.xy)xy$
- 8. $(\lambda x.(\lambda y.xy))y$
- 9. $(\lambda x.(\lambda y.xy))(\lambda y.y)$
- 10. $(\lambda x.(\lambda y.xy)x)z$
- 11. $(\lambda x.y)(\lambda x.xx)(\lambda x.xx)$
- 12. $(\lambda x.y)((\lambda x.xx)(\lambda x.xx))$
- 13. $(\lambda x.x)(\lambda x.x)((\lambda x.xx)(\lambda x.xx))$
- 14. $(\lambda x.xxx)(\lambda x.xxx)$
- 15. $(\lambda xy.yx)(\lambda z.z)$
- 16. $(\lambda xy.yxy)(\lambda xy.yxy)(\lambda xy.yxy)$
- 17. $(\lambda xy.x(x(xy)))MN$ where M and N are any λ -terms $x,y \notin FV(NM)$
- 18. $S(\lambda xy.x(x(xy)))$ where $S = \lambda n.\lambda xy.x(nxy)$
- 19. SKK, where $S = \lambda xyz.xz(yz)$ and $K = \lambda xy.x$
- 20. YM, where M is any λ -term and $Y = (\lambda zx.x(zzx))(\lambda zx.x(zzx)), x, z \notin FV(M)$

Now reduce as them far as possible (meaning until a normal form is reached, or you are convinced there is no normal form).

Bonus question: find the normal form for