Department of Biology & Biochemistry

Professor of Biochemistry

4 South 1.35


Tel: +44 (0) 1225 386509


Prof Michael Danson 


Current Research

Extremophiles are organisms that inhabit extreme environments of temperature (-2 to 15ºC and 55° to 110°C), salinity, pressure and/or anaerobicity. Therefore, their macromolecules are designed to withstand these extreme conditions, and our research programme aims to understand the structural basis of extremophile enzyme stability, in particular to temperature and salinity. Our experimental approaches include enzymology, molecular biology, X-ray crystallography, site-directed mutagenesis and directed evolution.

We are also interested in the biotechnological application of enzymes from extremophiles, exploiting their high stabilities to extreme conditions. Many extremophiles belong to the Archaea, an evolutionary distinct domain in addition to the Eukarya and Bacteria. Archaea are known to possess unusual metabolic features, and therefore we are also aiming to exploit their enzymes that have unique catalytic specificities. Part of this programme involves the isolation, from environmental samples, of novel extremophilic micro-organisms according to their metabolic and enzymic capabilities.


To understand the structural basis of protein stability in extremophiles, and to explore the biotechnological potential of enzymes from these organisms.


Bacon, L. F., Hamley-Bennett, C., Danson, M. J. and Leak, D. J., 2017. Development of an efficient technique for gene deletion and allelic exchange in Geobacillus spp. Microbial Cell Factories, 16 (1), 58.

Extance, J., Danson, M. J. and Crennell, S. J., 2016. Structure of an acetylating aldehyde dehydrogenase from the thermophilic ethanologen Geobacillus thermoglucosidasius. Protein Science, 25 (11), pp. 2045-2053.

Buddrus, L., Andrews, E. S. V., Leak, D. J., Danson, M. J., Arcus, V. L. and Crennell, S. J., 2016. Crystal structure of pyruvate decarboxylase from Zymobacter palmae. Acta Crystallographica Section F:Structural Biology Communications, 72 (9), pp. 700-706.

Marrott, N., Marshall, J. J. T., Svergun, D. I., Crennell, S., Hough, D. W., Van Den Elsen, J. and Danson, M., 2014. Why are the 2-oxoacid dehydrogenase complexes so large? Generation of an active trimeric complex. Biochemical Journal, 463 (3), pp. 405-412.

Wells, S. A., Crennell, S. J. and Danson, M. J., 2014. Structures of mesophilic and extremophilic citrate synthases reveal rigidity and flexibility for function. Proteins: Structure, Function, and Bioinformatics, 82 (10), pp. 2657-2670.

Espina Silva, G., Eley, K., Pompidor, G., Schneider, T. R., Crennell, S. J. and Danson, M. J., 2014. A novel β-xylosidase structure from Geobacillus thermoglucosidasius:The first crystal structure of a glycoside hydrolase family GH52 enzyme reveals unpredicted similarity to other glycoside hydrolase folds. Acta Crystallographica Section D-Biological Crystallography, 70 (5), pp. 1366-1374.

Borziak, K., Posner, M., Upadhyay, A., Danson, M., Bagby, S. and Dorus, S., 2014. Comparative genomic analysis reveals 2-oxoacid dehydrogenase complex lipoylation correlation with aerobiosis in archaea. PLoS ONE, 9, e87063.

De Maayer, P., Williamson, C. E., Vennard, C. T., Danson, M. J. and Cowan, D. A., 2014. Draft genome sequences of Geobacillus sp. strains CAMR5420 and CAMR12739. Genome announcements, 2 (3), e00567-14.

Extance, J., Crennell, S. J., Eley, K., Cripps, R., Hough, D. W. and Danson, M. J., 2013. Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius. Acta Crystallographica Section D-Biological Crystallography, 69 (10), pp. 2104-2115.

Archer, R. M., Royer, S. F., Mahy, W., Winn, C. L., Danson, M. J. and Bull, S. D., 2013. Syntheses of 2-Keto-3-deoxy- D-xylonate and 2-Keto-3-deoxy-L-arabinonate as stereochemical probes for demonstrating the metabolic promiscuity of sulfolobus solfataricus towards D-xylose and L-arabinose. Chemistry - A European Journal, 19 (8), pp. 2895-2902.

Posner, M. G., Upadhyay, A., Crennell, S., Watson, A. J. A., Dorus, S., Danson, M. J. and Bagby, S., 2013. Post-translational modification in the archaea: structural characterization of multi-enzyme complex lipoylation. Biochemical Journal, 449 (2), pp. 415-425.

Daniel, R.M. and Danson, M.J., 2013. Temperature and the catalytic activity of enzymes:a fresh understanding. FEBS Letters, 17 (2), pp. 2738-2743.

Marrott, N. L., Marshall, J. J. T., Svergun, D. I., Crennell, S. J., Hough, D. W., Danson, M. J. and van den Elsen, J. M. H., 2012. The catalytic core of an archaeal 2-oxoacid dehydrogenase multienzyme complex is a 42-mer protein assembly. FEBS Journal, 279 (5), pp. 713-723.

Moore, V., Kanu, A., Byron, O., Campbell, G., Danson, M. J., Hough, D. W. and Crennell, S. J., 2011. Contribution of inter-subunit interactions to the thermostability of Pyrococcus furiosus citrate synthase. Extremophiles, 15 (3), pp. 327-336.

Nunn, C. E. M., Johnsen, U., Schonheit, P., Fuhrer, T., Sauer, U., Hough, D. W. and Danson, M. J., 2010. Metabolism of pentose sugars in the hyperthermophilic archaea sulfolobus solfataricus and sulfolobus acidocaldarius. Journal of Biological Chemistry, 285 (44), pp. 33701-33709.

Daniel, R. M. and Danson, M. J., 2010. A new understanding of how temperature affects the catalytic activity of enzymes. Trends in Biochemical Sciences, 35 (10), pp. 584-591.

Royer, S. F., Haslett, L., Crennell, S. J., Hough, D. W., Danson, M. J. and Bull, S. D., 2010. Structurally informed site-directed mutagenesis of a stereochemically promiscuous aldolase to afford stereochemically complementary biocatalysts. Journal of the American Chemical Society, 132 (33), pp. 11753-11758.

Payne, K. A. P., Hough, D. W. and Danson, M. J., 2010. Discovery of a putative acetoin dehydrogenase complex in the hyperthermophilic archaeon Sulfolobus solfataricus. FEBS Letters, 584 (6), pp. 1231-1234.

Daniel, R. M., Peterson, M. E., Danson, M. J., Price, N. C., Kelly, S. M., Monk, C. R., Weinberg, C. S., Oudshoorn, M. L. and Lee, C. K., 2010. The molecular basis of the effect of temperature on enzyme activity. Biochemical Journal, 425 (2), pp. 353-360.

Cockell, C., Bridges, J., Dannatt, L., Burchell, M., Patel, M. and Danson, M., 2009. Where to land on Mars. Astronomy & Geophysics, 50 (6), pp. 18-26.

Posner, M. G., Upadhyay, A., Bagby, S., Hough, D. W. and Danson, M. J., 2009. A unique lipoylation system in the Archaea: lipoylation in Thermoplasma acidophilum requires two proteins. FEBS Journal, 276 (15), pp. 4012-4022.

Emptage, C. D., Knox, R. J., Danson, M. J. and Hough, D. W., 2009. Nitroreductase from Bacillus licheniformis:a stable enzyme for prodrug activation. Biochemical Pharmacology, 77 (1), pp. 21-29.

Bull, S. D., Danson, M. J., Hough, D. W. and Royer, S., 2009. Engineering stereocontrol into aldolase catalyzed reactions. Abstracts of Papers of the American Chemical Society, 238, 23-ORGN.

Daniel, R. M., Danson, M. J., Hough, D. W., Lee, C. K., Peterson, M. E. and Cowan, D. A., 2008. Enzyme stability and activity at high temperatures. In: Siddiqui, K. S. and Thomas, T., eds. Protein adaptation in extremophiles. New York, U. S. A.: Nova Science, pp. 1-34.

Al-Mailem, D. M., Hough, D. W. and Danson, M. J., 2008. The 2-oxoacid dehydrogenase multienzyme complex of Haloferax volcanii. Extremophiles, 12 (1), pp. 89-96.

Weinberg, C. S., Daniel, R. M., Monk, C. R., Danson, M. J. and Lee, C. K., 2008. The Equilibrium Model for the effect of temperature on enzymes - Insights and implications. Chimica Oggi-Chemistry Today, 26 (4), pp. 14-15.

Daniel, R. M., Danson, M. J., Eisenthal, R., Lee, C. K. and Peterson, M. E., 2008. The effect of temperature on enzyme activity: new insights and their implications. Extremophiles, 12 (1), pp. 51-59.

Potter, J. A., Kerou, M., Lamble, H. J., Bull, S. D., Hough, D. W., Danson, M. J. and Taylor, G. L., 2008. The structure of Sulfolobus solfataricus 2-keto-3-deoxygluconate kinase. Acta Crystallographica Section D-Biological Crystallography, 64, pp. 1283-1287.

This list was generated on Fri Sep 22 16:21:38 2017 IST.

View more publications »