Prof Michael Danson
Profile
Current Research
Extremophiles are organisms that inhabit extreme environments of temperature (-2 to 15ºC and 55° to 110°C), salinity, pressure and/or anaerobicity. Therefore, their macromolecules are designed to withstand these extreme conditions, and our research programme aims to understand the structural basis of extremophile enzyme stability, in particular to temperature and salinity. Our experimental approaches include enzymology, molecular biology, X-ray crystallography, site-directed mutagenesis and directed evolution.
We are also interested in the biotechnological application of enzymes from extremophiles, exploiting their high stabilities to extreme conditions. Many extremophiles belong to the Archaea, an evolutionary distinct domain in addition to the Eukarya and Bacteria. Archaea are known to possess unusual metabolic features, and therefore we are also aiming to exploit their enzymes that have unique catalytic specificities. Part of this programme involves the isolation, from environmental samples, of novel extremophilic micro-organisms according to their metabolic and enzymic capabilities.
Goals
To understand the structural basis of protein stability in extremophiles, and to explore the biotechnological potential of enzymes from these organisms.
Publications
Archer, R. M., Royer, S. F., Mahy, W., Winn, C. L., Danson, M. J. and Bull, S. D., 2013. Syntheses of 2-Keto-3-deoxy- D-xylonate and 2-Keto-3-deoxy-L-arabinonate as stereochemical probes for demonstrating the metabolic promiscuity of sulfolobus solfataricus towards D-xylose and L-arabinose. Chemistry - A European Journal, 19 (8), pp. 2895-2902.
Posner, M. G., Upadhyay, A., Crennell, S., Watson, A. J. A., Dorus, S., Danson, M. J. and Bagby, S., 2013. Post-translational modification in the archaea: structural characterization of multi-enzyme complex lipoylation. Biochemical Journal, 449 (2), pp. 415-425.
Daniel, R.M. and Danson, M.J., 2013. Forthcoming. Temperature and the catalytic activity of enzymes : A fresh understanding. FEBS Letters
Marrott, N. L., Marshall, J. J. T., Svergun, D. I., Crennell, S. J., Hough, D. W., Danson, M. J. and van den Elsen, J. M. H., 2012. The catalytic core of an archaeal 2-oxoacid dehydrogenase multienzyme complex is a 42-mer protein assembly. FEBS Journal, 279 (5), pp. 713-723.
Moore, V., Kanu, A., Byron, O., Campbell, G., Danson, M. J., Hough, D. W. and Crennell, S. J., 2011. Contribution of inter-subunit interactions to the thermostability of Pyrococcus furiosus citrate synthase. Extremophiles, 15 (3), pp. 327-336.
Nunn, C. E. M., Johnsen, U., Schonheit, P., Fuhrer, T., Sauer, U., Hough, D. W. and Danson, M. J., 2010. Metabolism of pentose sugars in the hyperthermophilic archaea sulfolobus solfataricus and sulfolobus acidocaldarius. Journal of Biological Chemistry, 285 (44), pp. 33701-33709.
Daniel, R. M. and Danson, M. J., 2010. A new understanding of how temperature affects the catalytic activity of enzymes. Trends in Biochemical Sciences, 35 (10), pp. 584-591.
Royer, S. F., Haslett, L., Crennell, S. J., Hough, D. W., Danson, M. J. and Bull, S. D., 2010. Structurally informed site-directed mutagenesis of a stereochemically promiscuous aldolase to afford stereochemically complementary biocatalysts. Journal of the American Chemical Society, 132 (33), pp. 11753-11758.
Payne, K. A. P., Hough, D. W. and Danson, M. J., 2010. Discovery of a putative acetoin dehydrogenase complex in the hyperthermophilic archaeon Sulfolobus solfataricus. FEBS Letters, 584 (6), pp. 1231-1234.
Daniel, R. M., Peterson, M. E., Danson, M. J., Price, N. C., Kelly, S. M., Monk, C. R., Weinberg, C. S., Oudshoorn, M. L. and Lee, C. K., 2010. The molecular basis of the effect of temperature on enzyme activity. Biochemical Journal, 425 (2), pp. 353-360.
Cockell, C., Bridges, J., Dannatt, L., Burchell, M., Patel, M. and Danson, M., 2009. Where to land on Mars. Astronomy & Geophysics, 50 (6), pp. 18-26.
Posner, M. G., Upadhyay, A., Bagby, S., Hough, D. W. and Danson, M. J., 2009. A unique lipoylation system in the Archaea: lipoylation in Thermoplasma acidophilum requires two proteins. FEBS Journal, 276 (15), pp. 4012-4022.
Emptage, C. D., Knox, R. J., Danson, M. J. and Hough, D. W., 2009. Nitroreductase from Bacillus licheniformis:a stable enzyme for prodrug activation. Biochemical Pharmacology, 77 (1), pp. 21-29.
Bull, S. D., Danson, M. J., Hough, D. W. and Royer, S., 2009. Engineering stereocontrol into aldolase catalyzed reactions. Abstracts of Papers of the American Chemical Society, 238, 23-ORGN.
Daniel, R. M., Danson, M. J., Hough, D. W., Lee, C. K., Peterson, M. E. and Cowan, D. A., 2008. Enzyme stability and activity at high temperatures. In: Siddiqui, K. S. and Thomas, T., eds. Protein adaptation in extremophiles. New York, U. S. A.: Nova Science, pp. 1-34.
Al-Mailem, D. M., Hough, D. W. and Danson, M. J., 2008. The 2-oxoacid dehydrogenase multienzyme complex of Haloferax volcanii. Extremophiles, 12 (1), pp. 89-96.
Weinberg, C. S., Daniel, R. M., Monk, C. R., Danson, M. J. and Lee, C. K., 2008. The Equilibrium Model for the effect of temperature on enzymes - Insights and implications. Chimica Oggi-Chemistry Today, 26 (4), pp. 14-15.
Daniel, R. M., Danson, M. J., Eisenthal, R., Lee, C. K. and Peterson, M. E., 2008. The effect of temperature on enzyme activity: new insights and their implications. Extremophiles, 12 (1), pp. 51-59.
Potter, J. A., Kerou, M., Lamble, H. J., Bull, S. D., Hough, D. W., Danson, M. J. and Taylor, G. L., 2008. The structure of Sulfolobus solfataricus 2-keto-3-deoxygluconate kinase. Acta Crystallographica Section D-Biological Crystallography, 64, pp. 1283-1287.

