Identifying Booms and Busts in House Prices
under Heterogeneous Expectations

Wilko Bolt∗ Maria Demertzis† Cees Diks‡ Cars Hommes§
Marco van der Leij¶

October 21, 2015

Abstract

We introduce heterogeneous expectations in a standard housing market model linking housing rental levels to fundamental buying prices. Using quarterly data we estimate the model parameters for eight different countries, US, UK, NL, JP, CH, ES, SE and BE. We find that the data support heterogeneity in expectations, with temporary endogenous switching between fundamental mean-reverting and trend-following beliefs based on their relative performance. For all countries we identify temporary, long lasting house price bubbles, amplified by trend extrapolation, and crashes reinforced by mean-reverting expectations. The qualitative predictions of such non-linear models are very different from standard linear benchmarks, with important policy implications. The fundamental price becomes unstable, e.g. when the interest rate is set too low or mortgage tax deductions too high, giving rise to multiple non-fundamental equilibria and/or global instability.

Keywords: housing prices, heterogeneous agents model (HAM), bounded rationality, bubbles, early warning signal.

JEL Classification: C53, R21, R31

∗De Nederlandsche Bank, W.Bolt@dnb.nl
†De Nederlandsche Bank and European Commission, Maria.Demertzis@ec.europa.eu
‡CeNDEF, Amsterdam School of Economics and Tinbergen Institute, C.G.H.Diks@uva.nl
§Corresponding author, CeNDEF, ASE and Tinbergen Institute, C.H.Hommes@uva.nl
¶De Nederlandsche Bank, CeNDEF, Amsterdam School of Economics and Tinbergen Institute, M.J.vanderLeij@uva.nl
1 Introduction

Do house prices exhibit expectations-driven temporary bubbles and crashes? The aim of this paper is to obtain insights into the expectations feedback and large price fluctuations in housing markets and develop a behavioral structural model to assess the empirical relevance of bubbles and crashes in housing prices across different countries. This is important, since housing market bubbles are considered to be leading indicators of financial instability and crises (Leamer, 2007). Financial crises and recessions are often preceded by a decline in housing investments (Reinhart and Rogoff, 2009). For this reason, a good understanding of house price dynamics and the booms and busts they can generate are crucial for central banks. Unfortunately, a good understanding of the housing market and the business cycle are still lacking. Even state-of-the art dynamic stochastic general equilibrium (DSGE) models with housing consumption and production (Davis and Heathcote, 2005) are unable to match house price fluctuations and do not capture the phenomenon that house investment leads GDP. Since the 1980s, e.g., Shiller has repeatedly warned that changes in fundamentals cannot account for the large swings in home prices observed empirically; see e.g. Case and Shiller (2003).

Standard housing models enable one to derive fundamental relations between housing prices, rents and user costs (Himmelberg et al. (2005)). Poterba and Sinai (2008) argue that the user cost of capital model has become “a standard tool for studying housing demand and for analyzing the equilibrium value of the imputed rental income accruing to homeowners ...”. But fundamental factors apparently are insufficient to explain the observed large booms and busts in house prices. What could be a reasonable alternative model for house price dynamics? Glaeser and Nathanson (2014) argue that many non-rational explanations for housing bubbles exist, but the most promising theories emphasize some form of trend-chasing, which in turn reflects boundedly rational learning. In this paper we construct a model where house price fluctuations are partly driven by almost self-fulfilling expectations (animal spirits) of boundedly rational heterogeneous agents. During a housing boom expectations regarding future housing prices are typically optimistic, while they are pessimistic during a bust. There is both anecdotal as well as empirical evidence that house price expectations were unrealistically high in the US during the housing boom for short run (1 year) as well as long run (10 years) expectations (Case et al., 2012; Cheng et al., 2014). This is in line with the observation by Frankel and Froot (1987) that expectations in asset prices are heterogeneous and probably boundedly rational, which ignited the emergence of behavioral finance and heterogeneous agent models (Hommes, 2013). Surveys of stock market forecasts, e.g. in (Shiller, 1987; Shiller, 2000) and (Vissing-Jorgensen, 2004), show that heterogeneity in price expectations changes over time. Shiller (2007) and Piazzesi and Schneider (2009) obtained similar results in surveys among home owners and showed that the data are characterized by heterogeneity and mutual
feedback between house price expectations and realized house prices. These findings are also in line with laboratory experimental markets. Gjerstad and Smith (2014) emphasize how easily speculative bubbles form and subsequent crashes lead to collapse in speculative asset markets for durable goods, in particular for housing markets, consistent with empirical evidence of bubble formation in laboratory experiments. Bao and Hommes (2015) design an experimental housing market and find expectations-driven bubbles and crashes very similar to those observed in speculative asset markets, e.g. in Hommes et al. (2005, 2008).

Blanchard (2014) recently stressed that “The main lesson of the crisis is that we were much closer to “dark corners” –situations in which the economy could badly malfunction – than we thought. Now that we are more aware of nonlinearities and the dangers they pose, we should explore them further theoretically and empirically.” Blanchard argued for the coexistence of non-linear models along the standard, general equilibrium models: “If macroeconomic policy and financial regulation are set in such a way as to maintain a healthy distance from dark corners, then our models that portray normal times may still be largely appropriate. Another class of economic models, aimed at measuring systemic risk, can be used to give warning signals that we are getting too close to dark corners, and that steps must be taken to reduce risk and increase distance. Trying to create a model that integrates normal times and systemic risks may be beyond the profession’s conceptual and technical reach at this stage.”

The purpose of this paper is to develop a nonlinear heterogeneous agent model for the housing market with endogenous switching between optimistic and pessimistic expectations and estimate the nonlinear model using empirical housing price data from different countries. Our point of departure is the standard ‘user cost of capital (housing)’ model (Poterba and Sinai (2008); Himmelberg et al. (2005)). We extend this standard housing model by introducing heterogeneous expectations feedback relations, as in Brock and Hommes (1997, 1998), that may drive the price-to-rent ratio temporarily away from its long-run fundamental value and at other times expectations may reinforce mean-reversion back to fundamentals. A convenient feature of our general setup is that the fundamental price-to-rent ratio of the standard housing model is nested as a special case within our nonlinear model where expectations coincide with or mean-revert to the fundamental values. Our heterogeneous expectations housing market model thus provides an empirical test whether behavioral heterogeneity and expectations-driven booms and busts deviating from fundamental value are economically and statistically significant. The structural nonlinear switching model also provides an early warning signal for identifying housing bubbles, when the average market sentiment –i.e. the average extrapolation factor– exceeds 1, indicating that house price dynamics and deviations from fundamentals become temporarily explosive.

An alternative recent approach used in the literature are full-fledged DSGE models, which have been adjusted to study the macroeconomic effects of housing (Iacoviello and Neri. (2010);
Typically, in those models, households receive utility from consumption of non-durable goods and housing services and they maximize expected life-time discounted utility subject to a budget constraint. This budget constraint may include (convex) transaction and adjustment costs and/or liquidity and debt (i.e. mortgage) restrictions. The first-order Euler condition equates the marginal rate of substitution of housing services for non-durable consumption to the ‘shadow price’ or expected user cost of owner-occupied housing services which then comprises current transaction costs, the foregone return to housing equity and/or the cost of mortgage payments plus future expected transaction costs, maintenance cost and property taxes minus expected capital gains (see Diaz and Luengo-Prado (2008)). In other words, this Euler condition brings us back again to the standard ‘user cost of capital’ housing model. However what these types of models do not have is the possibility of differentiated expectations in ways that allow for bounded rationality, heterogeneity, herding behavior and sudden stops or indeed the existence of more than one equilibrium. These features are in our view crucial to the housing markets, very much like in stock markets, despite the fact that they operate at lower frequency (in line with most macro variables). Our approach adds such bounded rationality and heterogeneity features to the standard user cost of capital housing model.

Our goal is to develop a stylized, but general structural model that can be estimated using housing price data from different countries. Therefore, our stylized housing model lacks country specific institutional detail, but has the advantage that it can be used to compare the occurrence of housing bubbles and crashes across different countries. Agnello et al. (2015) recently also analyzed house price dynamics across various countries, following a time series econometrics approach. Our approach is complementary to theirs, since we estimate a structural behavioral model with boundedly rational heterogeneous agents in the market. Another difference is that we rely on the notion of a benchmark fundamental price based on rental price levels. Although both approaches lead to nonlinear models for housing price dynamics, an advantage of estimating a structural behavioral model is that the estimated model parameters allow for simple behavioral interpretations.

Heterogeneous agents models (HAMs) provide a recently developed tool, which can be used to study temporary deviations from market equilibria in economics and finance. Rather than a single, representative, fully rational, agent, HAMs allow for bounded rationality and heterogeneity of expectations among agents. HAMs were originally introduced by Brock and Hommes (1997, 1998) to describe financial asset price fluctuations. They showed that heterogeneous beliefs, together with switching between beliefs based on recent past performance, can lead to situations where the fundamental price is locally unstable and asset prices show multiple equilibria or chaotic fluctuations, with irregular bubbles and crashes, around the fundamental value; see Hommes (2006) for an overview. More recently HAMs have also been

Endogenous switching, the ability of agents to change views about the future at regular points in time, is a pivotal feature of HAMs. Empirical evidence shows that switching based on past performance is relevant for a number of real financial markets. For example, Ippolito (1989), Chevalier and Ellison (1997), Sirri and Tufano (1998) and Karceski (2002) found that money flows out of past poor performers into good performers in mutual funds data. Pension funds also switch away from bad performers DelGuercio and Tkac (2002). Investors in the stock market display similar switching behaviour when choosing between different strategies.

HAMs with performance-based endogenous switching have been successfully estimated for different financial markets. Boswijk et al. (2007) estimated the Brock and Hommes (1997, 1998) HAM using annual S&P 500 stock market data from 1871 to 2003. They found evidence for the presence of heterogeneity and endogenous switching for a fundamental price based on both the price/earnings ratio and the price/dividend ratio. Their model explains the dot com bubble as being triggered by economic fundamentals (good news about the economy, because of a new internet technology), strongly amplified by investors’ switching to trend-following behaviour. Hommes and in’t Veld (2014) follow a similar approach, using both the dynamic Gordon present-discounted-value and the Campbell-Cochrane consumption habit fundamental benchmarks, using quarterly S&P500 data 1950-2013 and conclude that the financial crises has been amplified by switching between mean-reverting and trend-following strategies. Lof (2015) estimates a HAM with different VAR-model specifications to the S&P500 index and finds temporary switching between fundamentalists and rational and contrarian speculators. Lux (2009) estimated the parameters of a dynamic opinion formation process with social interactions based on survey data on business expectations (sentiment index data). Franke and Westerhoff (2011, 2012) estimate HAMs with structural stochastic volatility using S&P 500 index data. De Jong et al. (2009) estimated a HAM for the EMS exchange rate dynamics and for Asian stock markets during the Asian crisis (De Jong et al., 2010).

Our paper focuses on the empirical relevance of performance based strategy switching in the housing market. We develop a stylized 2-type heterogeneous expectations feedback model, with a trend-extrapolation versus a mean-reverting forecasting rule, and estimate the model for eight different countries, the United States (US), Japan (JP), United Kingdom (UK), The Netherlands (NL), Switzerland (CH), Spain (ES), Sweden (SE) and Belgium (BE) for the period 1970–2013. We arrived at this set of countries by starting with the US and adding countries until we had a fairly mixed list of countries that have recently seen a housing bubble (US, CH, JP), are currently near the peak of a bubble (UK, SE and BE) and are in a price corrective regime (NL, ES). For all countries, the estimated parameters measuring the
heterogeneity and switching behaviour turn out to be significant and lie in – or close to – the region where the fundamental equilibrium is unstable (and hence it does not prevail). For all eight countries we identify long-lasting periods of temporary housing bubbles, amplified by an explosive market sentiment. Because of the simple generic features of our 2-type HAM, our estimation results for housing prices can be compared to similar estimated 2-type HAMs for stock price data, commodity prices, exchange rates and macro data. In this way, we are able to compare the duration of expectations-driven bubbles and crashes across different markets. Housing markets exhibit the strongest and longest bubbles, often over many years, much longer than in other markets or data sets. The longest bubble that has been detected in other asset markets using a 2-type HAM is the dot-com bubble, ca. 1995-2000, in the stock market (e.g. Boswijk et al. (2007); Hommes and in’t Veld (2014)), but for most housing markets we find much longer booms (US, ES) or busts (JP) of 10 years or longer. This stresses the importance of identifying bubbles in housing markets as potential early warnings of an upcoming financial-economic crisis. Our simple model can be used as an early warning indicator to identify housing bubbles. As the bubble bursts, a crash in house prices is reinforced by switching back to the mean-reverting fundamental forecast rule. However, while the model can tell us whether we are in a period of instability (boom), it cannot necessarily predict the timing of market switches/corrections. Nevertheless, the conditions of instability derived are linked explicitly to policy variables, so we are able to discuss which policies — e.g. interest rate policies or reduction of mortgage tax deduction — can stabilize booms and busts or may destabilize housing prices. In this respect our model can inform policy makers about the possibility of the economy approaching, or even being, at what Blanchard described as ‘dark corners’, places where variables react in very non-linear ways, such that even small, and otherwise innocuous, shocks may produce very large and unpredictable effects (Blanchard, 2014). Our nonlinear heterogeneous agents switching model thus can provide important insights for policy makers to avoid the “dark corners” of the economy.

House price fluctuations have been studied extensively in the literature. Ambrose et al. (2013) examined a long time series of house price data of Amsterdam from 1650 to 2005, and found that substantial deviations from fundamentals persisted for decades and are corrected mainly through price adjustments and to a lesser extent through rent adjustments. Based on the same data set, Eichholtz et al. (2013) found that there is evidence for switching in expectation formation between fundamental and trend following beliefs. Theoretical models for house price dynamics involving HAMs have been considered, for instance by Dieci and Westerhoff (2012, 2013). Kouwenberg and Zwinkels (2014) estimated a HAM model specifically for the US housing market using quarterly data from 1960 until 2012. An important difference with our approach is that their model (following Dieci and Westerhoff, 2012, 2013) uses a price adjustment rule based on excess demand, while we use a temporary equilibrium
pricing model (as well as that we estimate the model for a number of different countries). Geanakoplos et al. (2012) develop an agent-based model to explain the housing boom and crash, 1997-2009 in the Washington DC area. Adam et al. (2012) consider a housing market model with Bayesian learning of an “internally rational” representative agent; Ascari et al. (2013) extend this model to the case of heterogeneous expectations with fundamentalists versus trend extrapolators. Another related theoretical paper is Burnside et al. (2015). Their approach differs in two important ways from ours. Firstly, their agents disagree about the fundamental value of housing, whereas we assume that agents agree on the fundamental value of houses but disagree on how prices return to it. Secondly, their model is epidemiological in nature, in that agents infect each other, while in our approach strategy switching is based upon relative performance.

The paper is organized as follows. Section 2 extends a standard housing model with heterogeneous expectations. In Section 3 we estimate the heterogeneous expectations model using data from eight countries. We find evidence of temporary bubbles in all countries and discuss in-sample and out-of-sample forecasting. Section 4 derives conditions under which the ‘classical’ fundamental equilibrium is stable, and shows that for an unstable fundamental equilibrium multiple equilibria and global instability may occur. We also discuss policy implications and which policies might prevent a critical transition or tipping point to global instability. Finally, Section 5 concludes.

2 A Housing Market Model with Heterogeneous beliefs

In this section we develop a standard housing pricing model based on user costs of capital (see e.g. Poterba and Sinai (2008)), which we extend by incorporating heterogeneous beliefs, following Brock and Hommes (1997, 1998). Agents are boundedly rational and have different views about the expected capital gains of housing. At the same time, agents are allowed to switch from one period to the next between a number of available forecasting strategies, based on how well they have performed in the recent past. Since our goal is to estimate a simple heterogeneous expectations model, we restrict attention to two types of agents $h \in \{1, 2\}$, but the case with H types is straightforward.

2.1 The model

Our point of departure is a standard user cost of capital model where home buyers and/or investors choose between either buying or renting a house. In equilibrium the annual cost of home ownership –in the literature known as the “imputed rent” (e.g. Himmelberg et al. (2005))– must equal the housing rent. In the model agents base their decisions at time t on
their expectations regarding the ex post excess return R_{t+1} on investing in housing relative to renting during the period between time t and $t + 1$. Let P_t denote the price of one unit of housing at time t. Let the price for renting one unit of housing in the period between times t and $t + 1$ be given by Q_t. Since rents are typically payed up-front (at time t), to express the rent at time t in terms of currency at time $t+1$, it should be inflated by a factor $(1 + r_{\text{rf}})$, where r_{rf} denotes the risk-free mortgage rate. Therefore, the cost of renting in the period between time t and $t + 1$, expressed in terms of currency at time $t+1$, is given by $(1 + r_{\text{rf}})Q_t$ rather than Q_t. The ex post excess return R_{t+1} on investing in housing during the period between time t and $t + 1$ then is given by the sum of the capital gain minus mortgage/maintenance costs and the saving on rent (see also Campbell et al., 2009; Ambrose et al., 2013)

$$R_{t+1} = \left(\frac{P_{t+1} - (1 + r_t)P_t + (1 + r_{\text{rf}})Q_t}{P_t} \right) - (1 + r_t),$$

where $r_t = r_{\text{rf}} + \omega_t$, with r_{rf} the risk-free mortgage rate and ω_t the maintenance costs/tax rate.

The demand, $z_{h,t}$, of agents of belief type h is determined by maximizing one-period ahead expected excess returns adjusted for risk:

$$\mathbb{E}_{h,t}(R_{t+1} z_{h,t}) - \frac{a}{2} \text{Var}_{h,t}(R_{t+1} z_{h,t}),$$

where a is a measure of risk aversion. For simplicity we assume r_{rf} and ω_t to be constant over time: $r_{\text{rf}} = r_{\text{rf}}$, $\omega_t = \omega$ (and hence $r_t = r$). Investors and/or home buyers are assumed to have heterogeneous expectations about future capital gains or excess returns $\mathbb{E}_{h,t}((P_{t+1} + (1 + r_{\text{rf}})Q_t)/P_t - (1 + r))$, while they are assumed to have homogeneous and constant expectations regarding the conditional variance of the excess return, that is, $\text{Var}_{h,t}((P_{t+1} + (1 + r_{\text{rf}})Q_t)/P_t - (1 + r)) = V$. Maximizing Eq. (1) leads to the demand for housing:

$$z_{h,t} = \frac{\mathbb{E}_{h,t}(P_{t+1} + (1 + r_{\text{rf}})Q_t)/P_t - (1 + r)}{aV} = \frac{\mathbb{E}_{h,t}(R_{t+1})}{aV},$$

of agents of type $h \in \{1, 2\}$.

Upon aggregation of the demand across these two types of agents, the market clearing condition is:

$$\sum_{h=1}^{2} n_{h,t} \left(\frac{\mathbb{E}_{h,t}(P_{t+1} + (1 + r_{\text{rf}})Q_t)/P_t - (1 + r)}{aV} \right) = S_t,$$

where S_t is the stock of housing, and $n_{h,t}$ is the fraction of agents in period t that hold
expectations of type \(h \). Solving the market clearing condition for the price \(P_t \) leads to the following price equation:

\[
P_t = \frac{1}{1 + r + \alpha} \sum_{h=1}^{2} n_{h,t} \mathbb{E}_{h,t} \left(P_{t+1} + (1 + r f) Q_t \right),
\]

(4)

where \(\alpha \equiv a V \times S_t \) is assumed to be constant (i.e. \(S_t = S \)) in order to keep the model tractable. It is beyond the scope of this paper to include a model of the supply side \(S_t \) of the market, which not only would require a model and data concerning the supply of new houses, but also concerning demographic and cultural changes over time, such as the tendency for families to decrease in size. Our goal here is to develop a simple stylized heterogeneous expectations housing model that can be estimated using data from different countries. Agents require a rate of return on housing equal to \(r + \alpha \) rather than \(r = r_f + \omega \). Therefore the parameter \(\alpha \) can be interpreted as a risk premium of buying a house over renting a house. Treating \(\alpha \) as a constant in the model allows for estimating this extra required rate of return.

We next turn to the fundamental housing price. Following Boswijk et al. (2007), we assume that the fundamental process underlying the model, i.e. the rent \(Q_t \), follows a geometric Brownian motion with drift, i.e.

\[
\log Q_{t+1} = \mu + \log Q_t + \nu_{t+1}, \quad \{\nu_t\} \overset{i.i.d.}{\sim} N(0, \sigma^2_v),
\]

with commonly known parameters \(\mu \) and \(\sigma^2_v \), from which one obtains

\[
\frac{Q_{t+1}}{Q_t} = (1 + g) \varepsilon_{t+1},
\]

with \(g = e^{\mu + \frac{1}{2} \sigma^2_v} - 1 \) and \(\varepsilon_{t+1} = e^{\nu_{t+1} - \frac{1}{2} \sigma^2_v} \), such that \(\mathbb{E}_t(\varepsilon_{t+1}) = 1 \).

We define the fundamental price as the price that would prevail under homogeneous rational expectations \(\mathbb{E}_t(R_{t+1}) \) about the conditional mean of \(R_t \), while taking into account the risk premium \(\alpha \). Taking into account the risk premium in the fundamental price is convenient, as it will provide an equilibrium fundamental price from which the market price will deviate by an amount which averages out to zero in long time series.

Under rational expectations on the first conditional moment, we can re-write the price Eq. (4) as

\[
(1 + r + \alpha) P_t = \mathbb{E}_t \left(P_{t+1} + (1 + r f) Q_t \right).
\]

By applying the law of iterated expectations and imposing the transversality condition, we
obtain the fundamental price at time \(t \), denoted by \(P^*_t \).

\[
P^*_t = \mathbb{E}_t \left[\sum_{i=0}^{\infty} \frac{(1 + r_{\text{rf}})Q_{t+i}}{(1 + r + \alpha)^{i+1}} \right] = \sum_{i=0}^{\infty} \frac{(1 + g)^i(1 + r_{\text{rf}})Q_t}{(1 + r + \alpha)^{i+1}} = \frac{1 + r_{\text{rf}}}{r + \alpha - g} Q_t, \quad r + \alpha > g. (5)
\]

This shows that the fundamental price of housing is directly proportional to the actual rent level and that the fundamental price-to-rent ratio is equal to the user cost. In practice we often only observe indices for housing price levels and rents, with possibly different base years, so that the proportionality factor between prices and rents is not known and needs to be estimated from the data.

Define \(X_t = \frac{P_t}{P^*_t} - 1 \) as the relative deviation of the price from the fundamental price. A straightforward computation (see Appendix A.1) shows that, for the model with two belief types, the price equation (4) simplifies to:

\[
X_t = \frac{1}{R + \bar{\alpha}} \sum_{h=1}^{2} n_{h,t} \mathbb{E}_{h,t}(X_{t+1}),
\]

where \(R = \frac{1+r}{1+g} \) and \(\bar{\alpha} = \frac{\alpha}{1+g} \). Notice that in the special case where both belief types have expectations \(\mathbb{E}_{h,t} \equiv 0, h = 1,2 \), the housing price always equals its fundamental value. Hence, the special homogeneous RE benchmark is nested as a special case. Fig. 1 shows the fundamental housing price together with the realized housing prices and deviations from the fundamental for eight countries, as discussed in more detail in the data Section 3. These plots suggest excess volatility, that is, house prices fluctuate much more than underlying fundamentals. The next subsection introduces a two-type heterogeneous expectations switching model with boundedly rational agents to capture the excess volatility in housing price dynamics.

2.2 Two types of agents

Following Boswijk et al. (2007), henceforth BHM, we assume that each of the two types of agents have simple linear beliefs about \(X_{t+1} \), but with different values of the coefficient \(\phi \):

\[
\mathbb{E}_{1,t}(X_{t+1}) = \phi_1 X_{t-1}, \\
\mathbb{E}_{2,t}(X_{t+1}) = \phi_2 X_{t-1}.
\]

Hence, the two types disagree about the speed of convergence to or divergence from the fundamental benchmark. In particular, \(\phi_1 < 1 \) corresponds to mean-reversion towards the fundamental, while \(\phi_2 > 1 \) corresponds to trend-followers believing that prices further divert from the fundamental.

We have assumed the presence of two belief types here, but for the sake of argument,
Figure 1: House price indices (top sub-panels, solid lines, 1970Q1=100), estimated fundamental real house prices (left, dashed lines) and corresponding relative over-valuation X_t (bottom sub-panels).

consider homogeneous beliefs: $\phi_1 = \phi_2$. The homogeneous case $\phi_1 = \phi_2 < R + \bar{\alpha}$ would lead to the price converging to the fundamental price, whereas homogeneous beliefs $\phi_1 = \phi_2 > R+\bar{\alpha}$
would imply a bubble, where prices would deviate more and more from the fundamental price.\footnote{A house price bubble occurs when agents have unreasonably high expectations about future capital gains, leading them to perceive their user cost to be lower than it actually is and thus pay “too much” to purchase a house today.}

Next consider the heterogeneous case $\phi_1 \neq \phi_2$. If one of the belief parameters, ϕ_1 say, is smaller than $R + \bar{\alpha}$, and the other, ϕ_2, larger than $R + \bar{\alpha}$, the fractions $n_{1,t}$ and $n_{2,t} = 1 - n_{1,t}$ of agents of belief type 1 and 2, determine whether prices are temporarily converging to the fundamental price or diverging from it. Since agents are allowed to switch between the two different types of beliefs, the fractions themselves are changing over time. This in turn implies that the system may temporarily be in a bubble regime, where prices deviate further from fundamentals, or in a correction or mean-reversion regime, with prices converging back to the fundamental.

The switching between the two types of beliefs is based on the recent past performance of the strategies, measured in terms of realized profits, $\pi_{h,t-1}$, as in Brock and Hommes (1997, 1998). We derive the realized profits $\pi_{h,t-1}$ at time $t-1$ along the lines of Boswijk et al. (2007), starting from

$$\pi_{h,t-1} = R_{t-1}z_{h,t-2} = R_{t-1} \frac{\mathbb{E}_{h,t-2}(R_{t-1})}{aV}.$$

We can express R_{t-1} as (see Appendix A.2)

$$R_{t-1} \approx (1 + g)Y_{t-2} \left(X_{t-1} + \bar{\alpha} - RX_{t-2}\right),$$

where $Y_{t-2} = \frac{P_{t-2}}{P_{t-1}}$.

Note that $\bar{\alpha}$ represents an endogenously determined risk premium for home owners. To see this, suppose X_{t-1} and X_{t-2} are zero, that is, house prices are at fundamental value. If the stock of housing S, the risk aversion parameter a and the perceived variance V are positive, $\bar{\alpha}$ is positive, and the excess return on housing R_{t-1} is positive even if prices evolve according to the fundamental price.

The performance measure is the product of the excess return R_{t-1} and the demand $z_{h,t-2}$, which by (2) is proportional to the expected excess return

$$z_{h,t-2} = \frac{\mathbb{E}_{h,t-2}(R_{t-1})}{aV};$$

where

$$\mathbb{E}_{h,t-2}(R_{t-1}) = (1 + g)Y_{t-2} \left(\mathbb{E}_{h,t}(X_{t-1}) + \bar{\alpha} - RX_{t-2}\right).$$
Taking together the expectations on returns and conditional variance gives

\[\pi_{h,t-1} = z_{h,t-2}R_{t-1} = \left(\frac{1+g}{a\eta^2} \right) (X_{t-1} + \bar{\alpha} - RX_{t-2}) \left(\mathbb{E}_{h,t-2} (X_{t-1}) + \bar{\alpha} - RX_{t-2} \right), \]

i.e. a constant involving the risk aversion times the realized excess return on housing at time \(t - 1 \), times the expected (at time \(t - 2 \)) one-step-ahead excess return. We define the latter product as the fitness measure at time \(t - 1 \) for type \(h \):

\[U_{h,t-1} = (X_{t-1} + \bar{\alpha} - RX_{t-2}) \left(\mathbb{E}_{h,t-2} (X_{t-1}) + \bar{\alpha} - RX_{t-2} \right). \quad (6) \]

The fractions are determined by a logistic switching model with a-synchronous updating:

\[
\begin{align*}
n_{1,t} &= \delta n_{1,t-1} + (1-\delta) \frac{e^{\beta U_{1,t-1}}}{e^{\beta U_{1,t-1}} + e^{\beta U_{2,t-1}}} \\
n_{2,t} &= 1 - n_{1,t}.
\end{align*}
\quad (7)
\]

The term a-synchronous updating refers to the fact that only a fraction \((1-\delta)\) of agents re-evaluates and updates beliefs according to the logit model in each given period. Parameter \(\beta \), referred to as the intensity of choice, represents the sensitivity of agents’ to small changes in past performance \(\pi_{h,t-1} \).

The price equation with two types of agents is given by

\[X_t = \frac{n_{1,t}\phi_1 + n_{2,t}\phi_2}{R + \bar{\alpha}} X_{t-1}. \quad (8) \]

Note that the structural model (7-8) derived so far is completely deterministic. Before allowing for some forecast error or noise term required to estimate the model, it is useful however, to discuss the system without noise, the so-called deterministic ‘skeleton’. This skeleton can be used to determine the fixed points of the dynamics and their stability in the absence of noise and model error. At the fundamental equilibrium \(n_{1,t} = \frac{1}{2} \) and \(x_t = y_t = z_t = 0 \). By linearizing the dynamics around this equilibrium one finds that the fundamental equilibrium is locally stable if

\[\left| \frac{\phi_1 + \phi_2}{2(R + \bar{\alpha})} \right| = \left| \frac{(1+g)(\phi_1 + \phi_2)}{2(1 + r + \alpha)} \right| < 1. \quad (9) \]

We estimate the model in two steps. First we estimate the fundamental parameters and

\[^2\text{Note that by working with } \beta U_{h,t-1} \text{ rather than } \beta \pi_{h,t-1} \text{ in Eq. (7), a factor } (1+g)/(a\eta^2) \text{ has been absorbed in the definition of } \beta. \text{ This has the advantage that we do not need to estimate this term, but it should be kept in mind that it makes direct comparisons between } \beta\text{-estimates for different countries difficult.} \]
the corresponding deviations, X_t, of the realized prices from their fundamental value, using housing price and rent indices. Second we use the deviations X_t to estimate the behavioral parameters of the agent-based model. The price equation (8) is interpreted as providing a conditional forecast of the price deviation X_t given the available information up to and including $t-1$. This allows for forecast errors u_t in the model, leading to the price equation with error
\[
X_t = \frac{n_{1,t}\phi_1 + n_{2,t}\phi_2}{R + \bar{\alpha}}X_{t-1} + u_t.
\]
Assuming that the errors u_t in the price equation consist of white noise, this corresponds to a nonlinear time-varying AR(1) model, the parameters of which can be estimated using nonlinear least squares (NLS) ($n_{1,t}$ and $n_{2,t}$ depend nonlinearly on the model parameters). The term u_t in principle represents random exogenous shocks not taken into account by the model (equations for the fractions and the price equation), plus any systematic model error that happens to be present. \textit{A priori}, therefore, there is no guarantee that u_t is white noise or homoskedastic. To acknowledge this, in the empirical section we perform diagnostic model checks by investigating the properties of the residuals. We will refer to
\[
\frac{n_{1,t}\phi_1 + n_{2,t}\phi_2}{R + \bar{\alpha}},
\]
as the (time-varying) \textit{market sentiment}, representing the average mean-reverting or mean-diverting beliefs in the housing market. When the market sentiment exceeds 1, the market is explosive and in a temporary bubble state.

3 Data and Empirical Results

We use an OECD housing data set similar to that described in Rousová and Van den Noord (2011), but extended to include more recent observations. This data set contains quarterly data for nominal and real house prices for 20 countries, starting from 1970Q1 for most countries (see Rousová and Van den Noord (2011), Appendix 1-2, for the list of countries and corresponding data sources). We use data downloaded in autumn 2013, with data until 2013Q1 or 2013Q2, with the exception of Belgium, which was added recently to our database as a ‘live’ case study, and for which we have data until 2014Q2 (see Table 1 for the exact start and end quarters of our sample per country). The nominal house price is indexed using 2005 as base year. The real house price index is derived by deflating with the private final consumption expenditure deflator, available from the OECD Economic Outlook 89 database. The price-to-rent ratio is defined as the nominal house price index divided by the rent component of
the consumer price index, made available by the OECD. Long term interest rates are also retrieved from the OECD Economic Outlook 89 database. For each country we also have the consumer price index over the same sample period, so that all nominal rates can be converted to real rates.

<table>
<thead>
<tr>
<th>Country</th>
<th>start</th>
<th>end</th>
<th>rent/price</th>
<th>reference quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>1970Q1</td>
<td>2013Q1</td>
<td>0.0429</td>
<td>2013Q1</td>
</tr>
<tr>
<td>JP</td>
<td>1970Q1</td>
<td>2013Q1</td>
<td>0.0553</td>
<td>2013Q1</td>
</tr>
<tr>
<td>UK</td>
<td>1970Q1</td>
<td>2013Q1</td>
<td>0.0209</td>
<td>2013Q1</td>
</tr>
<tr>
<td>NL</td>
<td>1970Q1</td>
<td>2013Q2</td>
<td>0.0568</td>
<td>2013Q2</td>
</tr>
<tr>
<td>CH</td>
<td>1970Q1</td>
<td>2013Q2</td>
<td>0.0294</td>
<td>2013Q2</td>
</tr>
<tr>
<td>ES</td>
<td>1971Q1</td>
<td>2013Q2</td>
<td>0.0392</td>
<td>2013Q2</td>
</tr>
<tr>
<td>SE</td>
<td>1980Q1</td>
<td>2013Q1</td>
<td>0.0700</td>
<td>2005Q3</td>
</tr>
<tr>
<td>BE</td>
<td>1976Q2</td>
<td>2014Q2</td>
<td>0.0436</td>
<td>2013Q2</td>
</tr>
</tbody>
</table>

Table 1: Start and end of sample period for each country, as well as the rental yield (rent-to-price ratio’s) used to calibrate the price-to-rent ratio time series, and the corresponding reference quarter.

Note that since we are using indices we are only able to calculate the ratio \(Q_t/P_t \) from the data up to an unknown factor from the indices of \(Q_t \) and \(P_t \). To overcome this, we calibrated the series \(Q_t/P_t \) by using observed rent-to-price ratios at particular, country-specific, reference dates for each of the countries [source: GlobalPropertyGuide.com]. The rent-to-price ratio’s used for calibration are given in Table 1.

In what follows we estimate the two-type heterogeneous beliefs BHM model and present the results for the housing markets of the US, JP, UK, NL, CH, ES, SE and BE. We arrived at this subset of countries by starting our analysis with the US and adding countries until we had a fairly mixed list of countries that have recently seen a housing bubble (US, CH, JP), are currently near the peak of a bubble (UK, SE, BE) or are in a price corrective regime (NL, ES).

3.1 Estimation of the fundamental model parameters

Before estimating the behavioral model we calibrate the fundamental model parameters, namely \(R(=\frac{1+r}{1+g}) \) and \(\bar{\alpha}(=\frac{\alpha}{1+g}) \). The fundamental relation between quarterly prices and rents in Eq. (5) can be re-written as

\[
R = 1 + \frac{(1+r^{*})Q_t}{(1+g)P_t^{*}} - \bar{\alpha} \approx 1 + \frac{Q_t}{P_t^{*}} - \bar{\alpha},
\]

Whether nominal or real rates are used has no consequences for the estimation of the fundamental model parameters.
where we used the approximation \((1 + r^f)/(1 + g) \approx 1\), which is reasonable since quarterly interest and growth rates are small relative to 1. Note that even with this simplification the fundamental parameters \(R\) and \(\bar{\alpha}\) cannot be estimated independently, since we have one fundamental equation and two unknown fundamental parameters\(^4\). We address this problem by fixing \(\bar{\alpha}\), which is hard to obtain empirically for individual countries, at a plausible value.

Himmelberg et al. (2005) estimated the risk premium of house owning relative to renting to be about 2% per year for the US, which would correspond to \(\bar{\alpha} \approx 0.005\). However, they also noted that this is probably an over-estimation, since it ignores relevant factors such as the insurance value of owning a house in hedging risk associated with future changes in rent. Based on this, we consider 0 to be a lower limit and 0.005 an upper limit for \(\bar{\alpha}\). It turns out that the exact choice of \(\bar{\alpha}\) within this range has relatively small effects on the estimated behavioral parameters.

For a given value of \(\bar{\alpha}\) we estimate \(R\) as

\[
R = 1 + \bar{y} - \bar{\alpha}
\]

where \(\bar{y}\) is the mean quarterly rental yield (average of \(Q_t/P_t\)) over the sample period. Since the data involved yearly rental yields, \(\bar{y}\) was converted to quarterly rental yields prior to estimating \(R\). The estimates of \(\bar{y}\) and \(R + \bar{\alpha}\) are given in Table 2. For completeness we also give the estimated inflation rate \(\pi\), and the nominal and real growth rates \(g\) and \(r\).

<table>
<thead>
<tr>
<th>Country</th>
<th>(\pi)</th>
<th>(\bar{y})</th>
<th>nominal</th>
<th>real</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(g)</td>
<td>(r + \alpha)</td>
</tr>
<tr>
<td>US</td>
<td>1.050</td>
<td>1.053</td>
<td>1.188</td>
<td>2.523</td>
</tr>
<tr>
<td>JP</td>
<td>0.658</td>
<td>0.889</td>
<td>0.788</td>
<td>1.684</td>
</tr>
<tr>
<td>UK</td>
<td>1.424</td>
<td>0.739</td>
<td>1.852</td>
<td>2.604</td>
</tr>
<tr>
<td>NL</td>
<td>0.854</td>
<td>1.646</td>
<td>1.138</td>
<td>2.803</td>
</tr>
<tr>
<td>CH</td>
<td>0.643</td>
<td>0.751</td>
<td>0.809</td>
<td>1.566</td>
</tr>
<tr>
<td>ES</td>
<td>1.766</td>
<td>1.403</td>
<td>1.659</td>
<td>3.085</td>
</tr>
<tr>
<td>SE</td>
<td>0.892</td>
<td>1.988</td>
<td>1.342</td>
<td>3.357</td>
</tr>
<tr>
<td>BE</td>
<td>0.754</td>
<td>1.837</td>
<td>0.925</td>
<td>2.779</td>
</tr>
</tbody>
</table>

Table 2: Empirically observed mean quarterly inflation rate \(\pi\), mean quarterly rental yield \(\bar{y}\), nominal and real growth rate \(g\), nominal and real value of \(r + \alpha\) and corresponding values of \(R + \bar{\alpha} = (1 + r + \alpha)/(1 + g)\). All quarterly rates are multiplied by 100, except \(R + \bar{\alpha}\), which is not.

Fig. 1 presents the house price indices \(P_t\) with the corresponding estimated fundamental values \(P^*_t\) (top panels) and the log-difference between the two, \(X_t = \log P_t - \log P^*_t\) (bottom panels). All eight countries exhibit long lasting periods of persistent under- or overvaluation.

\(^4\)Recall that \(R\) and \(\alpha\) appear independently in the fitness measure for strategy switching in Eq. (6).
of house prices compared to fundamentals, ranging from over-valuations of 25% for the US, around 50% for JP, UK, NL, CH, SE and BE, to 100% for ES. House prices in US, NL and ES have been increasing rapidly since the mid-1990s and have peaked around 2008. Since then house prices have dropped considerably for those countries, but are still in decline and above the fundamental value for NL and ES by the end of the sample. The JP and CH housing prices peaked earlier, around 1990, and subsequently declined to levels below the fundamental values. While the decline continues to the end of the sample for JP, CH price levels have recovered to the fundamental level at the end of the sample. House prices in the UK and SE are still around 35% above their fundamental values at the end of the sample, while those in Belgium are still around 50% above the fundamental value at the end of the sample.

3.2 Estimation of the heterogeneous agents model

The behavioral model parameters are estimated based on the time series $X_t = \frac{P_t}{P_t^*} - 1 \approx \log P_t - \log P_t^*$, that is, the relative deviation of the house price from the estimated long-run fundamental ratio between P_t and Q_t. When presenting the empirical results we focus on the case $\bar{\alpha} = 0$ and NLS estimation, unless stated otherwise explicitly.\(^5\)

The estimated behavioral model parameters ϕ_1, $\Delta \phi$, β and δ are given in Table 3. The estimated values of $\Delta \phi = \phi_2 - \phi_1$ are significant for all countries. The data therefore confirm the presence of time-varying heterogeneity in the way agents form expectations. We also find that β is not significantly different from zero. Note, however, that we cannot put $\beta = 0$, firstly because β is restricted to be strictly larger than zero in the model since otherwise the fractions $n_{1,t}$ and $n_{2,t}$ will converge to the constant 0.5. Secondly, setting $\beta = 0$ leads to the problem that $\Delta \phi$ is not identified in that case. To avoid such identification problems and to be able to identify the significance of the differences in the forecast rules, β should be nonzero. From this perspective, the fact that β is found to be insignificant is merely an indication that the model’s forecast accuracy is not very sensitive to the exact value of β, and the other parameters can to a large extent compensate for changes in β.\(^6\) For BE, β would converge to any (large) upper value we would specify, so we had to provide an upper limit which was not unrealistically large, and settled for an upper limit of 10,000.

\(^5\)As discussed below, the results are rather robust with respect to fixing the risk premium to the estimate $\bar{\alpha} = 0.005$ of Himmelberg et al. (2005) and with respect to using weighted NLS, allowing for GARCH(1,1) structure on the innovations u_t.

\(^6\)Hommes and in’t Veld (2014) estimate a similar 2-type switching model on the relative deviations of the S&P500 stock market index from two benchmark fundamentals, the Gordon growth model and the Campbell-Cochrane consumption-habit model and show that the likelihood function is very flat w.r.t. the intensity of choice parameter β. They use quarterly data 1950-2013 and show by Monte-Carlo simulations that the test to reject the null of a switching model with estimated parameter values has essentially zero power for small samples of 250 observations. This explains the large standard deviations in the estimates for β and its non-significance.
<table>
<thead>
<tr>
<th>Country</th>
<th>US</th>
<th>JP</th>
<th>UK</th>
<th>NL</th>
<th>CH</th>
<th>ES</th>
<th>SE</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\alpha}$</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>$R + \tilde{\alpha}$</td>
<td>1.0105</td>
<td>1.0089</td>
<td>1.0074</td>
<td>1.0165</td>
<td>1.0075</td>
<td>1.0140</td>
<td>1.0199</td>
<td>1.0184</td>
</tr>
</tbody>
</table>

Fundamental Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>US</th>
<th>JP</th>
<th>UK</th>
<th>NL</th>
<th>CH</th>
<th>ES</th>
<th>SE</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_1</td>
<td>0.8808***</td>
<td>0.9296***</td>
<td>0.9023***</td>
<td>0.9557***</td>
<td>0.8592***</td>
<td>0.9673***</td>
<td>0.9544***</td>
<td>0.9913***</td>
</tr>
<tr>
<td></td>
<td>(0.0245)</td>
<td>(0.0105)</td>
<td>(0.0287)</td>
<td>(0.0248)</td>
<td>(0.0281)</td>
<td>(0.0060)</td>
<td>(0.0158)</td>
<td>(0.0134)</td>
</tr>
<tr>
<td>$\Delta \phi$</td>
<td>0.2158***</td>
<td>0.1589***</td>
<td>0.2007***</td>
<td>0.1358***</td>
<td>0.2710***</td>
<td>0.1034***</td>
<td>0.1537***</td>
<td>0.0826***</td>
</tr>
<tr>
<td></td>
<td>(0.0340)</td>
<td>(0.0190)</td>
<td>(0.0489)</td>
<td>(0.0464)</td>
<td>(0.0105)</td>
<td>(0.0325)</td>
<td>(0.0255)</td>
<td>(0.0233)</td>
</tr>
<tr>
<td>β ($\times 10^3$)</td>
<td>26.33</td>
<td>5.565*</td>
<td>5.795</td>
<td>2.195</td>
<td>3.872</td>
<td>3.792*</td>
<td>3.579</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>(2.404)</td>
<td>(2.377)</td>
<td>(0.594)</td>
<td>(2.271)</td>
<td>(2.684)</td>
<td>(3.955)</td>
<td>(2.755)</td>
<td>(14.23)</td>
</tr>
<tr>
<td>δ</td>
<td>0.6237***</td>
<td>0.1227</td>
<td>0.0000</td>
<td>0.4607*</td>
<td>0.6090***</td>
<td>0.3972*</td>
<td>0.1456</td>
<td>0.7208***</td>
</tr>
<tr>
<td></td>
<td>(0.1013)</td>
<td>(0.1801)</td>
<td>(0.2465)</td>
<td>(0.2267)</td>
<td>(0.1027)</td>
<td>(0.1419)</td>
<td>(0.1668)</td>
<td>(0.1159)</td>
</tr>
</tbody>
</table>

Estimated Behavioral Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>US</th>
<th>JP</th>
<th>UK</th>
<th>NL</th>
<th>CH</th>
<th>ES</th>
<th>SE</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_2</td>
<td>1.0967***</td>
<td>1.0886***</td>
<td>1.1030***</td>
<td>1.0915***</td>
<td>1.1302***</td>
<td>1.0707***</td>
<td>1.1081***</td>
<td>1.0739***</td>
</tr>
<tr>
<td></td>
<td>(0.0157)</td>
<td>(0.0120)</td>
<td>(0.0303)</td>
<td>(0.0262)</td>
<td>(0.0228)</td>
<td>(0.0073)</td>
<td>(0.0205)</td>
<td>(0.0117)</td>
</tr>
<tr>
<td>$\phi_2 - (R + \tilde{\alpha})$</td>
<td>0.0861***</td>
<td>0.0797***</td>
<td>0.0956***</td>
<td>0.0751***</td>
<td>0.1227***</td>
<td>0.0567***</td>
<td>0.0882***</td>
<td>0.0555***</td>
</tr>
<tr>
<td></td>
<td>(0.0157)</td>
<td>(0.0120)</td>
<td>(0.0303)</td>
<td>(0.0262)</td>
<td>(0.0228)</td>
<td>(0.0073)</td>
<td>(0.0205)</td>
<td>(0.0117)</td>
</tr>
<tr>
<td>$\frac{\phi_1 + \phi_2}{2(R + \tilde{\alpha})}$</td>
<td>0.9784***</td>
<td>1.0002***</td>
<td>0.9953***</td>
<td>1.0070***</td>
<td>0.9873***</td>
<td>1.0050***</td>
<td>1.0111***</td>
<td>1.0140***</td>
</tr>
<tr>
<td></td>
<td>(0.0115)</td>
<td>(0.0060)</td>
<td>(0.0081)</td>
<td>(0.0072)</td>
<td>(0.0107)</td>
<td>(0.0041)</td>
<td>(0.0082)</td>
<td>(0.0046)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>US</th>
<th>JP</th>
<th>UK</th>
<th>NL</th>
<th>CH</th>
<th>ES</th>
<th>SE</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>loc. stability</td>
<td>stable</td>
<td>unstable</td>
<td>stable</td>
<td>unstable</td>
<td>stable</td>
<td>unstable</td>
<td>unstable</td>
<td>unstable</td>
</tr>
<tr>
<td>$R_{\text{crit.}}$</td>
<td>0.9887***</td>
<td>1.0091***</td>
<td>1.0027***</td>
<td>1.0236***</td>
<td>0.9947***</td>
<td>1.0190***</td>
<td>1.0312***</td>
<td>1.0326***</td>
</tr>
<tr>
<td></td>
<td>(0.0116)</td>
<td>(0.0060)</td>
<td>(0.0082)</td>
<td>(0.0073)</td>
<td>(0.0107)</td>
<td>(0.0041)</td>
<td>(0.0084)</td>
<td>(0.0047)</td>
</tr>
</tbody>
</table>

Table 3: Fundamental parameters (fixed during estimation of the behavioral parameters), estimated behavioral model parameters for $\tilde{\alpha} = 0$, and corresponding implied behavioral parameters. Signif. codes: 0.00 '****' 0.001 '***' 0.01 '*' 0.05 '◦' 0.10.
The asynchronous updating parameter δ is significant for the US, NL, CH and ES, with roughly half of the agents re-evaluating their strategies per period. For JP, UK and SE no evidence for asynchronous updating is found, suggesting that in those countries more than half of the agents re-evaluate their strategies each period.

The bottom part of Table 3 provides a number of coefficients expressed as linear functions of the estimated parameters, and hence their standard errors could be easily calculated based on the variance-covariance matrix of the estimated parameters. These coefficients are important for the underlying dynamics of the nonlinear model. The first of these functions is $\phi_2 = \phi_1 + \Delta \phi$, which appears to be significantly larger than 1 for all countries. The second is $\phi_2 - (R + \bar{\alpha})$. If this is positive, the dynamics allow for temporary bubbles or explosive behaviour around the fundamental price, provided that a sufficiently large fraction of agents is of type 2. We find this parameter to be significantly larger than zero for all countries considered. The third function is $(\phi_1 + \phi_2)/(2(R + \bar{\alpha}))$, which occurs in the left-hand-side of the stability condition (9). This is the implied value of the AR-coefficient at equilibrium, determining whether the estimated model has a stable or an unstable fundamental equilibrium. Whether the equilibrium was found to be stable or not is indicated in the row immediately below. The implied ratios $(\phi_1 + \phi_2)/(2(R + \bar{\alpha}))$ on the left-hand-side of the stability condition (9) can be seen to be surprisingly close to 1 for all countries, which implies that the fundamental equilibrium is very close to the border of (in)stability. This means that in all cases the dynamics are very close to a unit root process (a random walk) around the fundamental equilibrium (i.e. for X_t small). The fourth and final implied parameter is $R_{\text{crit}} = (\phi_1 + \phi_2)/2 - \bar{\alpha}$, the critical value of R below which the fundamental equilibrium would become unstable if the behavioral model parameters were held fixed at their estimated values. The role of R_{crit} will be discussed in more detail in Section 4, where we discuss multiple equilibria and policy implications.

As a robustness check we have repeated the estimation for $\bar{\alpha} = 0.005$, which, as discussed above in Subsection 3.1, we consider to be the upper bound of the risk premium $\bar{\alpha}$. The results, shown in Table 4 in Appendix A.3 are qualitatively similar to those obtained for $\bar{\alpha} = 0$ for most countries. Only one country (NL) moves from being just stable to just unstable. For all countries except SE, $\Delta \phi$ and $\phi_2 - (R + \bar{\alpha})$ remain significantly different from zero, although the significance has become less pronounced for the US, NL and ES. The asynchronous updating parameter δ is no longer significant for the US, NL and ES when we take $\bar{\alpha} = 0.005$ instead of 0, and less significant for CH. The values of the Bayesian information criterion (BIC-values) indicate that the model with $\bar{\alpha} = 0$, presented in the main text, is more suitable than the model with $\bar{\alpha} = 0.05$. This is the case for all countries, except the UK, for which both models have practically equal BIC-values.

As a second robustness check we performed a diagnostic check of the estimated baseline model (with $\bar{\alpha} = 0$) by investigating the autocorrelation of the residuals \hat{u}_t and of their
absolute values $|\hat{u}_t|$. For all countries we observed mild (0.2 to 0.4) autocorrelation in the residuals, significant up to 5 lags for most countries, and substantial autocorrelation (0.3 to 0.7) in the absolute residuals, significant up to 10 lags. The latter clearly indicates the presence of (conditional) heteroskedasticity. To accommodate for heteroskedasticity we estimated the conditional variance in the residuals using a GARCH(1,1) model.\(^7\) These estimated conditional variances were subsequently used to perform a second stage weighted nonlinear least squares fit of the model. The standardized residuals of this second stage estimation step no longer had any visible heteroskedasticity as judged from the autocorellogram of their absolute values. The resulting parameter estimates and standard errors are shown in Table 5 in Appendix A.3. A comparison with the unweighted NLS estimates in Table 3 shows that the estimation results are not very sensitive to the use of heteroskedastic errors. Taking into account heteroskedasticity when present should be expected to lead to more efficient estimation. Indeed, allowing for GARCH(1,1) heteroskedastic errors appears to lead to a small reduction in the standard errors of most of the estimated parameters. In particular it can be observed that the intensity of choice parameter β benefits from this, becoming more significant for US, JP and CH. This is consistent with the fact that the BIC-values reported in Table 5 are smaller than those in Table 3, suggesting that the model GARCH(1,1) errors fits the data better.

The standardized residuals of the second stage estimation still contained some significant but mild autocorrelation up to lag 5. Although this is not optimal from an econometric model specification perspective, we have made no attempts to correct this for three reasons. Firstly, the data provided by the OECD are seasonally adjusted, which could account for a substantial part of the autocorrelation present up to lag 4. Secondly, although one could econometrically easily take into account a, say, AR(1) term in u_t in the NLS fit to reduce residual autocorrelation, this would not do justice to our aim to estimate a behavioral model rather than an econometric model; no direct behavioral interpretation would be available for the coefficient of such an estimated AR(1) noise term. Thirdly, a behavioral modeling alternative to adding an AR(1) term in u_t would be to add another expectation rule (type) to the behavioral model. However, this would lead to an increase of the model complexity, while the aim here is to come up with a parsimonious behavioral model that captures the most important consequence of introducing heterogeneous agents in the model, being that this gives rise to endogenously induced periods of dynamical instability and stability.

\(^7\)We also tried specifying the conditional variance as being proportional to $n_{1,t}(1-n_{1,t})$ reflecting the binomial nature of the choice each agent makes, but this led to a poorly specified conditional variance.
3.3 Temporary bubbles in house prices

Fig. 2 shows for all eight countries the log-difference between house prices and fundamentals (upper panels), the estimated proportion n_1 of agents forming expectations of type 1 associated with $\phi_1 < 1$ (middle panels), in other words, those agents who expect mean-reversion towards the fundamental value, and finally the estimated time-varying AR(1) coefficients in (10) showing the time variation of the market sentiment (lower panels).

Figure 2: Relative price deviations X_t from fundamentals (top panels), estimated fractions of agents of type 1, i.e. fundamental mean-reverting agents (middle panels) and implied AR(1) coefficients, i.e. market sentiment (bottom panels).

There is considerable time-variation in the distribution across agents of the fundamental mean-reverting and trend-following rules and in the average market sentiment. An immediate observation is that in all countries temporary housing market bubbles occur, that is, there
are prolonged periods of several years during which the market sentiment is explosive (i.e. exceeds 1). For the US, for example, three periods where the AR(1) coefficient is explosive can be identified: in the late 1970s, early 1990s and during 2004-2007. The first and last of these coincide with increasing prices above the fundamental, while the middle period is a ‘negative’ bubble with prices decreasing below the fundamental. The UK, NL, SE and ES also exhibit housing bubbles with explosive market sentiment in the years 2004-2007 or even for a longer period (BE). Exceptions are CH and JP for which positive bubbles arose much earlier, between 1970-1990, later followed by a negative bubble. Particularly JP experienced a strong negative bubble with explosive market sentiment during most of 2000-2010, during which housing prices continuously declined. Our simple stylized model thus provides an easy to use tool for identifying housing market bubbles and the market sentiment may serve as an early warning signal of housing bubbles signaling when the market becomes explosive. When a bubble bursts after a few years, a majority of agents typically switches to the type 1 fundamental forecasting rule, and strong mean-reverting market sentiment brings house prices back closer to fundamentals. In particular, after 2007 in the US, and somewhat later also in the UK, NL, ES and SE, the housing market is dominated by a strong mean-reverting market sentiment bringing prices back closer to fundamentals.

Similar heterogeneous expectations models have been estimated on various data in recent years, including stock market data, exchange rates, survey data and macroeconomic data (see the references in the introduction). An interesting and characteristic feature of the housing market data are the long-lasting bubbles, over many years, detected in all eight countries. For example, ES has a long-lasting bubble characterized by temporary exploding market sentiment of about 10 years from the late 1990s to the financial crisis, while Japan has a declining bubble over roughly the same period. For SE and BE, the two countries in the sample that have not gone through a correction, the duration is arguably longer. In other data sets such long-lasting bubbles are rare, with the only exception being the dot-com bubble in the stock market. Using yearly data of the S&P500, Boswijk et al. (2007) estimate the dot-com bubble to last for 6 years, 1995-2000, while Hommes and in’t Veld (2014) find the same for quarterly data. Hence, based on the estimation results of similar HAMs, we conclude that housing prices exhibit the longest temporary bubbles compared to other markets and macro data.

3.4 Fancharts

We next examine how the forecasting performance of our heterogeneous agents model forecasts compared to a linear AR benchmark model.

Figs. 3–10 provide quantiles of density forecasts constructed for both the nonlinear BHM switching model and AR models, for each country. The dotted/dashed lines correspond to
Figure 3: Fancharts for US data: estimates of the 5, 15, 50, 85 and 95% quantiles of the density forecasts (dashed lines) based on the BHM model (top panels) and an AR(5) model (lower panels). The deviations from the fundamental are represented by the solid lines.

Figure 4: Fancharts for JP data: estimates of the 5, 15, 50, 85 and 95% quantiles of the density forecasts (dashed lines) based on the BHM model (top panels) and an AR(5) model (lower panels). The deviations from the fundamental are represented by the solid lines.
Figure 5: Fancharts for UK data: estimates of the 5, 15, 50, 85 and 95% quantiles of the density forecasts (dashed lines) based on the BHM model (top panels) and an AR(5) model (lower panels). The deviations from the fundamental are represented by the solid lines.

Figure 6: Fancharts for NL data: estimates of the 5, 15, 50, 85 and 95% quantiles of the density forecasts (dashed lines) based on the BHM model (top panels) and an AR(5) model (lower panels). The deviations from the fundamental are represented by the solid lines.
Figure 7: Fancharts for CH data: estimates of the 5, 15, 50, 85 and 95% quantiles of the density forecasts (dashed lines) based on the BHM model (top panels) and an AR(5) model (lower panels). The deviations from the fundamental are represented by the solid lines.

Figure 8: Fancharts for ES data: estimates of the 5, 15, 50, 85 and 95% quantiles of the density forecasts (dashed lines) based on the BHM model (top panels) and an AR(5) model (lower panels). The deviations from the fundamental are represented by the solid lines.
Figure 9: Fancharts for SE data: estimates of the 5, 15, 50, 85 and 95% quantiles of the density forecasts (dashed lines) based on the BHM model (top panels) and an AR(5) model (lower panels). The deviations from the fundamental are represented by the solid lines.

Figure 10: Fancharts for BE data: estimates of the 5, 15, 50, 85 and 95% quantiles of the density forecasts (dashed lines) based on the BHM model (top panels) and an AR(5) model (lower panels). The deviations from the fundamental are represented by the solid lines.
estimates of the 5, 15, 50, 85 and 95% quantiles of the density forecasts, based on the BHM model (top panels) and an AR(5) model (lower panels). An AR order of 5 was used to ensure that both models have the same number of parameters. The variable of interest, the deviation from the fundamental X_t, is represented by the black solid lines. The left hand side panels show in-sample forecasts for the last 10 years of the sample. The right-hand-side panels correspond to 5-year ahead out-of-sample forecasts based on information available up to and including the end of the data-set. In all cases the model parameters were estimated based on the data prior to the base of the forecast (the last observation conditioned upon).

We observe that the density forecasts from the BHM model and the linear model are qualitatively very different. For instance, the in-sample median forecasts for the UK are strikingly different, forecasting opposite directions of change. Again focusing on the median forecast, we see that the BHM model in some cases (NL and ES in-sample forecasts) predicts the overvaluation to resume, even after the peak of a bubble, while the AR(5) model consistently predicts a progressive convergence of prices back to the corresponding fundamental value.

Also the width of the predictive intervals differs substantially between the linear and the non-linear forecasts. For instance, we observe that for the US the out-of-sample forecasts for the agent-based model have much smaller predictive intervals than for the AR model. This can be explained as follows. The price at the start of the out-of-sample forecast is close to the fundamental price, in which case both models produce similar one-step ahead mean (and median) forecasts. The width of the predictive density is then proportional to the residual standard deviation, which is smaller for the agent-based model than for the AR model (i.e. the agent-based model gave a better fit). However, it can be observed in the in-sample forecasts for the US that the agent-based model gives rise to wider forecast intervals for longer horizons. This is related to the fact that for the AR model the width of the forecast interval is independent of the state (it only depends on the forecast horizon, in which the forecast variance grows linearly) while in the non-linear agent-based model the width of the forecast interval also depends on the state itself. In fact, for all in-sample forecasts during a housing bubble, e.g. in the US, UK, NL, BE and ES, the forecast intervals of the BHM model include large bubbles, while the AR model predicts mean-reversion towards the fundamental. Moreover, for JP the in-sample forecast of the BHM model (correctly) predicted a further decline, while the AR model predicted a recovery back to fundamentals.

For some of the agent-based model forecasts (for in-sample US, UK, NL, BE and out-of-sample SE) it can be observed that the top (95%) forecast quantile diverges as the forecast horizon increases. This suggests that not only the fundamental equilibrium is unstable, but the system is globally unstable. However, note that our one-step-ahead model is used here to construct forecasts over multiple step forecast horizons, while it really is constructed and calibrated as a one-step-ahead model. Therefore, these medium-term forecasts should be
interpreted with care. To obtain better medium-term forecasts, a medium-term model should be constructed and estimated instead.

4 Dynamics and Policy Implications

What are the policy implications of our nonlinear HAM? In order to draw some policy conclusions an analysis of the key features of the nonlinear dynamics is necessary. We therefore first investigate the housing price dynamics of the nonlinear heterogeneous expectations switching model for the range of parameter values containing the estimated coefficients for all countries. In particular, we discuss *multiple steady state equilibria* and *global instability* of the system and then discuss how policy can avoid these “dark corners” of the economy (Blanchard, 2014). We focus on the role of R as the policy parameter, as it can be influenced by policy makers.

As a first step in the analysis of nonlinear systems, one needs to study the local stability and bifurcations of the fundamental steady state. A *bifurcation* is a qualitative change in the dynamics of a nonlinear model, for example a change of stability of a steady state, when a parameter changes. Recall from the stability condition (9) that the fundamental equilibrium $X_t = 0$ is locally stable when

$$\frac{\phi_1 + \phi_2}{2(R + \bar{\alpha})} = \frac{(1 + g)(\phi_1 + \phi_2)}{2(1 + r + \alpha)} < 1,$$

where we have dropped the absolute value, since all parameters are positive.

Note that the fundamental equilibrium is locally *unstable* when the average of ϕ_1 and ϕ_2 is larger than $R + \bar{\alpha}$, which means that the local stability is affected directly by behavioral parameters as well as institutional parameters.

For all eight countries, the estimated parameter values of the model were found to be close to the border of (in)stability of the fundamental steady state. The bifurcation diagrams in Fig. 11 show numerically the transitions that occur for each country as R decreases, with all other parameters fixed at the country specific estimates. The fundamental steady state destabilizes when R decreases and hits the critical threshold

$$R_{crit} = \frac{\phi_1 + \phi_2}{2} - \bar{\alpha},$$

the estimated values of which are shown in the last row of Table 3. Notice that lowering R is equivalent to lowering the risk-free mortgage interest rate r^{rf}, lowering the tax rate ω or increasing the growth rate g of the rent.

The bifurcation diagrams in Fig. 11 are constructed by plotting for each parameter value R (from a finite grid) 100 subsequent states visited by the model after a transient of 100
Figure 11: Bifurcation diagrams showing the long run behaviour for each country as a function of the bifurcation parameter R, with other parameters fixed at the estimated values. The solid (red) vertical lines indicate the estimated values of R and the dashed vertical lines the implied critical value R_{crit} of R at which the primary bifurcation occurs (transition from local stability to (local) instability of the fundamental steady state).
iterations. A small amount of dynamic noise was added, NID(0, \(\sigma^2 \)) with \(\sigma = 10^{-4} \), to enable the system to move away from the equilibrium once it becomes unstable.

There are two different bifurcation scenarios for different countries. For UK, NL, ES, BE and SE two co-existing stable non-fundamental steady states arise, one above and one below the unstable fundamental steady state, for values of \(R \) below the critical threshold. Hence, for these countries the nonlinear model exhibits multiple stable steady state equilibria for low values of \(R \). The diagram also illustrates that as \(R \) decreases further, the model becomes globally unstable with exploding house prices. In contrast, the primary bifurcations to instability for US, JP and CH are different: the fundamental steady state becomes globally unstable, with exploding house prices, for \(R \) values immediately below the critical threshold. A careful reader may also observe that the critical thresholds \(R_{\text{crit}} \) for the US and CH are below 1 and therefore might think that a bifurcation towards instability can not arise. However, as will become clear below, even when the fundamental steady state is locally stable for this nonlinear system, global instability may arise due to small exogenous shocks.

Pitchfork bifurcation

The bifurcations observed in the housing model for the eight countries in Fig. 11 are so-called pitchfork bifurcations. There are two different cases for the pitchfork bifurcation, a supercritical and a subcritical, and both theoretical cases, together with the estimates for the eight countries, are illustrated in Figure 12.\(^8\) In both cases, below the critical value, \(R_{\text{crit}} \), the fundamental steady state is unstable. In the case of a supercritical pitchfork (left panel), when the fundamental steady state becomes unstable, two additional non-fundamental steady states are created, one above and one below the fundamental, both of which are stable. These non-fundamental steady states lie on a “parabola” emanating from the stable fundamental steady state to the left.

The second case of a subcritical pitchfork bifurcation is illustrated in Figure 12 (right panel). As before, the fundamental steady state becomes unstable as the parameter \(R \) decreases below its critical value \(R_{\text{crit}} \). In the subcritical case, however, the two non-fundamental steady states exist for \(R > R_{\text{crit}} \), lying on a “parabola” emanating from the fundamental steady state to the right. Both non-fundamental steady states are unstable and they form a corridor of stability around the stable fundamental steady state. Initial states between the two non-fundamental steady states converge to the fundamental steady state; initial states outside this corridor of stability diverge (possibly to infinity, depending on higher order nonlinearities). A decrease of the policy parameter \(R \) may now have dramatic consequences: if \(R \) decreases be-

\(^8\)The first order condition for a pitchfork bifurcation is that the linearized system has an eigenvalue +1; whether the pitchfork is super- or subcritical depends on higher order derivatives of the system at bifurcation. See Kuznetsov (1995) for a detailed mathematical treatment of bifurcation theory.
Figure 12: Pitchfork bifurcation w.r.t. the policy parameter R. Bold curves denote stable steady states; dotted curves are unstable steady states. **Left Panel:** supercritical pitchfork bifurcation with stable fundamental steady state for $R > R_{\text{crit}}$ and unstable fundamental steady state surrounded by two stable non-fundamental steady states for $R < R_{\text{crit}}$. **Right Panel:** subcritical pitchfork bifurcation with stable fundamental steady state surrounded by a corridor of stability bounded by two unstable non-fundamental steady states for $R > R_{\text{crit}}$ and (globally) unstable fundamental steady state with exploding dynamics for $R < R_{\text{crit}}$. The dots represent the estimated values $R - R_{\text{crit}}$ for the eight countries.

Low R_{crit}, the fundamental steady state becomes globally unstable, as the corridor of stability shrinks to zero and disappears at the critical value R_{crit} and the system becomes explosive. Notice that, when the system is buffeted with small stochastic shocks, even for $R > R_{\text{crit}}$ close to the bifurcation point, that is, before the critical threshold is reached, the price dynamics may easily escape and diverge from fundamentals along exploding bubbles.

It should be stressed that our simple nonlinear housing model and the pitchfork bifurcation are by no means artificial or exceptional. On the contrary, the pitchfork bifurcation, supercritical as well as subcritical, is a generic phenomenon that can arise in many (higher dimensional) nonlinear systems for example in a more detailed model of the housing market.\(^9\)

Policy Implications

Estimation of the nonlinear heterogeneous expectations switching model shows the occurrence of long-lasting housing bubbles in all eight countries. What can a policy maker do to stabilize house price bubbles and prevent market instability? This is a partial equilibrium approach

\(^9\)To be mathematically precise, one should say that pitchfork bifurcations are generic in systems that are symmetric w.r.t. a coordinate axis. When symmetry breaks down, the pitchfork bifurcation “breaks up” into the generic non-symmetric case with two curves, an equilibrium curve and a saddle-node bifurcation curve, with very similar dynamics as for the pitchfork. We refer once more to Kuznetsov (1995) for a detailed mathematical treatment of bifurcation theory and its importance in applications.
that aims to classify house price changes into categories of acceptable and unacceptable (i.e. dangerous) movements. To understand the welfare implications of such instability one would need to incorporate them into general equilibrium models.

Nevertheless, what this model can do is provide early warnings when the system may be approaching what (Blanchard, 2014) called the ‘dark corners’\(^\text{10}\). The general lesson for policy makers to be drawn from our analysis of the nonlinear housing model is that structural knowledge of the system may yield important insights in policies that can prevent local or even global instability. In general terms, the policy maker should prevent the system from getting too close to bifurcation points that may destabilize the system. An interesting new methodological contribution of our analysis of the stylized housing model is that the policy maker should in particular be aware of preventing the so-called “hard bifurcations” of the system, such as the subcritical pitchfork, which may cause a sudden, critical transition of the system leading to an exploding bubble or market collapse.

In terms of our stylized housing model and the bifurcation diagrams in Figures 11 and 12 the policy maker should keep the parameter \(R\) sufficiently large, so that the system stays away from the locally or even globally unstable fundamental steady state (the dark corners). Recall that \(R = \frac{1 + r + g}{1 + g}\), where \(g\) is the growth rate of housing rents and \(r = r^f + \omega\) is the sum of the risk-free mortgage rate and the tax/maintenance cost rate. Hence, stabilizing policies include an increase of the mortgage interest rate, a decrease of mortgage tax deduction rates, an increase of tax rates for home owners, and/or a decrease of (the growth of) housing rents. Notice also an important difference in policy implications compared to the RE fundamental benchmark model. Under RE these policies only affect the level to fundamental house prices. In our behavioral 2-type switching model these policies affect both the level of the fundamental steady state and the market volatility, that is, the \textit{stability of the dynamics} around the steady state is directly affected by these policies.

5 Concluding Remarks

We have developed a nonlinear empirical housing market model with heterogeneous beliefs. The standard user cost of capital model with housing price fundamentals based on imputed rents is nested as a special case within the general heterogeneous setup. Agents however disagree in their expectations about future house prices and switch between a fundamental mean-reverting and a mean-diverting, trend-following, forecasting rule, based upon their relative performance. The heterogeneous beliefs housing model with endogenous switching displays nonlinear aggregate price fluctuations, with booms and busts, around the fundamental

\(^{10}\text{See the quotes from Blanchard (2014) in our Introduction.}\)
price triggered by stochastic shocks and strongly amplified by self-fulfilling expectations.

Our goal was to develop a general structural model that can be estimated on housing prices of different countries. Using quarterly data on rents and house prices, we estimate the model parameters for eight different countries, US, UK, NL, JP, CH, ES, SE and BE. In all countries the data support heterogeneity in expectations, with temporary switching between fundamental mean-reverting and trend-following beliefs. For all countries we identify long-lasting temporary house price bubbles, driven or amplified by trend extrapolation. For four countries, US, UK, NL and ES, we identify strong housing bubbles in the period 2004-2007, while for JP and CH housing bubbles in the 1980-1990s are identified, in all cases strongly amplified by trend-following behaviour. When these bubbles burst, the majority of agents switches to a fundamental mean-reverting strategy reinforcing a strong correction of housing prices. As indicated by the fancharts, the qualitative in-sample and out-of-sample predictions of the non-linear switching model are very different from those of standard linear benchmark models with a rational representative agent. For two countries, BE and SE the results identified high overvaluations (bubble) but where the correction has not happened. The instability shown by the AR coefficient as well as the convergence of opinions in favor of prices returning to their fundamental level, suggest that this correction is still to happen. The speed and extent of this correction is difficult to predict however, especially in light of respective authorities already taking action to stabilize the system (as is also the case for the UK). Similar HAMs have been estimated on various data sets, including stock prices, commodity prices, exchange rates and macro data. Comparing estimation results of similar 2-type HAMs we conclude that housing markets exhibit the longest temporary bubbles, with housing bubbles of several, up to 6-10 years, being the rule rather than the exception.

These results have important policy implications. The underlying nonlinear switching model exhibits multiple equilibria and/or global instability for parameter-values close to the estimated values for all countries. We have argued that a decrease of the (mortgage) interest rate, a decrease of the tax rate for home owners, an increase of mortgage tax deduction rates and/or an increase of housing rents all shift the nonlinear system closer to multiple equilibria and global instability. Policy should prevent the system getting too close to bifurcation in order to avoid critical transitions to global instability. The market sentiment, that is the average extrapolation factor of our model, may serve as an early warning indicator when the system is approaching the border of instability.

Our housing model with heterogeneous beliefs is very stylized and the results should be viewed as a ‘proof of principle’ to show that a nonlinear model with switching can lead to very different behaviour than a benchmark linear model. Nonlinear systems may easily turn unstable, but structural nonlinear modeling can also provide new insights for policy makers on how to prevent critical transitions towards instability and collapse. Our stylized nonlinear
housing market model is just a simple, but empirically relevant, example, illustrating potential policy tools for taming instability. Building more realistic nonlinear economic models based upon country specific institutional details can give important new insights for policy makers, particularly in extreme times of crises.

In order to study realistic policy scenarios in more detail future research should focus on a number of extensions. First of all, our benchmark fundamental value is very stylized and general, and for policy analysis it would be important to include more country specific institutional details of the housing market, such as tax rules and mortgage requirements, in the fundamental value. One could then easily re-estimate the model and study the amplification mechanism of endogenous belief switching around an improved and more realistic fundamental benchmark. Second, our two forecasting rules are in fact the simplest linear examples with only one lag. It would be of interest to have further guidance on which types of forecasting rules to use in these models, for example through laboratory experiments on expectations with human subjects and/or using surveys of forecasts. In general, building more realistic behavioral models for policy analysis should be high on the research agenda of academics and policy makers.

Acknowledgment

Views expressed are our own and do not reflect those of the institutions with which we are affiliated. Earlier versions of the paper have been presented at the 14th DNB Annual Conference 2011 on “Complex Systems: Towards a better understanding of financial stability and crises”, the Latsis Symposium 2012, Zürich, Sept. 11-14, 2012, the seminar series at Massey University, Albany, New Zealand, 2012, the Computation in Economics and Finance (CEF) Conference, Vancouver, July 10-12, 2013, the Society for Nonlinear Dynamics and Econometrics (SNDE) Symposium, New York, April 17-18, 2014, the European Economic Association (EEA) Conference, Toulouse, August 25-29, 2014, the Banque de France and ESSEC Business School Workshop “Expectations and Forecasting in International Macroeconomics”, Dec. 10, 2014 and the European Central Bank conference on “Non-linearities in macroeconomics and finance in the light of crises”, Dec. 15-16, 2014. We are grateful to Vincent Sterk and Simon van Norden, as well as seminar participants at the Bank of England and the European Commission for comments and suggestions. This research has been supported by the Netherlands Organisation for Scientific Research (NWO) under the Complexity program and by the Netherlands Institute for Advanced Study in the Humanities and Social Sciences (NIAS). The usual disclaimer applies.
References

A Appendix

A.1 Derivation of dynamics of X_t

Substituting $X_t = \frac{P_t}{P_t^*} - 1$ in terms of X_t and P_t^* into the price equation (4) gives

$$(1 + r + \alpha)(P_t^* X_t + P_t^*) = \sum_{h=1}^{2} n_{h,t} \mathbb{E}_{h,t} \left((P_{t+1}^* X_{t+1} + P_{t+1}^* + (1 + rf)Q_t) \right),$$

or, using $P_t^* = \frac{1 + rf}{r + \alpha} Q_t$

$$(1 + r + \alpha)Q_t(X_t + 1) = \sum_{h=1}^{2} n_{h,t} \mathbb{E}_{h,t} \left(Q_{t+1}(X_{t+1} + 1) + (r + \alpha - g)Q_t \right).$$

Since the fundamental process satisfies

$$(1 + r + \alpha)Q_t = \sum_{h=1}^{2} n_{h,t} \mathbb{E}_{h,t} \left(Q_{t+1} + (r + \alpha - g)Q_t \right),$$

what remains is

$$(1 + r + \alpha)Q_t X_t = \sum_{h=1}^{2} n_{h,t} \mathbb{E}_{h,t} \left(Q_{t+1} X_{t+1} \right).$$

The right hand side equals $(1 + g)Q_t \mathbb{E}_{h,t}(X_{t+1})$, resulting in

$$X_t = \frac{1 + g}{1 + r + \alpha} \sum_{h=1}^{2} n_{h,t} \mathbb{E}_{h,t} \left(X_{t+1} \right).$$

Here we have used $\mathbb{E}_{h,t}(Q_{t+1} X_{t+1}) = \mathbb{E}_{h,t}(Q_{t+1} \mathbb{E}_{h,t}(X_{t+1})) \mathbb{E}_{h,t}(Q_{t+1}) \mathbb{E}_{h,t}(X_{t+1}) = (1 + g)Q_t \mathbb{E}_{h,t}(X_{t+1})$, which holds because $\mathbb{E}_{h,t}(X_{t+1})$ is a function of the information available at time t, and hence conditionally independent of Q_{t+1}, given that information.

A.2 Expressing R_{t-1} in terms of X_{t-1} and X_{t-2}

Since

$$X_t = \frac{P_t}{P_t^*} - 1 = \frac{P_t}{\left(\frac{1 + rf}{r + \alpha - g} Q_{t-1} \right) - 1},$$

40
we can write \(P_t = (X_t + 1)^{\frac{1+r^{\text{rf}}}{r+\alpha-g}} Q_t \), and express \(R_{t-1} \) as

\[
R_{t-1} = \frac{P_{t-1} + (1 + r^{\text{rf}})Q_{t-2} - (1 + r)P_{t-2}}{P_{t-2}}
\]

\[
= \frac{P_{t-2}}{X_{t-1} + 1} \left(\frac{1+r^{\text{rf}}}{r+\alpha-g} \right) Q_{t-2} + \left[\left(1 + r^{\text{rf}} \right) - (1 + r) \frac{1+r^{\text{rf}}}{r+\alpha-g} (X_{t-2} + 1) \right] \frac{Q_{t-2}}{P_{t-2}}
\]

\[
\approx \left(\frac{1+r^{\text{rf}}}{r+\alpha-g} \right) \frac{Q_{t-2}}{P_{t-2}} (X_{t-1} + 1)(1 + g) + [(r + \alpha - g) - (1 + r)(X_{t-2} + 1)]
\]

\[
= \frac{1+r^{\text{rf}}}{r+\alpha-g} \frac{Q_{t-2}}{P_{t-2}} \left(1 + g \right) Y_{t-2} \left(X_{t-1} + \bar{\alpha} - RX_{t-2} \right),
\]

where \(Y_{t-2} = \frac{1+r^{\text{rf}}}{r+\alpha-g} \frac{Q_{t-2}}{P_{t-2}} = \frac{P_{t-2}}{P_{t-2}}. \)

A.3 Estimated behavioral parameters for \(\bar{\alpha} = 0.005 \), and with GARCH(1,1) residuals
<table>
<thead>
<tr>
<th>Country</th>
<th>US</th>
<th>JP</th>
<th>UK</th>
<th>NL</th>
<th>CH</th>
<th>ES</th>
<th>SE</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{R}</td>
<td>1.0105</td>
<td>1.0089</td>
<td>1.0074</td>
<td>1.0165</td>
<td>1.0075</td>
<td>1.0140</td>
<td>1.0199</td>
<td>1.0184</td>
</tr>
<tr>
<td>$\bar{\alpha}$</td>
<td>0.0050</td>
<td>0.0050</td>
<td>0.0050</td>
<td>0.0050</td>
<td>0.0050</td>
<td>0.0050</td>
<td>0.0050</td>
<td>0.0050</td>
</tr>
</tbody>
</table>

fundamental parameters

<table>
<thead>
<tr>
<th>Country</th>
<th>US</th>
<th>JP</th>
<th>UK</th>
<th>NL</th>
<th>CH</th>
<th>ES</th>
<th>SE</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_1</td>
<td>0.8360***</td>
<td>0.9364***</td>
<td>0.9093***</td>
<td>0.9552***</td>
<td>0.8782***</td>
<td>0.9587***</td>
<td>0.8854***</td>
<td>0.9909***</td>
</tr>
<tr>
<td></td>
<td>(0.0705)</td>
<td>(0.0140)</td>
<td>(0.0222)</td>
<td>(0.0256)</td>
<td>(0.0267)</td>
<td>(0.0088)</td>
<td>(0.1129)</td>
<td>(0.0128)</td>
</tr>
<tr>
<td>$\Delta \phi$</td>
<td>0.3097*</td>
<td>0.1558***</td>
<td>0.1674***</td>
<td>0.1130*</td>
<td>0.2292***</td>
<td>0.1119***</td>
<td>0.2826</td>
<td>0.0701***</td>
</tr>
<tr>
<td></td>
<td>(0.1384)</td>
<td>(0.0252)</td>
<td>(0.0080)</td>
<td>(0.0498)</td>
<td>(0.0430)</td>
<td>(0.0151)</td>
<td>(0.2257)</td>
<td>(0.0011)</td>
</tr>
<tr>
<td>β ($\times 10^3$)</td>
<td>1.285</td>
<td>3.098°</td>
<td>1.457</td>
<td>2.876</td>
<td>2.680</td>
<td>1.375*</td>
<td>0.434</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>(1.508)</td>
<td>(1.623)</td>
<td>(1.025)</td>
<td>(3.515)</td>
<td>(1.957)</td>
<td>(0.633)</td>
<td>(0.789)</td>
<td>(12.95)</td>
</tr>
<tr>
<td>δ</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3996</td>
<td>0.4624**</td>
<td>0.1761</td>
<td>0.0699</td>
<td>0.5726***</td>
</tr>
<tr>
<td></td>
<td>(0.2545)</td>
<td>(0.2369)</td>
<td>(0.2460)</td>
<td>(0.2737)</td>
<td>(0.1255)</td>
<td>(0.1878)</td>
<td>(0.1683)</td>
<td>(0.1572)</td>
</tr>
<tr>
<td>BIC</td>
<td>−1007.543</td>
<td>−938.6408</td>
<td>−725.8254</td>
<td>−718.0138</td>
<td>−808.7961</td>
<td>−763.0292</td>
<td>−606.0777</td>
<td>−784.6270</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>US</th>
<th>JP</th>
<th>UK</th>
<th>NL</th>
<th>CH</th>
<th>ES</th>
<th>SE</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_2</td>
<td>1.1457***</td>
<td>1.0922***</td>
<td>1.0767***</td>
<td>1.0681***</td>
<td>1.1075***</td>
<td>1.0706***</td>
<td>1.1680***</td>
<td>1.0610***</td>
</tr>
<tr>
<td></td>
<td>(0.0693)</td>
<td>(0.0134)</td>
<td>(0.0191)</td>
<td>(0.0260)</td>
<td>(0.0211)</td>
<td>(0.0082)</td>
<td>(0.1134)</td>
<td>(0.0095)</td>
</tr>
<tr>
<td>$\phi_2 - (R + \bar{\alpha})$</td>
<td>0.1351*</td>
<td>0.0833***</td>
<td>0.0693***</td>
<td>0.0517*</td>
<td>0.1000***</td>
<td>0.0566***</td>
<td>0.1481</td>
<td>0.0427***</td>
</tr>
<tr>
<td></td>
<td>(0.0693)</td>
<td>(0.0134)</td>
<td>(0.0191)</td>
<td>(0.0260)</td>
<td>(0.0211)</td>
<td>(0.0082)</td>
<td>(0.1134)</td>
<td>(0.0095)</td>
</tr>
<tr>
<td>$\bar{\phi}_1 + \phi_2$</td>
<td>0.9805***</td>
<td>1.0053***</td>
<td>0.9857***</td>
<td>0.9952***</td>
<td>0.9855***</td>
<td>1.0006***</td>
<td>1.0067***</td>
<td>1.0075***</td>
</tr>
<tr>
<td></td>
<td>(0.0097)</td>
<td>(0.0054)</td>
<td>(0.0083)</td>
<td>(0.0068)</td>
<td>(0.0106)</td>
<td>(0.0039)</td>
<td>(0.0081)</td>
<td>(0.0046)</td>
</tr>
<tr>
<td>loc. stability</td>
<td>stable</td>
<td>unstable</td>
<td>stable</td>
<td>stable</td>
<td>stable</td>
<td>unstable</td>
<td>unstable</td>
<td>unstable</td>
</tr>
<tr>
<td>R_{crit}</td>
<td>0.9858***</td>
<td>1.0093***</td>
<td>0.9880***</td>
<td>1.0067***</td>
<td>0.9879***</td>
<td>1.0097***</td>
<td>1.0217***</td>
<td>1.0210***</td>
</tr>
<tr>
<td></td>
<td>(0.0098)</td>
<td>(0.0054)</td>
<td>(0.0083)</td>
<td>(0.0069)</td>
<td>(0.0107)</td>
<td>(0.0040)</td>
<td>(0.0082)</td>
<td>(0.0047)</td>
</tr>
</tbody>
</table>

Table 4: Fundamental parameters (fixed during estimation of the behavioral parameters), estimated behavioral model parameters for $\bar{\alpha} = 0.005$, and corresponding implied behavioral parameters. Signif. codes: 0.00 7**** 0.001 7*** 0.01 7** 0.05 7* 0.10.
<table>
<thead>
<tr>
<th>Country</th>
<th>US</th>
<th>JP</th>
<th>UK</th>
<th>NL</th>
<th>CH</th>
<th>ES</th>
<th>SE</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country Estimate</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.0184</td>
</tr>
<tr>
<td>R + α</td>
<td>0.000</td>
<td>1.0105</td>
<td>1.0089</td>
<td>1.0074</td>
<td>1.0105</td>
<td>1.0075</td>
<td>1.0075</td>
<td>1.0109</td>
</tr>
<tr>
<td>δ</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Δφ</td>
<td>0.0105</td>
<td>0.0074</td>
<td>0.0074</td>
<td>0.0074</td>
<td>0.0074</td>
<td>0.0074</td>
<td>0.0074</td>
<td>0.0074</td>
</tr>
<tr>
<td>φ</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>β (×10^3)</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>BIC</td>
<td>-1081.7258</td>
<td>-1121.2639</td>
<td>-751.2271</td>
<td>-854.9331</td>
<td>-902.9099</td>
<td>-796.2882</td>
<td>-631.4837</td>
<td>-802.5484</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>R + α</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>R + α</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>Δφ</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>φ</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>δ</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>β</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>R + α</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>R + α</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>Δφ</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>φ</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>δ</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>β</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>R + α</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
<td>1.0070</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>R + α</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
<td>1.0086</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>Δφ</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
<td>0.0031</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>φ</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
<td>1.0004</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>δ</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
<td>1.0141</td>
</tr>
<tr>
<td>Implied behavioral parameters/local stability</td>
<td>β</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Table 5: Fundamental parameters (fixed during estimation of the behavioral parameters), estimated behavioral model parameters for $\sigma_0 = 0$, with GARCH(1,1) innovations, and corresponding implied behavioral parameters. Signif. codes: 0.10, 0.05, 0.01, 0.001, 0.0001. **: 0.05, **: 0.10.