Department of Pharmacy and Pharmacology

ian_eggleston

Reader in Medicinal Chemistry

5 West – 3.8

E-mail: ie203@bath.ac.uk

Tel: +44 (0) 1225 383101 

 

Dr Ian M. Eggleston

Profile

Our research focuses on the design and delivery of drugs. We are particularly interested in the application of peptide chemistry to problems in biology and medicine, and therapeutic strategies using light. Recent and current work is in collaboration with colleagues at University College London, Dundee, and Bath, with funding from BBSRC, Wellcome Trust, and the British Skin Foundation.

Chitinase Inhibitors

Chitin is an essential component of fungal cell wells, nematode egg shells and arthropod skeletons. We have synthesised various potent and selective inhibitors of family 18 chitinases, which degrade this biopolymer, including natural product-inspired peptides and some novel “dicaffeines” that are selective ligands for chitinases and other carbohydrate-binding proteins. These molecules have potential as antifungals, antiparasitic agents, and mediators of allergic inflammation and asthma.

Peptide-targeted agents for PDT and photobiology

In photodynamic therapy (PDT), destruction of tumours or pathogens is achieved with light after selective administration of a light-activated photosensitising drug. Treatment with 5-aminolaevulinic acid (ALA), a precursor of the natural photosensitiser, protoporphyrin IX, is a promising strategy in PDT, and we are currently developing ALA-containing peptide prodrugs with enhanced cellular uptake and targeting properties. We are also interested in using peptide-targeted photosensitisers for drug delivery, by photochemical internalisation (PCI). In PCI, delivery of cancer therapeutics, macromolecular drugs, and imaging agents may be enhanced at specific sites, by illuminating the relevant tissue in conjunction with a suitable photosensitiser.

Light-activated caged iron chelators

We are synthesising caged iron chelators - prodrugs in which a key iron-binding function of a chelator is masked with a photolabile group. These molecules are then activated to bind iron only upon exposure to a specific light dose, avoiding toxic side-effects that are associated with the prolonged administration of strong iron chelators. Their potential as UVA photoprotectants, and targeted therapeutics for iron-dependent disorders is being evaluated.

Publications

Read publications by Ian Eggleston

View more publications »