

The University of Mancheste

Life Cycle Assessment as a Tool for Sustainable Management of Ecosystem Services

Adisa Azapagic

School of Chemical Engineering and Analytical Science Sustainable Consumption Institute

adisa.azapagic@manchester.ac.uk

Overview

Ecosystem services

Life cycle assessment

- Energy
- Transport
- Consumer products

Ecosystem services

The processes by which the environment produces resources utilised by humans such as clean air, water, food and materials

Supporting services

 For the production of other services including soil formation, photosynthesis, nutrient and water cycling

Provisioning services

The products obtained from ecosystems, including food, fuel, bio-chemicals, medicines, and fresh water

Regulating services

The benefits from the regulation of ecosystem processes, including air quality, climate, water and disease regulation

Cultural services

The non-material benefits including recreation and aesthetic experiences

Ecosystem approach

Seeks to achieve the sustainable use of ecosystem products and services through:

Management within natural limits

- Management for the long term
- Management at micro and macro scales
- Making trade-offs clear

Life cycle assessment as an eco-services tool

Assesses env'l sustainability of provisioning services

- Quantifies emissions and impacts
- Identifies hot spots
- Identifies opportunities for improvements
- Enables comparison of alternatives

Identifies impacts on supporting services

Informs regulation services

LCA of provisioning services

Carbon footprint of energy technologies

Energy technologies: Carbon footprint vs other life cycle impacts

Carbon footprint of different fuels

Carbon footprinting food: Tomatoes in different countries

Carbon footprinting food: Meat vs vegetables

Williams, A.G., Audsley, E. & Sandars, D.L. (2006) Final report to Defra on project IS0205: Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. London: Defra.

Carbon footprint of orange juice (in carton packaging)

Carbon footprint of juice packaging

Carbon labelling

working with the Carbon Trust 6.5kg Equivalent CO2 per 1000 hrs of use	The carbon footprint of this lightbulb is 6.5kg per 1000 hours of use and we have committed to reduce this
	By comparison the footprint for the equivalent conventional lightbulb (60w) is 34kg per 1000 hours use
	Recycling the bulb at the end of life will help preserve the environmental benefits

Conclusions

- Life cycle assessment can help towards sustainable management of ecosystem services
- Mainly used for provisioning services but contributes to improving supporting, regulating and cultural services
- Important to consider a wide range of environmental impacts and socio-economic aspects
- Particularly important to make trade-offs clear

