

Life Cycle Assessment and Carbon Footprinting

Adisa Azapagic

School of Chemical Engineering and Analytical Science and

The Sustainable Consumption Institute

adisa.azapagic@manchester.ac.uk

Overview

- Introduction
- OCarbon footprinting
 - **O**Energy
 - **O**Industry
 - **O**Transport
 - **O**Food
- **O**Conclusions

Carbon footprinting

- Estimating emissions of GHG from different human activities
- Expressed as CO₂ eq.
 - The amount of carbon dioxide emission that would cause the same integrated radiative forcing, over a given time horizon, as an emitted amount of a GHG or their mixture

 Also known as Global Warming Potential (GWP)

Global anthropogenic GHG emissions

GHG emissions per capita

Carbon footprinting

- Carbon footprint can include
 - ODirect and
 - Indirect emissions
- Often comprises direct emissions only
 - Oe.g. Kyoto reporting of GHG is based on direct emissions only
- In many cases indirect emissions contribute much more than the direct emissions
- Life cycle approach essential for measuring the true GHG emissions of human activities

Life cycle approach to carbon footprinting

Carbon footprinting of different human activities and sectors

- Energy
- Industry
- OTransport
- Agriculture/Food

Carbon footprinting the energy sector

ONormally done for direct emissions, i.e. from combustion (use phase)

Other life cycle stages can contribute to the total footprint

Life cycle

Carbon footprinting energy technologies: Direct CO₂ emissions

Carbon footprinting energy technologies: Life cycle CO₂ eq. emissions

Carbon footprinting energy technologies: Life cycle CO₂ eq. emissions

Carbon footprinting energy technologies: Carbon footprint vs other life cycle impacts

Carbon footprinting industry: Direct CO₂ emissions

- Industry is directly responsible for 14% of GHG emissions
 - ○20% if emissions from the power sector are included
- Two thirds of direct CO₂ emissions are from three sectors:
 - Iron and steel
 - ONon-metallic minerals and
 - OChemicals and petrochemicals

An example: Carbon footprinting the UK Chemicals industry

- **○**50,000 products
- **4000** sites
- UK's top manufacturing export earner
 - O£33 billion sales
 - O£29 billion exports
- OBut how big is the industry's carbon footprint?

Life cycle

Direct emissions (as reported under the Kyoto)

Gas	Emissions (kt)	GWP (kt CO ₂ eq.)
CO ₂	1120	1120
CH ₄	2	42
N ₂ O	9	2796
Total		3958

(2005)

And how much it would be on a life-cycle basis

Gas	Emissions (kt)	GWP (kt CO ₂ eq.)
CO ₂	1120	1120
CH ₄	2	42
N ₂ O	9	2796
Total		3958
Life cyc	s 12,050	

Carbon footprint of some chemicals

GWP (kg CO_{2 eq.}/t)

David Fairweather and Adisa Azapagic, The University of Manchester, 2008

Carbon footprint of some chemicals

Total: 12.05 Mt CO_{2 eq}/yr

GWP (kt CO_{2 eq}/yr)

David Fairweather and Adisa Azapagic, The University of Manchester, 2008

Carbon footprinting the transport sector: Direct CO₂ emissions

- Transport is responsible for 13% of direct GHG emissions
 - The majority of emissions are from road transport (76%) and aviation (12%)
 - Aviation accounts for 1.6% of global GHG emissions

Carbon footprinting the transport sector: Life cycle emissions

- Indirect emissions are from:
 - ONon-CO₂ effects of aviation (water vapour)
 - Ocurrently excluded from emission estimates
 - ○If included, aviation could account 5% of global GWP in 2050
 - Fuel refining and electricity generation

Life cycle

Carbon footprinting the transport sector: Life cycle comparison of different transport modes

Source: Ecoinvent Database, v1.3

Carbon footprinting transport: Life cycle comparison of different fuels

- Stichnothe, H., J. Hau and A. Azapagic (2008). Bioethanol from Waste: Estimation of Greenhouse Saving Potential on a Life Cycle Basis. Waste Management 2008, Granada, 2-4 June 2008.
- Carbon and Sustainability Reporting within the Renewable Transport Fuel Obligation. Government Recommendation to RTFO Administrator. Department of Transport (DFT), June 2007

Manufacture of food and drink: Main GHG and sources

- \bigcirc CO₂
 - Energy use (processing and refrigeration)
 - **O**Transport
- Non-methane VOCs
 - Whisky maturation
 - OBread making
 - OHeating of food
 - Processing of oils and fats
- **OHFCs**
 - Refrigeration

Life cycle

Carbon footprinting the food sector: Tomatoes in different countries

Comparison on a life cycle basis

Carbon footprinting the food sector: Meat vs vegetables

Comparison on a life cycle basis, at farm, UK

Conclusions

- Climate change is probably one of the greatest threats to society today
- Successful adaptation and mitigation depend on better understanding of GHG emissions from different activities
- Life-cycle based carbon footprinting can contribute towards this
- It can also contribute towards sustainable production and consumption

Acknowledgments

- ODr Heinz Stichnothe
- ODavid Fairweather

- Carbon Calculations over the Life Cycle of Industrial Activities (CCaLC)" funded by
 - **OCarbon Trust**
 - **OEPSRC**
 - **ONERC**