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Being to treat of the Doctrine of Sounds, I hold it convenient to premise something in the
general concerning this Theory; which may serve at once to engage your attention, and excuse
my pains, when I shall have recommended them, as bestow’d on a subject not altogether useless
and unfruitful.

Narcissus Marsh, 1683/4, Phil. Trans. Roy. Soc. Lond., 156:472–486.

A large fraction of the world’s energy consumption is devoted to compensating for turbulent
energy loss!

Robert Ecke, 2005, Los Alamos Science, 29:124–141.

Does the wind possess a velocity? This question, at first sight foolish, improves on ac-
quaintance.

Lewis F. Richardson, 1926, Proc. Roy. Soc. Lond. A, 110:709–737.
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Some things you should get

These notes are some, but not all, of the course. You should also get a number of papers and other docu-
ments. One of these (Tyler & Sofrin) is on the moodle page for the course. The rest are available from the
library or online. You will probably not need to print them out in full, so wait until you need them before
putting anything on paper.

• TYLER, J. M., & SOFRIN, T. G. 1962, Axial flow compressor noise studies, Transactions of the
Society of Automotive Engineers, 70:309–332.

• LILLEY, G. M. 1995, Jet noise classical theory and experiments, in Aeroacoustics of flight vehicles,
Hubbard, H., ed., Acoustical Society of America (available from the NASA website).

• LIGHTHILL, M. J. 1952, On sound generated aerodynamically: I General theory, Proceedings of the
Royal Society A, 211:564–587.

• HUSSAIN, A. K. M. FAZLE 1986, Coherent structures and turbulence, Journal of Fluid Mechanics,
173:309–356.





Contents

1 The basics 1
The equations of fluid motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Dealing with randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Time and frequency domain analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Simplifications 9
Short range, intense flows: turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Potential and vorticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Long range, weak flows: acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Solutions of the wave equation in one dimension: Plane waves . . . . . . . . . . . . . . . . . . 14
Solutions of the wave equation in three dimensions . . . . . . . . . . . . . . . . . . . . . . . . 14
Acoustic velocity and intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Noise from flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Characterizing turbulence 19
Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Length and time scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Scales derived from correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Instability and transition to turbulence 23
Kelvin–Helmholtz instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
What happens next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 The generation of sound 27
Pulsating sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Point sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Sound from a circular piston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Asymmetric sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 The propagation of sound 35
Reflection by a hard wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Reflection by a soft wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Ducts and silencers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
The Helmholtz resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Sound in circular ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Radiation from ducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Source filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

i



ii CONTENTS

Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 The Proper Orthogonal Decomposition 45
Inner products and orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
POD of real flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Turbulent jets 47
Jet flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
The eighth power law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 53

A Further reading 55
Fiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B Basic equations 57

C Some useful mathematics 59
Complex variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
The Dirac delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Coordinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



Chapter 1

The basics

Turbulence is one of the deepest mysteries in fluid mechanics, and probably the single biggest thing which
makes it both especially difficult and especially interesting. One of the side effects of many flows is sound
(if you like it) or noise (if you don’t). The noise generated by flows typically carries only a tiny fraction
of the energy of the flow proper, even in cases where the noise is sufficient to cause hearing damage. The
mystery of turbulence has captivated serious thinkers for centuries and some of those people have made
progress in understanding the nature of the problem and the physics which gives rise to the intriguing
patterns of turbulent flow. Acoustics, on the other hand, is a study of very weak perturbations which
propagate over large distances and interact in a way which depends on a very delicate balance of quantities.

A definition of turbulence which will help us to analyze the problem at something higher than a hand-
waving level is given by George (2007):

Turbulence is that state of fluid motion which is characterized by apparently random and
chaotic three-dimensional vorticity.

Panton (2005, page 732) gives the definition:

Turbulent flows contain self-sustaining velocity fluctuations in addition to the main flow.

The study of turbulence and acoustics will require us to analyze the physics using the mathematical theory
of fluid flow (the Navier–Stokes equations) and statistical methods appropriate to random problems. Both
acoustics and turbulence, although they are very different in many ways, are governed by the same basic
equations of fluid motion.

The equations of fluid motion

The basic equations governing the motion of a fluid are usually known as the Navier–Stokes equations.
They can be found in standard fluid dynamics texts (Panton, 2005; George, 2007):

ρ

[
∂ui

∂t
+ uj

∂ui

∂xj

]
+

∂p

∂xi
− ∂τij

∂xj
= 0; (1.1a)[

∂ρ

∂t
+ uj

∂ρ

∂xj

]
+ ρ

∂uj

∂xj
= 0. (1.1b)

These are equations of momentum and continuity, written in tensor notation. Density and pressure have
symbols ρ and p. The vectors for position and velocity are denoted by xi and ui respectively where the
index i = 1, 2 or 3, corresponding to the three Cartesian axes, so that (1.1a) is actually three equations,
found by setting i to each of its values. Tensor notation is often a much more compact way of writing the
equations of fluid motion, and you should be able to switch between it and vector notation.

The Einstein summation convention is used which says that where an index is repeated in a term, the
term is read as a sum over the three values of the index. For example, the quantity uivi ≡ u1v1 + u2v2 +

1
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u3v3. Some more definitions which are useful in dealing with tensors are given in Appendix C. The term τij

is the viscous stress tensor and will turn out to be very important in the study of turbulence. In a Newtonian
fluid,

τij = 2µ

[
Sij −

1
3
Skkδij

]
, (1.2)

where the viscosity µ is a property of the fluid and:

Sij =
1
2

[
∂ui

∂xj
+

∂uj

∂xi

]
, (1.3)

is the strain rate tensor. The Kronecker delta is defined:

δij =
{

1, i = j;
0, i 6= j.

(1.4)

Many problems in fluid mechanics deal with incompressible flow (not the same thing as incompressible
fluid) where the density ρ is constant. In this case:

∂uj

∂xj
= 0 and Skk = 0, (1.5)

which will allow us to study the behaviour of turbulence without the complications introduced by com-
pressibility.

The Navier-Stokes equations are the most general form of the laws governing fluid motion and contain
all of the behaviour which we can find in real problems. In practice, we will not try to solve (1.1) (there is
a million dollar prize ‘simply’ for proving that there are reasonable solutions) but will develop appropriate
approximations which will let us derive solutions for particular, though still useful, cases and thus find out
something about the behaviour of real turbulent systems.

In order to do this, we must first non-dimensionalize the equations, to see which terms are important
and which can be neglected. A detailed derivation for the full compressible Navier-Stokes equations can be
found in various textbooks (Panton, 2005, page 732, for example) but we will just look at the momentum
equation (1.1a):

ρ

[
∂ui

∂t
+ uj

∂ui

∂xj

]
+

∂p

∂xi
− ∂τij

∂xj
= 0.

In order to non-dimensionalize this equation, we introduce a reference length L, velocity U0, density ρ0

and viscosity µ0. The non-dimensional variables are then:

x∗i = xi/L; t∗ = tU0/L; u∗i = ui/U0; µ∗ = µ/µ0; p∗ = (p− p0)/ρ0U
2
0

where an asterisk indicates that a variable is dimensionless. Pressure appears in these equations as a gradi-
ent, so we can subtract off some reference value p0 before we scale on ρ0U

2
0 .

The first step is to non-dimensionalize the viscous stress term:

τij = 2µ0µ
∗
[
U0

L
S∗ij −

1
3

U0

L
S∗kkδij

]
,

=
µ0U0

L
τ∗ij

and so:

∂τij

∂xj
=

µ0U0

L2

∂τ∗ij
∂x∗j

.
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Going through the same steps for the rest of the momentum equation yields:

ρ∗
ρ0U

2
0

L

(
∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

)
+

ρ0U
2
0

L

∂p∗

∂x∗i
− µ0U0

L2

∂τ∗ij
∂x∗j

= 0,

which leads to the dimensionless momentum equation:

ρ∗

(
∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

)
+

∂p∗

∂x∗i
− 1

Re
∂τ∗ij
∂x∗j

= 0, (1.6)

where the Reynolds number Re = ρ0U0L/µ0. The fundamental importance of the Reynolds number is now
obvious. When Re is large, the flow is (almost) inviscid and the inertial terms dominate. When Re is small,
the viscous terms dominate. For this reason, large Reynolds numbers flows are also often called ‘inviscid’,
but you must be careful to remember that this does not mean ‘flows having zero viscosity’ but ‘flows in the
limit of vanishing viscosity’. The study of turbulence is largely the study of the delicate balance of inertial
and viscous forces in a flow.

Dealing with randomness

It is in the nature of turbulent flows that they are random so that we can only talk about them in a statistical
sense. In practice, this means using the ideas of averaging and standard deviation, which you have met
before, and some extensions of these ideas, which you have probably not.

The basic idea of averaging in turbulence problems is that flows generated under the same conditions
will be statistically the same: the instantaneously measured velocities and pressures will be random, but the
basic behaviour in terms of statistical properties will not change between repetitions of an experiment. This
leads to the idea of ensemble averaging: we average across the repetitions of an experiment to get some
‘true’ underlying mean value. If, for example, we are looking for the ensemble average of the pressure
measured in some flow, we compute it, in principle, as:

〈p(x, t)〉 = lim
N→∞

1
N

N∑
n=1

p(n)(x, t), (1.7)

where p(n)(x, t) is the pressure measured at point x and time t, during the nth repetition of the experiment.
The ensemble average, denoted by 〈p(x, t)〉 is found by repeating the experiment to find an estimate of
the underlying mean value. The idea is that in a real problem there is some basic mean flow about which
there are random fluctuations which we tentatively call turbulence. In practice, we tacitly make the ergodic
assumption, which can be (roughly) phrased as meaning that time averages and ensemble averages are the
same.

To examine the fluctuations, we subtract off the ensemble average. The fluctuation is usually denoted
by a prime symbol so:

p′ = p− 〈p〉 .

Obviously, 〈p′〉 = 0, so it is not a useful measurement to make or quantity to predict. On the other hand the
mean of its square will not be zero. This mean is called the variance and defined:

var[p′] =
〈
(p′)2

〉
=
〈
(p− 〈p〉)2

〉
, (1.8)

= lim
N→∞

1
N

N∑
n=1

(p(n)(x, t)− 〈p(x, t)〉)2.

From the definition of var[p] and 〈p〉, you can show that:

var[p] =
〈
p2
〉
− (〈p〉)2. (1.9)
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p(x1, t) q(x2, t)

Figure 1.1: A two-speaker arrangement

Figure 1.2: Sinusoidal and random signals from the two speakers: first speaker shown solid, second shown
dashed, total signal bold.

It is also worth knowing that the square root of the variance is the standard deviation or root mean square
of the variable.

Given that we have found averages of p and p2, we can write down a general formula for the moments
of a random variable. The mth moment of p is defined:

〈pm〉 = lim
N→∞

1
N

N∑
n=1

(p(n))m (1.10)

and the mth central moment is found in the same way, but with the mean subtracted off:

〈(p′)m〉 = lim
N→∞

1
N

N∑
n=1

(p(n) − 〈p〉)m, (1.11)

so that the variance is the second central moment.

Correlation

An issue which is important in turbulence measurements, and an essential part of estimating the character-
istics of noise sources, is the strength of the relationship between the flow at different points in space and
time.

Figure 1.1 shows two loudspeakers at positions x1 and x2, generating signals p(t) and q(t) respectively.
As you will remember, the total signal measured by a microphone is made up of the sum of the two original
signals which combine destructively or constructively, depending on the signals and on their distances to
the microphone.

Figure 1.2 shows how the two signals can combine. If the signals are sinusoidal, the combination is also
a sinusoid with its amplitude depending on the phase of the two original signals. What happens, however,
if the signals are random, as in the second part of Figure 1.2? We cannot make a definite statement about
how the two signals will combine, unless we consider how they are related. If the two signals are identical,
then they can be summed quite easily. If they are completely unrelated, in some sense, then we can treat
them independently. The problem is in saying what we mean by ‘related’ or ‘unrelated’, in a statistical
sense. This idea can be made more precise using a correlation function. For the two signals p and q, this is
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0 1 0 1 −1 0 1

Figure 1.3: The correlation functions of various signals: two sinusoids of the same frequency; a Gaussian
random signal autocorrelation; a random signal and its low-pass filtered self. Note that the horizontal axis
on the right hand figures runs from -1 to 1.

defined:

C(τ) = 〈p(t)q(t + τ)〉 , (1.12)

which is a statistical quantity which can be measured in a flow or extracted from computations. In turbulent
flows, we usually make the assumption that the problem is statistically stationary, which means that the
statistics (mean, moments, etc.) of the flow do not change with time, so that C(τ) is a function of time
difference τ but not of time t.

An important special case for the correlation is the autocorrelation which is the correlation of a variable
with itself:

C(τ) = 〈p(t)p(t + τ)〉 . (1.13)

It is often convenient to remove the effect of the magnitude of the signals by working in terms of the
correlation coefficient:

Ψ(τ) =
〈p(t)q(t + τ)〉
[〈p2〉 〈q2〉]1/2

(1.14)

which is the correlation function scaled on the r.m.s. values of the variables. The maximum possible
magnitude of Ψ(τ) is one, so that it tells us how well correlated p and q are, independent of their magnitudes.

In order to see how the correlation function can be useful, we can look at some examples.
Figure 1.3 shows a set of basic signals in the first two columns and their correlation coefficients on

the right hand side. These were computed numerically using a function in Octave (a program similar to
Matlab). The first example is the autocorrelation of a sinusoid, which is itself a sinusoid (see Problem 8).

The second set of figures show the autocorrelation of a random signal. Here the correlation is a spike
at time zero: the signal is perfectly correlated with itself at the same time (it is always equal to itself)
but because there is no correlation between successive parts of the signal—by definition since the signal
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is random—the correlation is zero everywhere else. Finally, the last set of figures shows a random signal
correlated with a low-pass filtered version of itself. Now, the filter introduces a ‘memory’ into the system
and the correlation lasts for a finite length of time, as you can see in the right hand plot. This process is
similar to what happens in turbulent flows, where the velocity in the fluid changes as a packet of fluid is
swept with the flow, leading to a gradual decay in the correlation function with space and time.

Time and frequency domain analysis

As you might have guessed by now, looking at a picture of a random signal is of little use in characterizing
or interpreting turbulence. The basic statistical measures, such as variance, are important but not very
informative. In practice, much of our analysis of turbulence will use correlations and frequency domain
methods, where we analyze signals in terms of the energy content as a function of frequency, rather than
of time. The Fourier transform (Fourier series for a periodic signal) lets us switch between the time and
frequency domains:

û(f) =
∫ ∞

−∞
f(t)e−j2πft dt, u(t) =

∫ ∞

−∞
û(f)ej2πft df, (1.15)

where û(f) is the Fourier transform of u(t) and f is frequency. Note that the frequency here is not in
radians. There is no single agreed form for the Fourier transform, and different people give slightly different
formulations. We use this one, because it is the most symmetric.

The Fourier transform on its own breaks the signal down into different components with a magnitude
and phase at each frequency. On its own, this is of little use for a random signal, since it will be random
itself. On the other hand, we can look at the Fourier transform of something which is repeatable and
well-defined, the autocorrelation. The Fourier transform of the autocorrelation is called the power spectral
density, or sometimes power spectrum:

S(f) =
∫ ∞

−∞
C(τ)e−j2πfτ dτ. (1.16)

The relevance of S(f) is that it gives the mean-square amplitude of u(t) at frequency f . It can be found
from experimental measurements by averaging estimates made using the Fast Fourier Transform.

We can define a similar quantity called the cross spectral density, which is the Fourier transform of the
cross correlation between two signals. This is similar to the transfer function between the input and output
of a system.

An important application of the Fourier transform comes when it is applied to spatial data. In this case,
we use it to say what scales are important in our system, or how “big” particular processes are. An important
part of turbulence is the question of how energy is transferred between scales as large scale processes give
up their energy to be dissipated by the very small processes governed by viscosity.

Questions

1. Find a tap in a kitchen or bathroom. Open it until the water just starts to flow. Then slowly open it
further until it is completely open. Note what you see and describe how the water behaves.

2. Stand on a bridge and look at the water downstream of the bridge as it flows over the pillars of the
bridge. How does the water behave? What would the ensemble average of the flow quantities look
like? In Bath, a good place to do this is the footbridge at Sainsbury’s.

3. Using the definitions given in the chapter, prove that Skk = 0 in an incompressible flow, (1.5).

4. The Navier–Stokes equations (1.1) each contain a term in square brackets. Using the Einstein sum-
mation convention, write out this term in full, noting the repeated index j in the derivatives. If uj is
zero, what does this term mean? What does it mean if the derivative with respect to time is zero?
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5. You have the job of measuring the pressure fluctuations at a point behind a four-bladed propeller.
What would be your first, graphical, guess at a representation of the ensemble averaged pressure in
the flow, remembering that the ensemble average is not necessarily constant in time? Given that guess
at the form of the ensemble average, what do you think the time average would be? What would the
Fourier series look like?

6. Prove (1.9), using (1.7) and (1.8).

7. Prove that the autocorrelation function of a stationary random process is symmetric in time, i.e.
C(τ) = C(−τ).

8. Derive an expression for the correlation between two sinusoidal signals, f(t) = sin(ω1t) and g(t) =
sin(ω2t + φ).

9. If a ‘packet’ of fluid moves through a point, with its internal velocity changing slowly over time,
what do you expect the correlation function for the velocities to look like?





Chapter 2

Simplifications

Short range, intense flows: turbulence

In order to make a start on simplifying our problem, we consider how to derive some averaged form of the
Navier-Stokes equations which respects the nonlinearity of the problem, but gives us something we can take
a grip on. We start by making the Reynolds decomposition, which breaks each quantity into its ensemble
average, denoted by a capital letter, and a fluctuating part, denoted by a prime symbol:

ui = Ui + u′i; p = P + p′;

and making the assumption of incompressibility, so that ∂uj/∂xj ≡ 0. Inserting the Reynolds decomposed
velocity into the incompressible continuity equation gives:

∂Uj

∂xj
= 0;

∂u′j
∂xj

= 0; (2.1)

so that both the mean flow Uj and the fluctuations are incompressible. Moving to the momentum equation,
inserting the Reynolds decomposition gives:

ρ
∂Ui

∂t
+ ρUj

∂Ui

∂xj
+ ρ

∂

∂xj

〈
u′iu

′
j

〉
+

∂P

∂xi
+ µ

∂2Ui

∂xj∂xj
= 0. (2.2)

We now have an equation for the average flow Ui and P but with one extra term,
〈
u′iu

′
j

〉
. This term plays a

role similar to that of a shear stress and is called the Reynolds stress. It connects the turbulent fluctuations
to the underlying base flow. The term ‘Reynolds stress’ is unfortunate, since the quantity is not really a
stress, but it points up the role which is played by

〈
u′iu

′
j

〉
, in that it behaves like a stress in the way it affects

the underlying flow.
The problem of dealing with turbulence arises from the nature of (2.2). Firstly, the Reynolds stress is

not a property of the fluid, like viscosity, but a property of the flow and one which affects the flow. The
problem we have is in determining what happens on the scales typical of turbulence, without knowing in
advance how the fluid behaves on these scales, since we need to know how the flow behaves in order to
determine its behaviour. Secondly, we need extra equations to close the system. The variables in (2.2) are
Ui, P and u′iu

′
j , making ten in all. If we include the continuity constraint, we only have four equations in

total: we are short by six. There are methods of introducing extra equations to close the problem, but in
practice they do not work very well. The attempt to find these extra equations is called the closure problem,
and is a major area of research in CFD.

The first attempt to develop a closure for the Reynolds stress equations was the mixing length hypoth-
esis, leading to the eddy viscosity model (Tennekes and Lumley, 1972). The idea is shown in Figure 2.1.
Consider a particle of fluid which is moved around in a mean shear flow U1(x2). The momentum in the x1

direction per unit volume of the particle is ρu1. If the particle starts at a position 0 at time 0 and moves to a

9
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U1

x2 = 0, t = 0

x2 = `, t = t′

x1

x2

Figure 2.1: A particle of fluid moving in a shear flow

position x2 at time t′, the difference in momentum between start and finish is:

∆M = ρ(u1(x2, t)− u1(0, 0)),
= ρ[U1(x2)− U1(0)] + ρ[u′1(x2, t)− u′1(0, 0)],

if we use the Reynolds decomposition. If we can use a linear approximation for the velocity gradient, and
assume that the turbulent velocity contribution is negligible, this can be written:

∆M ≈ ρx2
∂U1

∂x2
.

The rate of momentum transport in the x2 direction is u2∆M . Now, the particle velocity u2 = ∂x2/∂t so:

u2∆M = ρ
∂U1

∂x2
x2

∂x2

∂t
,

=
1
2
ρ
∂U1

∂x2

∂x2
2

∂t
.

The Reynolds stress is the rate of momentum transfer so we can time average:

ρu′1u
′
2 =

1
2
ρ
∂U1

∂x2

∂x2
2

∂t
.

Since ∂x2
2/∂t = 2x2∂x2/∂t = 2x2u2,

ρu′1u
′
2 = ρ

∂U1

∂x2
u′2x2.

This equation relates the Reynolds stress to the velocity gradient, similarly to the way viscosity relates
the shear stress to the velocity gradient. The relationship depends on the correlation between particle
displacement and velocity. This correlation must fall off to zero at some distance, which we call the mixing
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ω

u

ω
u

Figure 2.2: A line and a ring vortex

length. On average when a particle has travelled a mixing length, it has lost its identity and given up its
momentum to the fluid around it. If we assume that x2u′2 = c1`u

(rms)
2 , where ` is the mixing length, u(rms)

2 is
the r.m.s. velocity in the x2 direction and c1 is some constant to be determined, we can write the Reynolds
stress equation using a constant νT :

ρu′1u
′
2 = ρνT

∂U1

∂x2
, (2.3)

where:

νT = c1`u
(rms)
2 (2.4)

is the eddy viscosity. It is not really a viscosity, since it is a property of the flow rather than of the fluid, but
it relates a ‘shear stress’ to a velocity gradient so we call it a viscosity for convenience.

This is the simplest turbulence closure we can imagine and in practice works about as well as we might
expect. The constant c1 needs to be determined by experiment or (very) elaborate computation and c1

determined for one flow will be valid for flows of that type only. It also assumes that the flow has a velocity
gradient in one direction. If the velocity varies in two or three directions, the ‘medium’ is anisotropic and
the ‘viscosity’ becomes a function of direction.

Potential and vorticity

Another way of looking at a flow is to break it into a potential and a vorticity. These are two quantities
which are slightly abstract to begin with, but can often give us physical insights into a problem. The velocity
field can (always) be written as follows:

u(x) = ∇φ +∇×B, (2.5)

where the scalar φ is called the potential, and the vector B is called the vector potential. The vector potential
itself is rarely used directly, but is expressed in terms of the vorticity, ω:

B =
1
4π

∫
V

ω1

|r|
dV, (2.6)

r = |x− x1|, (2.7)

and V is the volume of non-zero vorticity. The velocity which results is given by the Biot–Savart law:

u(x) = − 1
4π

∫
V

r× ω1

|r|3
dV. (2.8)

The vorticity is a measure of the solid body rotation in the flow and is defined:

ω = ∇× u. (2.9)
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The easiest way to think physically about vorticity is to look at line and ring vortices, Figure 2.2. A line
vortex (a point in two dimensions) generates a flow which rotates about the axis of the vortex. A ring vortex
is closed on itself and wraps the velocity field into one which has an axial component parallel to the ring
axis.

It is common to say that vorticity ‘induces’ a velocity field, in the same way that an electrical current
induces a magnetic field, since the Biot–Savart law applies to both. Strictly, this is not correct, because the
vorticity is a property of the velocity field rather than the thing that ‘causes’ it. A basic equation of fluid
dynamics tells us how vorticity evolves:

Dω

Dt
= ω.∇u + ν∇2ω, (2.10)

where D/Dt is the material derivative which gives the rate of change of the vorticity in a reference frame
moving with the flow (see Question 4 of Chapter 1). The first term on the right relates to the deformation of
vortex lines while the second gives the rate of viscous diffusion of vorticity. In a two-dimensional inviscid
flow Dω/Dt ≡ 0 and vorticity is conserved: vortices move around but they do not change in magnitude.

Long range, weak flows: acoustics

The other simplification which we would like to consider is the linear problem of acoustic propagation,
where the perturbations are very small, but they travel over long distances. In this case, we neglect viscosity
and write the continuity and momentum equations:

ρ

[
∂ui

∂t
+ uj

∂ui

∂xj

]
+

∂p

∂xi
= 0; (2.11a)[

∂ρ

∂t
+ uj

∂ρ

∂xj

]
+ ρ

∂uj

∂xj
= 0. (2.11b)

Since this is a linear problem, we assume that the quantities are given by very small fluctuations about some
mean. Writing:

ρ = ρ̄ + ρ′, ui = u′i, and p = p̄ + p′,

we can insert these terms into the continuity and momentum equations, and neglect any products of fluctu-
ating quantities:

∂ρ′

∂t
+ ρ̄

∂u′i
∂xi

= 0, (2.12a)

ρ̄
∂u′i
∂t

+
∂p′

∂xi
= 0. (2.12b)

These equations can be combined by differentiating them and subtracting one from the other:

∂

∂t

[
∂ρ′

∂t
+ ρ̄

∂u′i
∂xi

]
= 0,

− ∂

∂xi

[
ρ̄
∂u′i
∂t

+
∂p′

∂xi

]
= 0,

∂2ρ′

∂t2
− ∂2p′

∂xi∂xi
= 0.
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Now, we can make some assumption about the relationship between density and pressure fluctuations,
by writing:

p = p̄ +
∂p

∂ρ

∣∣∣∣
ρ=ρ̄

(ρ− ρ̄) +
1
2

∂2p

∂ρ2

∣∣∣∣
ρ=ρ̄

(ρ− ρ̄)2 + . . . ,

p′ = p− p̄ ≈ ∂p

∂ρ

∣∣∣∣
ρ=ρ̄

(ρ− ρ̄) = c2ρ′,

c2 =
∂p

∂ρ

∣∣∣∣
ρ=ρ̄

.

The constant is written c2 because it is always positive (why?). If we insert this relationship, we get a wave
equation for pressure:

1
c2

∂2p

∂t2
−∇2p = 0 (2.13)

where ∇2 = ∂2/∂xi∂xi (Appendix C). This is the most fundamental equation in acoustics. It describes
the properties of a sound field in space and time and how those properties evolve. It is quite unlike the
incompressible flow equations because it describes very weak processes which happen over large distances.
The most fundamental property of the wave equation is that it is linear. This means that the sum of two
solutions of the wave equation is also itself a solution, which is why we can tell a singer from an instrument.

When we come to solve the wave equation, we will find that c is the speed of sound, the speed at which
a small disturbance propagates through a fluid. It depends on the thermodynamical properties of the fluid
and is calculated on the assumption that sound propagation is adiabatic. For an adiabatic process in a gas:

p = kργ ,

where γ is the ratio of the specific heats. Then

c2 =
∂p

∂ρ

∣∣∣∣
ρ=ρ0

,

= γkργ−1 =
γp

ρ
,

p = ρRT

so that

c2 = γRT.

The speed of sound in air at STP is 343m/s. The validity of the adiabatic assumption depends on the
frequency of the sound. For low-frequency sound, there is no appreciable heat generation by conduction in
the fluid and the assumption is a good one. For air, ‘low frequency’ means ‘less than 1GHz’.

Note that if c →∞, the wave equation becomes∇2p = 0, the equation of incompressible flow. Saying
c → ∞ is the same as saying that density is independent of pressure, i.e. that the flow is incompressible.
Since c is the speed at which disturbances propagate in a fluid, this is equivalent to the statement that
disturbances propagate instantaneously in an incompressible flow.

If we write p = P exp[−jωt] where ω is the radian frequency, the wave equation becomes the Helmholtz
equation:

∇2P + k2P = 0. (2.14)

Note that t has disappeared, reducing the order of the equation by one. The wavenumber k = ω/c.
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Solutions of the wave equation in one dimension: Plane waves

To illustrate some aspects of the solution of the wave equation, we look first at waves in one dimension.
This corresponds to low frequency sound propagating in a pipe, for example. If we take x as the coordinate
along the pipe, the wave properties are independent of y and z and the wave equation becomes:

1
c2

∂2p

∂t2
− ∂2p

∂x2
= 0. (2.15)

You can show quite easily that solutions of the form p = f(x ± ct) satisfy (2.15). This means that distur-
bances propagate as fixed shapes which shift along the x-axis at speed c. Figure 2.3 is a simple example,
showing both solutions x± ct.

x

x = ctx = −ct

Figure 2.3: Wave propagation: right propagating wave with x = ct and left propagating wave with x = −ct.

A pulse starts at a point x = 0 at time t = 0 so that x ± ct = 0. At a later time, the wave will have
moved left to a point x = −ct, still satisfying x + ct = 0 and right to a point x = ct, satisfying x− ct = 0.
In both cases, the value of p will be the same as at time t = 0. As we might expect, the wave travels to the
left or right at speed c, which is why c is called the speed of sound.

When waves propagate like this, they are called plane waves because their properties are constant over
planes of constant x. Waves can be modelled as planar when they propagate at low frequency in pipes or
ducts, such as long pipelines or engine exhaust systems. Plane waves also occur in other situations and are
very useful in analyzing general problems. If a plane wave propagates in a general direction, we can write
it as f(t− x.n/c) where n is the direction of propagation or normal to the wave.

Solutions of the wave equation in three dimensions

Naturally, one-dimensional waves are of little interest to rounded personalities such as ourselves and we
must eventually face reality in all of its three dimensions. Solving the wave equation in three dimensions
is not much more difficult than doing so in one dimension. The most convenient approach is to work in
spherical polar coordinates, Appendix C. In this coordinate system:

∇2 =
∂2

∂r2
+

2
r

∂

∂r
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 φ

∂2

∂φ2
.

We simplify this by considering the case of sound propagating in free space in a uniform medium. Then,
by symmetry, p′ is independent of φ and θ, so that:

∇2p =
∂2p

∂r2
+

2
r

∂p

∂r

=
1
r

∂2

∂r2
(rp) (2.16)

and the wave equation now reads

1
c2

∂2

∂t2
(rp)− ∂2

∂r2
(rp) = 0, (2.17)
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which is identical in form to (2.15). Using the solution of that equation, rp = f(r ± ct), we find

p =
f(t− r/c)

r
. (2.18)

For reasons of causality (things cannot happen before they have been caused), so the solution rp = f(r+ct)
is rejected1.

This solution contains three useful pieces of information. The first, as in the one-dimensional case, is
that the sound at time t depends on what happened at time t− r/c, the emission time or retarded time. The
second, again similarly to the one dimensional case, is that the shape of the wave f( · ) does not change.
The big difference between one and three dimensional waves, however, is that the magnitude of the pressure
perturbation (though not its shape) reduces as it propagates.

Acoustic velocity and intensity

When we derived the wave equation, we chose to eliminate velocity and density and concentrated on pres-
sure as our dependent variable. There are two main reasons for doing this: the first is that pressure is a
scalar and so is conceptually easier to work with than velocity. In practice, given that we could use a ve-
locity potential, this is not a huge advantage. The second, and more important, reason is that pressure is
what we hear and what we measure. Our ears and the microphones we use to measure sound are sensitive
to pressure fluctuations, so that is what we choose as our main quantity.

There are times, however, when we will need to use some other quantity. The fundamental theory of
aerodynamically generated noise is actually based on density fluctuations (which are usually converted to
pressure variations using a linear relationship). A more important relationship is that between pressure
and velocity because the acoustic velocity is often used as a boundary condition in calculations involving
solid bodies. Remember that acoustics is a branch of fluid dynamics and it is a fluid-dynamical boundary
condition that must be satisfied, i.e. usually a velocity.

The linearized momentum equation (2.12b) gives us the relationship we need:

∂v′

∂t
= −∇p′

ρ0
,

in other words, the acoustic velocity is proportional to the pressure gradient. If we write the solution of the
wave equation in terms of a velocity potential φ = −f(t − R/c)/R, the pressure and radial velocity are
related via:

p = ρ0
∂φ

∂t
, v = ∇φ,

v =
p

ρ0c
+

f(t−R/c)
ρ0R2

. (2.19)

For a wave of constant frequency, the acoustic velocity amplitude V is related to the acoustic pressure
by

V = −j
∇P

ρ0ω
. (2.20)

For a plane wave ∇ → ∂/∂x and V = P/ρ0c. For large R, the pressure–velocity relationship for a
spherical wave reduces to this form, as seen in (2.19).

A basic characteristic of a source is the rate at which it transfers energy. If we multiply (2.12a) by c2ρ′,

c2ρ′
∂ρ′

∂t
+ ρ0c

2ρ′
∂v

∂x
= 0, (2.21)

1Why did we not do this for one-dimensional waves?
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and note that ρ′∂ρ′/∂t = 1
2 (∂/∂t)ρ′2 and that c2ρ′ = p′,

c2

ρ0

1
2

∂

∂t
ρ′

2 + p′
∂v

∂x
= 0.

Multiplying the momentum equation (2.12b) by v gives

ρ0v
∂v

∂t
+ v

∂p′

∂x
= 0,

which can be rearranged:

1
2
ρ0

∂

∂t
v2 + v

∂p′

∂x
= 0. (2.22)

Adding (2.21) and (2.22) gives a result for the energy transport in the sound field:

∂

∂t

(
1
2
ρ0v

2 +
1
2

c2

ρ0
ρ′

2
)

+
∂

∂x
(p′v) = 0. (2.23)

In (2.23), ρ0v
2/2 is the kinetic energy per unit volume, (c2/ρ0)ρ′

2
/2 is the potential energy per unit

volume and p′v is the acoustic intensity I which is the rate of energy transport across unit area, so that (2.23)
is a statement of energy conservation for the system and says that the rate of change of energy in a region
is equal to the net rate at which energy is carried into that region.

If we insert the relationship between pressure and velocity (2.19), the acoustic intensity is

I =
p2

ρc
+

∂

∂t

(
f2(t−R/c)

2ρR3

)
.

If we average I over time for a periodic wave, the second term has a mean value of zero and the resulting
mean intensity is:

Ī =
p2

ρc
. (2.24)

Noise from flows

If we repeat the derivation of the wave equation, but using the full continuity and momentum equations,
without linearizing or simplifying, we can derive a wave equation which is an exact rearrangement of the
Navier-Stokes equations and links the flow to the acoustic source. We start, as before, by differentiating the
equations of continuity and momentum:

∂

∂xi

[
∂

∂t
(ρui) +

∂p

∂xi
+

∂

∂xj
(ρuiuj)−

∂τij

∂xj

]
= 0; (2.25a)

− ∂

∂t

[
∂ρ

∂t
+

∂

∂xj
(ρuj)

]
= 0, (2.25b)

∂2ρ

∂t2
=

∂2p

∂xi∂xi
+

∂2

∂xi∂xj
(ρuiuj)−

∂2τij

∂xixj
. (2.25c)

If we now subtract c2∂2ρ/∂xi∂xi from both sides of this equation, where c is the speed of sound in the
undisturbed fluid, we get a wave equation for density:

∂2ρ

∂t2
− c2 ∂2ρ

∂xi∂xi
=

∂2

∂xi∂xi
(p− c2ρ) +

∂2

∂xi∂xj
(ρuiuj)−

∂2τij

∂xixj
, (2.26)
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which can be written:

∂2ρ

∂t2
− c2 ∂2ρ

∂xi∂xi
=

∂2Tij

∂xi∂xj
, (2.27)

Tij = ρuiuj + (p− c2ρ)δij − τij (2.28)

This is the Lighthill wave equation Lighthill (1952, 1954) and forms the basis of modern noise prediction
methods. The important point to notice for now is that the source term contains uiuj : noise is generated by
the Reynolds stresses. We have a connection between turbulence and noise.

Questions

1. Without writing down the equations, sketch the paths of two point vortices of equal strength interact-
ing in a plane.

2. Repeat Question 1 for the case of two coaxial ring vortices of equal strength and equal radius. What
will the velocity and pressure look like? What happens if the vortices have equal and opposite
strength?

3. Show that the sum of two solutions of the wave equation is also a solution.

4. Use the chain rule to prove that f(x± ct) is a solution of the one-dimensional wave equation.





Chapter 3

Characterizing turbulence

As should be horrifyingly apparent by now, we can say almost nothing about any given instance of turbulent
flow. On the other hand, we can discuss a given turbulent flow in terms of correlations and other statistical
quantities. In this chapter we consider how to characterize turbulence, and which quantities we will use in
describing the system. The physical process which we need to describe is the turbulent energy cascade,
the name given to the way in which motion on a large scale is dissipated on a small scale. The large scale
motion is determined by the geometry of the problem; the small scale motion is determined by the effects of
viscosity which dissipates the energy of the motion as heat. On the scales in between, there is a remarkable
result that the transfer of energy between scales is independent of the nature of the problem (you will derive
this result as a problem at the end of the chapter).

Unless otherwise stated, we deal with the problem of homogeneous, isotropic turbulence. Homogeneity
means that the turbulent properties do not depend on position. Isotropy means that they do not depend on
direction.

Kinetic energy

Much of our discussion of turbulence will centre on the process by which energy is generated and dissipated
in a flow. When we need reference quantities to develop non-dimensional groups in our analysis, the mean
flow velocity might well be of little use. In this case, a good choice is a velocity based on the kinetic energy
per unit mass of the flow:

k =
u2

1 + u2
2 + u2

3

2
. (3.1)

Given the kinetic energy k, we can define a reference velocity:

u =
(

2k

3

)1/2

. (3.2)

We can also look at the rate of energy production and dissipation by considering the turbulent energy
budget. This is given by Tennekes and Lumley (1972), who note, not unfairly, that its derivation ‘is a fairly
tedious exercise’. The result of the tedium is:

Uj
∂k

∂xj
= − ∂

∂xj

(
1
ρ
u′jp +

1
2
u′iu

′
iu
′
j − 2νu′is

′
ij

)
− u′iu

′
jSij − 2νs′ijs

′
ij , (3.3)

where s′ij is the fluctuating strain rate. The left hand side gives us the gradient of kinetic energy k. The
right hand side contains the various mechanisms of generation and dissipation of that energy.

There is a corresponding energy equation for the mean flow:

Uj
∂(UiUi/2)

∂xj
=

∂

∂xj

(
−p

ρ
Uj + 2νUiSij − u′iu

′
jUi

)
+ 2νSijSij + u′iu

′
jSij . (3.4)

19
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In both equations, we can see the term u′iu
′
jSij , but with an opposite sign in each. This means that it

represents energy being transferred between the mean flow and the turbulence, usually from the mean to
the fluctuating. We can also see, in (3.3), the term 2νs′ijs

′
ij which represents the work done by viscous

stresses in dissipating energy. This always removes energy from the flow and is the mechanism by which
energy transferred from the mean flow, which passes into the turbulent flow, is finally dissipated as heat.

Length and time scales

One question we can ask about any physical process is its scale: how ‘big’ is the process and/or what range
of scales does it cover? Turbulence is characterized by activity over a wide range of scales with energy
passing from large scales to small scales until it reaches very small scales and is dissipated as heat, via
viscosity. This is called the energy cascade, since energy ‘cascades’ down the scales. Different length
scales can be used depending on the level at which we study the flow.

The first obvious length scale is some characteristic dimension of the flow itself, the width of a channel,
or the chord of a wing for example. If nothing else, we know that there will be no length scale in the flow
larger than this one. We call this the large eddy length scale, Lt, and take it as characterizing the largest
eddies, or identifiable ‘sub flows’ in the fluid. Given a reference velocity u, there is then a corresponding
time scale Tt = Lt/u. This time is variously interpreted as an eddy turn-over time (a blob of fluid of size
Lt turns over in a time Tt); the eddy lifetime (the length of time a blob of fluid maintains its identity); the
time over which velocity fluctuations are correlated.

The dissipation of energy also gives us a candidate length scale. The dissipation rate ε is of the order of
k/Tt so that:

ε =
u3

Lt
, (3.5)

which leads to a turbulent time and length scale:

Tε = k/ε, Lε = k3/2/ε. (3.6)

If you are taking the CFD course, you will see these quantities introduced in the k − ε turbulence model.
The term Lε is called the dissipation length scale.

The great Russian mathematician Kolmogorov introduced definitions of the smallest possible scales in
turbulence, those scales where viscosity acts and energy is finally dissipated as heat. The length, time and
velocity scales are:

ηK = (ν3/ε)1/4, τK = (ν/ε)1/2, uK = (νε)1/4. (3.7)

Thus we have an idea of suitable scales for the ‘large’ structure of the flow, and for the smallest. The
question is what happens in between: how does ε depend on the scale of eddies?

It is known that the energy flowing in the cascade is independent of the size of an eddy, so if an eddy
has a scale r, with characteristic velocity v:

ε =
u3

Lt
=

v3

r
=

u3
K

ηK
,

when the scale r lies between the largest and smallest scales in the flow.
In practice, we find the distribution of energy as a function of scales by talking about energy at a given

wavenumber κ, which has the dimensions of inverse length. This comes about by performing a Fourier
transform on the energy in space rather than time. The result is an energy spectrum, E(κ) which gives
the energy in each spatial frequency band. It turns out that this is a very powerful way of looking at the
problem, since it makes an otherwise intractable problem much simpler.
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Scales derived from correlations

If we want to examine the details of a flow by analyzing measured data, we need to extract some scales
from the correlation functions. If we consider the velocity correlations, this gives us a correlation tensor:

Rij(r) =
u′i(x)u′j(x + r)(

u′2i u′2j

)1/2
, (3.8)

where r is the separation between two points. A formal definition of isotropic turbulence is that u′21 =
u′22 = u′23 and u′iu

′
j = 0, for i 6= j. In homogeneous turbulence, the spatial derivative is zero for the

statistical moments and the value does not depend on x but only on r. This tells us how well the velocity
remains correlated over a distance. We might think that this would give us a means of estimating how ‘big’
an eddy is. One way to do it is to say that the length of the eddy is the distance, |r|, at which the correlation
becomes negligible. The problem with this is deciding what we mean by ‘negligible’: do we mean 10%
or 1% or something smaller still?

An unambiguous length scale is given by integrating the correlation:

L11 =
∫ ∞

0

R11(r) dr, (3.9)

where L11 is called the integral length scale and can also be used as a definition of Lt. In anisotropic
turbulence, the other integral length scales, L22, for example, will be different, depending on the details of
the flow.

A final length scale which is important in characterizing turbulence is the Taylor microscale. This can
be found by considering the dissipation rate in isotropic turbulence:

ε = 2νs′ijs
′
ij = 15ν

(
∂u′1
∂x1

)2

. (3.10)

From this relationship, we define the Taylor microscale λ:

(
∂u′1
∂x1

)2

=
u′2

λ2
. (3.11)

A similar quantity, based on the time derivative of the velocity, is called the Taylor temporal microscale:

(
∂u′1
∂t

)2

=
2u′2

λ2
T

. (3.12)

There is a relationship between λT and velocity autocorrelation coefficient. From (1.14):

Ψ(τ) =
〈u′(t)u′(t + τ)〉

〈u′2〉
. (3.13)

Since
〈
u′2
〉

is constant in statistically stationary turbulence, we can find that:

d2

dt2
〈u′(t)u′(t + τ)〉 = 0 = 2

〈
u′(t + τ)

d2u′

dt2

〉
+ 2

〈(
du′

dt

)2
〉

, (3.14)

〈
u′(t + τ)

d2u′

dt2

〉
= −

〈(
du′

dt

)2
〉

. (3.15)
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Near τ = 0, the autocorrelation is well approximated by:

Ψ(τ) ≈ 1 +
1
2

1
〈u′2〉

d2

dτ2
〈u′(t)u′(t + τ)〉 τ2, (3.16)

= 1− 1
2

1
〈u′2〉

〈
u′(t + τ)

d2u′

dt2

〉
τ2. (3.17)

so that:

Ψ(τ) ≈ 1− τ2/λ2
T . (3.18)

Questions

1. Use dimensional analysis to show that ηK = (ν3/ε)1/4.

2. Given that energy at a wavenumber κ, E(κ), depends only on κ and the dissipation rate ε, use
dimensional analysis to show that E = Cκ−5/3ε2/3, where C is a constant of proportionality. This
is the Kolmogorov spectrum in the inertial range and is one of the deepest results in turbulence.

3. Why can homogeneous and/or isotropic turbulence not exist in nature?



Chapter 4

Instability and transition to turbulence

A question which we have to consider is how turbulence is initiated: what happens to a flow to make it
turbulent? There are a number of different mechanisms of transition to turbulence, but the essential features
are usually the same: a flow responds to a perturbation in an unstable manner, with the instability growing
until non-linear mechanisms take over to generate and sustain turbulence. Since we are concerned with the
response to a small perturbation, our analysis can be linear, rather than non-linear, and it is possible to say
something about the early stages of transition to turbulence.

Kelvin–Helmholtz instability

Figure 4.2 shows the notation for our problem (Panton, 2005). There is a shear layer dividing two streams
of fluid, one travelling at velocity U1 and the other at velocity U2, in the x direction. We want to know
what will happen to the shear layer if it is given a small perturbation. If the flow is incompressible and

Figure 4.1: The Kelvin–Helmholtz instability in nature: a Cassini orbiter image of the interface between
two regions of different density in the atmosphere of Saturn ( c©NASA).
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x

y

U2

U1

Figure 4.2: Notation for Kelvin–Helmholtz instability analysis

irrotational, then the velocity potential in the two regions of the flow is governed by the Laplace equation:

∇2φ1 = 0, ∇2φ2 = 0, (4.1)

with the boundary conditions:

∇φ1 = U1, as y → −∞, (4.2a)
∇φ2 = U2, as y →∞. (4.2b)

When it is perturbed, the shear layer moves vertically to a displacement ξ where:

0 = F (x, ξ, z, t) = ξ − f(x, z, t). (4.3)

There is a condition linking the vertical velocity of the interface with the velocity of the fluid travelling past
it:

∂F

∂t
+ w.∇F = 0, (4.4)

giving:

−∂f

∂t
+ wy − wx

∂f

∂x
− wz

∂f

∂z
= 0. (4.5)

If fluid does not cross the shear layer, w = v1, the vertical velocity of the fluid, and, at y = ξ:

∂φ1

∂y
= v1 =

∂ξ

∂t
+ u1

∂ξ

∂x
+ w1

∂ξ

∂z
. (4.6)

Similarly:

∂φ2

∂y
= v2 =

∂ξ

∂t
+ u2

∂ξ

∂x
+ w2

∂ξ

∂z
. (4.7)

The Bernoulli equation gives us:

∂φ1

∂t
+
∇φ1.∇φ1

2
+ c1 =

∂φ2

∂t
+
∇φ2.∇φ2

2
+ c2. (4.8)

These equations govern the flow on both sides of the shear layer and its movement. To make some progress
in analyzing the problem, we linearize it in the usual way: break each variable into a mean and a (small)
fluctuating part and neglect products of small parts.

With ξ small, the basic steady flow satisfies the constraints and the Bernoulli equation (4.8) gives:

c1 − U2
1 /2 = c2 − U2

2 /2. (4.9)

In the unsteady case:

φ1 = U1x + φ′1, (4.10a)
φ2 = U2x + φ′2, (4.10b)
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where φ′1 and φ′2 are small perturbations on the base potential. These potentials are also solutions of the
incompressible flow equation:

∇2φ′1 = ∇2φ′2 = 0, (4.11)

and they decay to zero far from the shear layer:

∇φ′1 = 0, as y → −∞, (4.12a)
∇φ′2 = 0, as y →∞. (4.12b)

Linearizing the Bernoulli equation:

∂φ′1
∂t

+ U1
∂φ′1
∂x

=
∂φ′2
∂t

+ U2
∂φ′2
∂x

, (4.13)

and the displacement conditions:

∂φ′1
∂y

=
∂ξ

∂t
+ U1

∂ξ

∂x
, (4.14a)

∂φ′2
∂y

=
∂ξ

∂t
+ U2

∂ξ

∂x
. (4.14b)

We can solve the problem by assuming that the solution is made up of normal modes with: ξ
φ′1
φ′2

 =

 Ξ
Φ1(y)
Φ2(y)

 exp[j(αx + βz − αat)]. (4.15)

This has the form of a wave which travels at speed a in the x direction, i.e. along the shear layer.
Imposing the boundary conditions gives:

Φ1(y) = A1eky, (4.16a)

Φ2(y) = A2e−ky, (4.16b)

k = [α2 + β2]1/2.

and, inserting this solution into the interface constraint:

A1 = jα(U1 − a)Ξ/k, (4.17a)
A2 = −jα(U2 − a)Ξ/k. (4.17b)

The last part of the solution is to work out the wave speed. Using the Bernoulli relation:

(U1 − a)2 = −(U2 − a)2, (4.18)

and

a = (U1 + U2)/2± j|U2 − U1|/2, (4.19)
= aR ± jaI . (4.20)

Inserting this into the definition of the modes, gives a wave which behaves as exp jα(x− aRt) exp∓αaIt,
indicating a disturbance which travels at a speed aR along the shear layer, growing or decaying exponen-
tially at a rate exp∓αaIt. We are most interested in those which grow exponentially, and we conclude that
a shear layer with U1 6= U2 is always unstable, no matter what the wavelength of a disturbance.



26 CHAPTER 4. INSTABILITY AND TRANSITION TO TURBULENCE

Figure 4.3: Kelvin-Helmholtz instability made visible by clouds (Wikimedia Commons).

What happens next?

The analysis of the previous section is based on a linearization of the problem so it can only tell us about
how instability starts: the system very quickly becomes non-linear. This should be obvious, since otherwise,
the disturbance would grow without bound, which is not physically valid. So what does happen?

Figure 4.3 shows a Kelvin-Helmholtz instability in the atmosphere, where clouds in the shear layer have
been deformed by the flow, showing the mixing process at work. Viewing from left to right, you can see
the deformed shape of the clouds (interface) and also how the deformation grows until, at the right hand
side of the image, the perturbation is too great for the system to behave linearly and the flow breaks down
into turbulence.



Chapter 5

The generation of sound

So far we have been talking about fluid dynamical processes without considering how they might give rise
to sound or noise. The link between a flow and the noise it generates is given by the wave equation, so we
now have to think about solving the wave equation for particular systems.

Pulsating sphere

The simplest three-dimensional problem we can solve is that of sound radiated by a pulsating sphere.
This sphere could be, for example, a bubble, a varying heat source or an approximation to a body of
varying volume. The sphere has radius a and oscillates with velocity amplitude V at frequency ω. From
the linearized momentum equation (2.12b), we can find a relationship between acceleration and pressure
gradient:

∇p = −ρ0
∂v
∂t

. (5.1)

Writing the radial velocity of the sphere surface as v = V exp[−jωt], we can see that p must also have
frequency ω so that we can write it as p = P exp[−jωt] and:

∇P e−jωt = jωρ0V e−jωt. (5.2)

Since p is a solution of the wave equation, we know from (2.18, page 15) that:

p =
f(t− r/c)

r
=

Ae−jω(t−r/c)

r
, (5.3)

where A is to be found from the boundary condition at a, the sphere surface. Writing out the pressure
gradient:

∇p =
A

r2

[
jωr

c
− 1
]

e−jω(t−r/c), (5.4)

x

y

z

V

Figure 5.1: A pulsating spherical surface
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Figure 5.2: Sound field around a pulsating sphere: dotted k = 0.1; dashed k = 1; solid k = 10.

and applying the boundary condition:

A

a2

[
jωa

c
− 1
]

e−jω(t−a/c) = jωρ0V e−jωt, (5.5)

we can fix the constant A:

A =
(ka)(ka− j)ρ0V ca

(ka)2 + 1
e−jka, (5.6)

where k = ω/c is the wavenumber. The solution for the pressure is then:

p =
ka

r

ka− j
(ka)2 + 1

(ρ0V ca)e−jk(r−a)e−jωt. (5.7)

There are two approximations we can make which simplify this formula. When ka � 1 (i.e. when the
sphere is small or it vibrates at low frequency), (5.7) can be written:

p ≈ −j
ρ0cka2

r
V ejkre−jωt; (5.8)

when ka � 1 (i.e. when the sphere is large or vibrating at high frequency):

p ≈ ρ0V ca

r
e−jk(r−a)e−jωt. (5.9)

The parameter ka, a non-dimensional combination of wavelength and a characteristic dimension of
the body, is an important parameter of a source and is called the compactness. When ka is small, the
source is point-like and can be treated as a simple source; when it is large, the acoustic field becomes more
complicated, as in Figure 5.2.

Point sources

When we look at sound production by real systems, we cannot usually model them with simple shapes
such as spheres. The solution for a sphere is useful, however, because we can use it to work out the noise
radiated by a point source, a solution for the sound radiated by an infinitesimal element of a real system.

We start with (5.8), the result for a small oscillating sphere. We want to write this in terms of some
“source strength”. When the sphere oscillates, it is injecting momentum into the fluid. A sphere of radius
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a has surface area 4πa2 and if it oscillates with velocity V exp[−jωt], the momentum being injected at the
surface of the sphere is:

M = ρ04πa2V e−jωt (5.10)

and the rate of change of momentum is:

∂M

∂t
= −jρ0ω4πa2V e−jωt. (5.11)

Noting that ω = kc, we can compare (5.11) to (5.8) and find that:

p =
1
4π

∂M

∂t

ejkr

r
, (5.12)

so that sound is generated by fluctuations in momentum. If write this in terms of a source strength q =
ρ0v(t), this equation can also be written:

p =
∂

∂t

q(t−R/c)
4πR

, (5.13)

which is the result for sound radiated by an infinitesimal point source. In a real problem, we can work out
the sound from a source as a sum of contributions from point sources. This sum becomes an integral if we
look at a distribution of sources over a volume V :

p(x, t) =
∂

∂t

∫
V

q(y, t−R/c)
4πR

dV. (5.14)

We can write this in a form which will be useful to us later:

p(x, t) =
∂

∂t

∫
V

G(x, t;y, τ)q(τ) dV, (5.15)

where G is the Green’s function for the problem. A Green’s function is a fundamental solution, in this case
the response due to a point source “firing” instantaneously. We can write the Green’s function using the
Dirac delta function δ( · ):

G(x, t;y, τ) =
δ(t− τ + R/c)

4πR
, (5.16)

R = |x− y|.

The delta function is a curious beast which is zero everywhere except at zero, where it jumps to an infinite
value. The area under the delta function, however, is one. It has the property that:∫ ∞

−∞
f(x)δ(x− x0) dx = f(x0),

called the “sifting property”. In the case of (5.16), this means that t− τ +R/c or, τ = t−R/c. Here τ , the
retarded time, is the time when sound leaves the source and t is the time when it arrives, so that R/c is the
time delay between sound leaving a source and sound arriving at some point, which should be no surprise
by now.

Sound from a circular piston

Taking a step up in difficulty (and realism), we now look at the sound radiated by a rigid piston embedded in
a wall. This is a basic model of a loudspeaker and is related to a number of other problems in the acoustics
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z

ra

v

Figure 5.3: A rigid piston vibrating in a rigid wall.

of sound generation by moving surfaces. Figure 5.3 shows a rigid circular piston of radius a which vibrates
periodically at frequency ω and velocity amplitude v so that its velocity is v exp[−jωt]. From (5.15):

pe−jωt = 2
∂

∂t

∫∫
S

q(y, τ)
4πR

dS,

where the factor 2 has been included to account for the image source in the wall and the integration is
performed over the surface S of the piston. Given the velocity, the source q = ρ0v exp[−jωt] so that the
resulting integral for the radiated sound is:

p(ω) = −j
ωρ0

2π

∫∫
S

ejkR

R
v dS.

To evaluate the integral, we switch to cylindrical coordinates (r, θ, z):

x = r cos θ, y = r sin θ.

We assume that the observer is at θ = 0 and the integral to be evaluated is:

p(ω) = −j
ωρ0v

2π

∫ 2π

0

∫ a

0

ejkR

R
r1 dr1 dθ1,

R = (r2 + r2
1 − 2rr1 cos θ1 + z2)1/2,

where (r1, θ1) indicates a point on the piston surface.
This integral cannot be evaluated exactly for a general observer position but we can restrict it to the case

where the observer is on the axis of the piston. Then r = 0 and R = (r2
1 + z2)1/2:

p = −j
ωρ0v

2π

∫ 2π

0

∫ a

0

ejkR

R
r1 dr1 dθ1,

= −jωρ0v

∫ a

0

ejkR

R
r1 dr1,

and making the transformation r1 → R,

p = −jωρ0v

∫ Ra

R0

ejkR dR.

Here, R0 = z is the distance from the observer to the centre of the piston and Ra = (a2 + z2)1/2 is the
distance to the rim of the piston. The solution is then:

p = −ρ0cv(ejkRa − ejkz). (5.17)
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Figure 5.4: Acoustic field (absolute value of p) along the axis of a vibrating piston. The dashed line shows
the 1/z fit.

If we examine the acoustic field defined by (5.17) as a function of frequency, we can see that it changes
quite rapidly as ka is increased. Figure 5.4 shows the absolute value of the non-dimensional pressure
|p/ρ0cv| for different values of ka. For comparison, the curve 1/R0 = 1/|z| is also shown. The results for
ka = 0.1 and ka = 1 are similar with a smooth 1/R0 decay but the ka = 10 curve is quite different, having
a sharp drop before it begins to follow a 1/R0 curve. This is a result of interference between sound from
different parts of the piston. When a body is large compared to the wavelength of the sound it generates,
interference between different parts of the body gives rise to a complicated sound pattern, especially in
the region near the body. When the body is small on a wavelength scale (or, equivalently, vibrates at low
frequency), the phase difference between different parts of the source is not enough to give rise to much
interference and the body radiates like a point source. The ‘size’ of the body at a given frequency is called
its compactness and is characterized by the parameter ka where a is a characteristic dimension, or by the
ratio of characteristic dimension to wavelength a/λ. A compact source, one with ka � 1, radiates like a
point source, while non-compact bodies must be treated in more detail, as we saw in the case of a sphere.

Example: Noise from aircraft engines

The formula for sound radiated from an oscillating piston can also be used as an approximation for low
frequency noise from flanged pipes. If we slightly abuse the formula, we can use it to make a guess at
the noise from the end of a duct, such as an aircraft engine intake (or a cooling tower or all sorts of other
things). The internal processes in an engine, such as the rotation of the fan, generate an oscillating velocity
at the intake. We can pretend that this is a piston spanning the face of the intake and calculate the radiated
noise using the formula derived above.

Asymmetric sources

x

y

z

V

Figure 5.5: A juddering spherical surface
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The next step in complexity is to consider what would happen if the sphere at the start of the chapter
juddered, rather than oscillating radially. Figure 5.5 shows the geometry: the sphere oscillates along the
z axis with frequency ω and velocity amplitude V so that the boundary condition for radial velocity is
v = V cos θ exp[−jωt]. The angle θ is measured from the z axis. Since the pressure gradient and velocity
are proportional we know already that:

∇p = jωρ0V e−jωt cos θ.

This looks a bit like the boundary condition for the oscillating sphere so we can try using that solution to
get a solution for our new problem.

First of all, we need to note that:

∇2 ∂p

∂z
− 1

c2

∂2

∂t2
∂p

∂z
= 0, (5.18)

or, in other words, given a solution p of the wave equation, ∂p/∂z is also a solution. Now, consider a
solution of the wave equation p = f(t− r/c)/r. If we differentiate with respect to z:

∂p

∂z
= −1

c

f ′

r

∂r

∂z
− f

r2

∂r

∂z
, (5.19)

r2 = x2 + y2 + z2,

∂r

∂z
=

z

r
= cos θ,

so
∂p

∂z
= cos θ

∂p

∂r
. (5.20)

In other words, differentiating with respect to z gives us a factor of cos θ which will help us meet the
boundary condition.

As before, we start with a solution which satisfies the wave equation, but with the addition of differen-
tiation with respect to z:

P ejωt =
∂

∂z

[
Aejω(t−r/c)

r

]
, (5.21)

and apply the boundary condition:

∂

∂r

(
∂

∂z

[
Ae−jω(t−r/c)

r

])
= jωρ0V e−jωt cos θ, r = a, (5.22)

which gives us:

A
∂2

∂r2

[
ejkr

r

]
= jωρ0V, (5.23)

and upon expanding the derivative and setting r = a:

Aejka
[
2− (ka)2 − j2ka

]
= jωρ0V a3, (5.24)

A =
jωρ0V a3

2− (ka)2 − j2ka
e−jka. (5.25)

This gives the pressure field radiated by a juddering sphere as:

p =
∂

∂z

Ae−jω(t−r/c)

r
(5.26)

Differentiation with respect to z has changed the form of the acoustic field. Whereas the pulsating
sphere generated a field which is symmetric, the juddering sphere has a field which is a function of θ
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θ θ θ

Figure 5.6: Monopole, dipole and quadrupole source directivities

with maxima at θ = 0 and π and zeros at θ = ±π/2. We refer to this as a dipole source, because it
radiates like two simple sources of opposite sign placed close together. Further differentiation gives higher
order sources, called quadrupoles, octupoles, etc. Figure 5.6 shows the amplitude of the radiated field as a
function of angle for the first three orders of source. On the whole, we are most interested in monopole and
dipole sources, which correspond to applied velocities and forces on surfaces, but quadrupole sources turn
out to be very important in noise from turbulence.

Questions

1. In the far field, R � a, R � ka, we can estimate the sound radiated off-axis by a piston, using the
following approximations:

1
R
≈ 1

R0
,

R ≈ R0 − r1 sinφ cos θ1

where φ = tan−1 r/z and R0 = [r2 + z2]1/2. Given that the Bessel function of zero order is:

J0(x) =
1
2π

∫ 2π

0

e−jx cos θ1 dθ1,

and that: ∫
xJ0(x) dx = xJ1(x),

where J1(x) is the Bessel function of first order, derive an approximate formula for the far field noise
radiated by a piston.

2. A circular loudspeaker of radius 30mm is driven at 200Hz. Using the result of Question 1, estimate
the angle from the speaker axis at which the radiated sound is 20dB less than on axis (graphical
accuracy is sufficient). What happens at 2kHz? Why?

3. Sketch the amplitude of the noise radiated from a piston as a function of θ.

4. Prove (5.18).





Chapter 6

The propagation of sound

Sound rarely propagates in free space so this chapter looks at how sound is modified by the environment,
including reflection by surfaces, passage through walls, and travelling through ducts.

Reflection by a hard wall

The simplest realistic problem of interest involving the effect of a boundary on a sound field is that of the
interaction of the field from a point source with a plane wall, Figure 6.1. The problem is, given a source at
a point x, near a rigid plane, to calculate the resulting overall sound field. If the wall were not present, we
know that the sound field at a frequency ω would have the form:

pie−jωt =
e−jω(t−R/c)

4πR
,

where pi is the incident sound field.
We will drop the factor exp[−jωt] because it is the same for all sound fields in the problem and write:

pi =
ejkR

4πR
.

Our problem now is to find a second acoustic field ps (the ‘scattered’ field), such that the total field pt =
pi + ps satisfies the wave equation and the boundary conditions on the wall. By linearity, this means that ps
must be a valid solution of the wave equation, since the sum of two solutions is itself a solution. Now we
need to decide what boundary condition to apply. As in inviscid fluid dynamics, the boundary condition is
that the total velocity normal to the wall must be zero. From the momentum equation, we know that the
acoustic velocity is proportional to the pressure gradient, so this boundary condition is equivalent to

∂pt

∂x

∣∣∣∣
x=0

≡ 0,

or, in terms of the incident and scattered fields,

∂ps

∂x

∣∣∣∣
x=0

≡ − ∂pi

∂x

∣∣∣∣
x=0

.

x

∂p/∂x = 0

Figure 6.1: A point source near a wall
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For a source at x0 = (x0, y0, z0),

∂pi

∂x
=

x− x0

4π

ejkR

R3
(jkR− 1) ,

and at x = 0,

∂pi

∂x

∣∣∣∣
x=0

= −x0

4π

ejkR

R3
(jkR− 1) ,

R = [x2
0 + (y − y0)2 + (z − z0)2]1/2.

The solution of our problem is an acoustic field ps with

∂ps

∂x

∣∣∣∣
x=0

=
x0

4π

ejkR

R3
(jkR− 1) .

A source positioned at x− = (−x0, y0, z0) gives just such a field so a valid solution to the problem can be
found using an image source, the reflection of our orginal source in the rigid wall. The total field is then

pt = pi + ps,

pi =
ejkR+

4πR+
,

ps =
ejkR−

4πR−
,

R± = [(x∓ x0)2 + (y − y0)2 + (z − z0)2]1/2.

One immediate result of this analysis is that the pressure generated on the wall by a source is twice that
which would be generated if the wall were not present. This has two immediate applications: the first is
that excessive noise in confined spaces (discotheques and clubs, for example) can be extremely damaging
to hearing; the second is where the ‘wall’ is the ground and we want to know how noise propagates across
a landscape.

Reflection by a soft wall

A concept which is very useful and we will need later on is that of acoustic impedance. This is like the
impedance we see in mechanical systems and is defined as the ratio of acoustic pressure to acoustic velocity:

Z =
P

V
. (6.1)

The acoustic impedance of a material (including gases and liquids) is a property of the material and of
frequency. We usually work in terms of specific acoustic impedance which is simply Z/A where A is the
area of material.

For a hard wall, V = 0 and the impedance is infinite. For a substance which is porous, the effect of
flow into the pores of the material must be taken into account. We can model this by lumping the material
properties together into a single impedance, which means that we do not necessarily need to know very
much else about the substance. Note that Z is a function of frequency.

If we examine reflection of a plane wave from a wall with some finite impedance, we can look at the
problem of acoustic treatment of rooms. In order to line a room to stop reflections (for music recording
or performances, say), we want to minimize reflections so we need to know how much sound is reflected
from a wall for a given impedance. Figure 6.2 shows the incoming and reflected waves. The pressure and
velocity are given by:

P = ejkyy
(
ejkxx + Re−jkxx

)
, (6.2)

V =
ejkyy

ρc

(
ejkxx −Re−jkxx

)
cos θ, (6.3)
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Figure 6.2: Reflection from a finite impedance wall
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Figure 6.3: A slab of material under acoustic excitation

where the cos θ is needed to extract the component of velocity normal to the wall—sound propagating
parallel to the wall will not be affected by the impedance. The boundary condition on the wall is that
Z = P/V so we can write:

R =
Z cos θ − ρc

Z cos θ + ρc
. (6.4)

Example: How to bug an embassy

One type of ‘soft’ wall is a slab of material which vibrates in response to acoustic pressure. Figure 6.3
shows the arrangement: a slab or sheet of material is subject to a plane wave. We want to know the
complex amplitude R of the reflected wave and the amplitude T of the wave transmitted out the other side
of the material. For a thin, non-deforming slab, we can assume that the velocities on each side of the slab
are equal:

vi = vt, (6.5)

and we know from the definition of impedance that:

Pi − Pt = Zslvi = Zslvt. (6.6)

From (6.4), the reflection coefficient on the incoming wave side is

R =
Zi − Z1

Zi + Z1
, (6.7)
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where the local impedance Z1 = ρc/ cos θ. This means that the velocity on side 1 is:

v1 =
p1

Z1
(1−R), (6.8)

=
2Pi

2Z1 + Zsl
. (6.9)

Given that the normal velocity is equal on both sides, we can work out the amplitude of the transmitted
wave:

T = Z1V2 =
2ρc/ cos θ

Zsl + 2ρc/ cos θ
. (6.10)

In 1987, Time reported that the Soviet Union might be using lasers to measure the vibrations of the
windows of the US embassy in Moscow as a way of listening to conversations inside1. A modern laser
vibrometer can measure velocities to a resolution of about 0.01µm/s. If a window pane is 5mm thick, what
is the quietest conversation we can listen to?

A simple assumption is that the glass acts as a limp plate and the only resistance to motion is the slab
inertia. Then, for a plate of mass per unit area m moving at a frequency ω

−jωV m = Pi − Pt (6.11)

and Zsl = −jωm. The transmitted wave then has amplitude:

|T | =

[
1 +

(
ωm

2ρc

)2

cos2 θ

]−1/2

.

From (6.8), and assuming θ = 0,

v =
2Pi

2ρc− jωm
.

If we are interested in sound at around 3kHz (roughly in the middle of the range of human speech), given
that the density of glass is about 2500kg/m3, m = 12.5kg/m2 and:

v =
2

1.2× 340− j2π × 3000× 12.5
Pi =

1
204− j1.178× 105

Pi

and

|v| = |Pi|/1.178× 105.

If we assume we can measure the velocity over a range of 1µm/s,

|Pi| = 1.178× 105 × 10−6Pa = 75dB.

For comparison, the sound transmitted on the other side of the window would be TPi which has mag-
nitude:

|TPi| =

[
1 +

(
ωm

2ρc

)2

cos2 θ

]−1/2

Pi,

= 1.178× 105 × 10−6/289Pa = 26.2dB.

It might be possible to measure this signal very close to the window, but at a distance of 100m it would be
impossible. A sophisticated laser system, however, could measure the window’s vibrations from a distance
of hundreds of meters. It is interesting to know that the American embassy in Moscow was surrounded by
four taller buildings, and it was reported that:

1The article is available online at: http://www.bugsweeps.com/info/hitech snooping.html
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Figure 6.4: Change in duct section

The Soviets’ new Washington embassy, built on a high hill, is perfectly placed to beam
laser light from a generator as small as a flashlight toward windows, catching the conversations
going on behind them. John Pike of the Federation of American Scientists says that “the White
House has put little noisemakers on its windows” to foil the eavesdropping, which can also be
hindered by heavy drapes.2

Ducts and silencers

Figure 6.4 shows a simple example of propagation along a duct whose section changes suddenly. If a
wave of the form exp(jkx) propagates to the right and hits the change in section, there is a reflected wave
R exp(−jkx) which propagates to the left and a transmitted wave T exp(jkx) which carries on to the right
past the change in section.

For low-frequency applications, we can assume that the only thing that matters is the change in area
going from one section to the next. If the initial part of the duct has area A1 and the second part area A2,
the boundary conditions at the change in section x = 0 are continuity of pressure and conservation of mass.
The first of these conditions is simple; the second requires that the volume flow rate be conserved across the
interface, so that A1U1 = A2U2 where U is acoustic velocity, which we can relate to the acoustic pressure
using the momentum equation. Setting x = 0, the boundary conditions are then:

1 + R = T, (6.12a)
A1(1−R) = A2T. (6.12b)

Solving for R and T , we find that:

R =
A1 −A2

A1 + A2
, (6.13a)

T =
2A1

A1 + A2
. (6.13b)

Note that when A2 → ∞, R → −1 and T → 0 so that, on this theory, an open-ended duct reflects the
whole signal back from the end and no sound escapes. As might be expected, when A2 = A1, R = 0 and
T = 1 so the sound travels unaffected.

An application of changes in duct section is the exhaust muffler, such as those seen on the motorcycles
of thoroughly respectable acoustics lecturers or on the exhaust pipes of noisy brats. The simplest form of
muffler, Figure 6.5, is simply a section of pipe with a greater cross-sectional area than the rest of the pipe.

A muffler has two functions: to reduce the noise radiated into the surroundings (which is why vehicles
are obliged to have them) and to increase the engine power (which is why people fit new ones). The first

2Newsweek, 20 April 1987, http://www.bugsweeps.com/info/battle of bugs-newsweek-04-20-87.html
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Figure 6.5: A simple exhaust muffler

function is fulfilled by modifying the pressure field which reaches the open end of the exhaust, the second
by imposing a reflected wave which alters slightly the exhaust characteristics of the engine cylinder.

The muffler shown in Figure 6.5 is the simplest device we can imagine but it will give us an idea of the
behaviour of a realistic system. We need boundary conditions at x = 0 and at x = L. The pressure and
continuity conditions at x = 0 are:

1 + R = T2 + R2, (6.14a)
A1(1−R) = A2(T2 −R2), (6.14b)

and at x = L:

T2ejkL + R2e−jkL = T ejkL, A2(T2ejkL −R2e−jkL) = A1T ejkL. (6.15a)

Rearranging these equations, we can eliminate T2 and R2 (we are not very interested in what happens inside
the muffler) to find T , the transmitted wave. Combining (6.14) yields:

(A2 + A1)− (A1 −A2)R = 2A2T2,

(A2 −A1) + (A2 + A1)R = 2A2R2,

and, writing m = A2/A1:

(m + 1) + (m− 1)R = 2mT2,

(m− 1) + (m + 1)R = 2mR2.

Similarly (6.15) can be combined:

2mT2ejkL = (m + 1)T ejkL,

2mR2e−jkL = (m− 1)T ejkL.

We can eliminate R2 and T2 to find the transmitted wave:

T =
cos kL− j sin kL

cos kL− j(m + m−1)/2 sin kL
(6.16)

The most interesting thing to know from an environmental point of view is the magnitude of the transmitted
wave:

|T | =
(

1 +
(m−m−1)2

4
sin2 kL

)−1

(6.17)

Looking at this equation, we can see that the transmitted wave amplitude is minimized for certain values of
kL, if we take m fixed. The net effect is that the muffler acts as a low pass filter.

We can also calculate the reflected wave amplitude:

R =
m + 1
m− 1

(T − 1), (6.18)

showing that quite a strong wave is reflected back into the engine. With the correct timing, which depends
on the length of the exhaust pipe leading up to the muffler, this can increase the engine power slightly.
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Figure 6.6: Helmholtz’ bottle

The Helmholtz resonator

One of the most important resonant systems is the Helmholtz resonator, the classic example of which is the
wine or beer bottle. It is modelled, Figure 6.6, as a volume V connected to the outside world by a neck of
length l and cross-sectional area S. We can estimate the resonant frequency of the system by considering
the motion of a ‘plug’ of fluid in the neck of the bottle under the action of an external force and an internal
restoring force due to the compressibility of the fluid in the bulb.

Assuming that the process is adiabatic, the density and pressure in the bulb are related by:

p = kργ ;
dp

dρ
= c2.

If the plug of fluid in the neck of the bottle is displaced by an amount ξ (assumed positive out of the neck),
the volume of fluid inside the bulb changes by an amount Sξ. Using subscript 0 to indicate mean values,
the resulting change in density is:

ρ

ρ0
=

V

V − Sξ
,

=
1

1− (S/V )ξ
,

≈ 1− S

V
ξ,

by the binomial theorem and the corresponding change in pressure is:

p− p0 = −ρ0
c2S

V
ξ.

The equation of motion for the plug can then be written, noting that its mass m = ρ0Sl:

ρ0Slξ̈ + ρ0
c2S2

V
ξ = −paS,

where pa is the externally applied pressure. This is the equation of motion for an oscillator with a resonant
frequency:

ω =

√
c2S

V l
.
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Helmholtz resonators can be used whenever you want to reduce noise at some known frequency. One
of the main applications is in acoustic liners used in aircraft engines, which are made up of a large number
of small Helmholtz resonators with dimensions chosen to absorb noise at a specified frequency.

Sound from a wine bottle

A wine bottle has internal volume V ≈ 7.5× 10−4m3 and a neck of length l ≈ 0.05m and cross-sectional
area S ≈ 7.854× 10−5m2. The resonant frequency is then about 492rad/s, or 78Hz.

Sound in circular ducts

One of the main acoustical systems which appears in applications is the circular duct: ventilation systems,
pipelines, and aircraft engines can all be represented, at least approximately, by a duct of circular cross
section. This makes the system important in its own right, and as a model problem for the three-dimensional
field inside a channel.

For a circular duct, it makes sense to write the Helmholtz equation (2.14, page 13) in cylindrical coor-
dinates (r, θ, z) where z is displacement along the duct axis and r and θ are polar coordinates. Using the
definition of ∇2 in cylindrical coordinates (page 60):

1
r

∂

∂r

(
r
∂P

∂r

)
+

1
r2

∂2P

∂θ2
+

∂2P

∂z2
+ k2P = 0. (6.19)

We can derive solutions for this equation by separation of variables, writing P = R(r)Θ(θ)Z(z) and:

ΘZ

r

d
dr

(
r
dR

dr

)
+

ZR

r2

d2Θ
dθ2

+ RΘ
d2Z

dz2
+ k2RΘZ = 0, (6.20)

1
R

1
r

d
dr

(
r
dR

dr

)
+

1
Θ

1
r2

d2Θ
dθ2

+
1
Z

d2Z

dz2
+ k2 = 0. (6.21)

Each term in this equation is a function of one variable only, or a constant. If we differentiate with respect
to z:

d
dz

(
1
Z

d2Z

dz2
+ k2

)
= 0, (6.22)

so d2Z/dz2/Z + k2 is a constant which we will call α2
n. Then:

1
Z

d2Z

dz2
+ k2 = α2

n, (6.23)

d2Z

dz2
+ (k2 − α2

n)Z = 0, (6.24)

Z = e±jβnz, (6.25)

where βn = (k2 − α2
n)1/2. We know that the solution in θ must be periodic, so we can write Θ = cos mθ

or Θ = sin mθ and d2Θ/dθ2 = −m2. This gives:

1
R

1
r

d
dr

(
r
dR

dr

)
− m2

r2
+ α2

n = 0, (6.26)[
d2

dr2
+

1
r

d
dr

+
(

α2
n −

m2

r2

)]
R = 0. (6.27)

Happily, (6.27) is a standard differential equation with a solution that has a name: the Bessel function
Jm(αnr).
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Figure 6.7: The first few Bessel functions Jn(x)

The first few Bessel functions are plotted in Figure 6.7, where you can see that they look a bit like
decaying sinusoids. The only requirement we must impose is that the pressure gradient be zero at r =
a, the duct wall. This means that only certain values of αn are permissible in the solution, defined by
αnJ ′m(αna) = 0. If we define the zeros as αmn with αmnJ ′m(αmn) = 0, the solution for the field in the
duct is:

P = Jm(αmnr/a)
{

cos mθ
sinmθ

}
e±jβnz. (6.28)

From (6.28), we can see that some modes propagate with amplitude exp j|β|z and are oscillatory in z.
Others have amplitude exp[−|β|z] and decay exponentially with z. These modes are said to be ‘cut-off’
and to all intents and purposes do not propagate. The frequency below which they do not propagate is
called the cut-off frequency. In most applications, it is only necessary to consider the ‘cut-on’ modes since
the cut-off modes do not propagate within, or out of, the duct.

Radiation from ducts

The question we are usually most interested in is how much noise escapes from the pipe. The full solution
of this problem, calculating the field radiated from a mode which reaches the end of the duct, is a hard
piece of work in applied mathematics and beyond the scope of these lecture notes. There is, however,
a reasonably good approximation in which we model the end of the duct as a piston with an oscillating
velocity distribution, the Rayleigh approximation, which you will work out in Question 3.

Source filtering

A question of some philosophical and practical importance is that of the relationship between a source and
its acoustic field. The propagation of sound has a filtering effect on the source, in the sense that only ‘part’
of the ‘source’ contributes to the radiated sound. For a concrete example, consider a source exp[±jkxx]
with wavenumber k distributed over the plane z = 0. The resulting acoustic field (Junger and Feit, 1993,
p131–2), has the form:

p ∝ ej(k2−k2
x)1/2z

(k2 − k2
x)1/2

, (6.29)

which is obviously exponentially small when k < |kx|. In other words, only source terms with supersonic
phase speed, |kx| > k, propagate. Components of the source with subsonic phase speed are ‘filtered’
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out and make no contribution to the field. This is a very general result and applies to sources of many
kinds, including, as we will see later, turbulent jets, which are very inefficient radiators. It also throws into
question the idea of a ‘source’. If we consider a source made up of a combination of terms of the form
exp[±jkix], we can add as many terms as we like with |ki| > k without changing the acoustic field. In
what sense, then, can we define the source of the field? Alternatively, given an acoustic field, can we define
its source using only acoustic measurements?

Questions

1. A point source of wavenumber k is placed near a pressure release surface, on which the boundary
condition is that the pressure be zero. Calculate the effect of the boundary on the radiated sound.

2. The density of Perspex is about 1200kg/m3. Estimate the attenuation of a normal wave of fre-
quency 100Hz, transmitted through an aircraft window of thickness 5mm. Perform the same calcu-
lation for an aluminium (density 2700kg/m3) wall of thickness 2mm. Which path reduces the cabin
noise most and what would be the first easy way to reduce the noise inside the aircraft? What happens
to noise at 1kHz?

3. Given that the Bessel function of order n can be represented:

Jn(x) =
jn

2π

∫ 2π

0

ej(nθ1−x cos θ1) dθ1,

estimate the acoustic field radiated by a piston with velocity distribution Jn(αmnr/a) exp[nθ1], as
in Question 1 of Chapter 5. Sketch the distribution of noise as a function of angle from the piston
axis. This is the Rayleigh approximation for the propagation of sound from a duct termination and is
a reasonably good approximation for points past the end of the duct.
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The Proper Orthogonal Decomposition

One of the most important modern techniques in the study of turbulence is the Proper Orthogonal De-
composition (POD), which is a method for giving us information about a system, which is in some sense
optimal. The POD is a decomposition: it breaks the flow down into a set of modes; its is orthogonal: the
modes are unique; and it is proper: the modes which it finds are ordered by the energy which they contain.
The POD gives a modal decomposition of the flow, capturing a given proportion of the flow energy with the
smallest possible number of modes. A standard introduction to the POD is given by Berkooz et al. (1993),
but we will start with some basic ideas and examples.

Inner products and orthogonality

The first concept which we have to deal with is orthogonality. You have probably come across this idea in
the past without being told what it was, so take a simple example. If we have two vectors in the plane, x
and y, we can take their dot product, x.y. If this is identically zero, the vectors are orthogonal, with the
usual geometrical meaning of being perpendicular to each other.

We can say the same thing in three dimensions, and in as many dimensions as we like, if we define the
dot product:

〈x,y〉 =
N∑

i=1

xiyi, (7.1)

where N is the dimension of the space, and we now call 〈x,y〉 the inner product. As before, the vectors are
orthogonal if 〈x,y〉 ≡ 0. If we want, we can add some weighting to different components of the vectors:

〈x,y〉 =
N∑

i=1

wixiyi, (7.2)

and we can define the magnitude of a vector in the obvious way:

|x| = (〈x,x〉)1/2
, (7.3)

so that the vector x/|x| will have unit length.
If we have a set of vectors xi which are orthogonal to each other, and which are all of unit length,

|xi| ≡ 1, we have an orthonormal basis, which can be used to represent any vector in our domain:

y =
N∑
i

aixi. (7.4)

In two dimensions, (1, 0) and (0, 1), or (2−1/2, 2−1/2) and (−2−1/2, 2−1/2), would be an orthonormal basis
and in three, (1, 0, 0), (0, 1, 0), and (0, 0, 1) would likewise form a basis. Because the basis is orthonormal,
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we can find the coefficients of any vector using an inner product. Rearranging (7.4),

ai = 〈xi,y〉. (7.5)

The net result of this theory is that if we have a suitable basis, we can specify the state of a system using
the coefficients ai, as long as we know the basis vectors xi.

One final point to note is that we have so far limited ourselves to systems defined by vectors in N -space.
We can also have systems where the vectors are replaced by functions, and the inner product is defined as
an integral:

〈f, g〉 =
∫

Ω

f(x)g(x)w(x) dx, (7.6)

where Ω is the domain we are interested in (the region of a flow, say), f(x) and g(x) are functions defined
over the region (velocity, for example), and w(x) is a weighting function, as before.

POD of real flows

It has been estimated, using dimensional analysis, that a three-dimensional turbulent flow has of the order
of Re9/4 degrees of freedom (Tennekes and Lumley, 1972; Smith et al., 2005), which is a large, but not
infinite number. The power of the POD is that, firstly, it identifies the modes which can be used to form a
basis for the system, and, secondly, it puts those modes in order of importance, based on how much they
contribute to the kinetic energy of the flow1. The details can be found elsewhere (Berkooz et al., 1993;
Smith et al., 2005), but the core of the theory is that in order to find the basis functions, denoted φi, we have
to solve the integral equation: ∫

Ω

R(x,x′)φi(x′) dx′ = λφi(x), (7.7)

where R is the two-point velocity correlation, and λ is an eigenvalue for the problem. There are infinitely
many solutions to this integral equation (think of the eigenvalue problems for a homogeneous system in
linear algebra) and there are well-established procedures for solving it. These procedures give a set of
eigenfunctions φi and corresponding eigenvalues, ordered by the magnitude of λ, so that we are guaranteed
to have the smallest number of modes possible which still capture the flow energy. A component of velocity,
for example can be represented by the sum

u(x) ≈
N∑

i=1

aiφi(x), (7.8)

and for any value of N , there is no other decomposition of the velocity which captures more of the flow
energy. In effect, we have used the flow to tell us how best to represent the system.

Finally, for now, we have made no assumption about the variables we decompose in the POD: we could
just as easily have applied the method to the acoustic pressure field, and a number of people have. We will
return to this question when we consider jet noise, but for now have a look at Figures 6 and 7 in the paper
by Lele et al. (2010), which show POD modes for a subsonic and supersonic jet.

1Other measures are available, but kinetic energy is the most widely used.
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Turbulent jets

A jet is one of the most important basic flows which we have to deal with. Jets occur in many forms and
sizes from volcanoes to chimneys to ink jet printers. The basic flow structure is reasonably well understood
and has been summarized in a number of books such as Abramovich (1963), and in an extensive literature
in the research journals.

Jet flows

The axisymmetric turbulent jet has a wide range of applications. The most obvious is aircraft engines, but
there are many others: hairdryers, hand-dryers, chimneys and volcanoes all have some characteristics of a
circular jet. The structure of the jet has been intensively studied and there are numerous standard references
which describe it. The basic form is shown in Figure 8.1, derived from the published data of Wygnanski
and Fiedler (1969), Bogusławski and Popiel (1979) and Hussein et al. (1994).

The flow exits the nozzle with axial velocity U and keeps this velocity in a region called the potential
core, just beyond the exit plane. The potential core shrinks, as the region of turbulent flow at the outer
edge of the jet expands, until at some point the core has shrunk onto the jet axis. Further upstream, there
is a self-similar region in which the jet velocity distribution is described by functions of a single variable
η which depends on the radial displacement r and on the axial displacement z. Between the initial region
and the self-similar region is a transition region, where the flow is not so well-defined, as it changes from
one self-similar form to another.

The downstream self-similar region has been most extensively studied over the last half century. The
data shown here are based on the results of Hussein et al. (1994), who conducted a detailed, very careful,
set of measurements in a turbulent jet and fitted functions for the velocity and other profiles. Figure 8.2
shows the axial velocity Uc on the jet axis, scaled on the jet initial velocity U . Past a point z ≈ 15D, Uc/U
is very well approximated by the formula:

Uc(z)
U

=
Bu

z/D − z0/D
, (8.1)

U0

Potential core

η = 0.2
Initial region

Self similar region

Transition region
η = η1/2

r

z

Figure 8.1: The basic structure of a circular jet. The origin of the cylindrical coordinates (r, z) is taken on
the jet exit plane.
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Figure 8.2: Mean axial velocity in a turbulent jet (Hussein et al., 1994)
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Figure 8.3: Fluctuating velocities in a turbulent jet (Hussein et al., 1994)

where good values for z0/D and Bu are 4.0 and 5.8 respectively. Similar, though more complicated,
approximations are given for the mean and fluctuating velocity profiles as a function of radius, and axial
displacement, plotted in Figure 8.3.

Lighthill’s eighth power law for jet noise

Solving Lighthill’s equation for different sources is more than we can manage in these notes (or anywhere
else), but we can derive a scaling law for jet noise which was one of the first great successes of the theory.
The solution of (2.27) is:

p = − ∂2

∂xi∂xj

∫
V

Tij(y, t−R/c0)
4πR

dV.

In the far field, we can approximate this integral by differentiating it: when we do this, we will retain only
terms which depend on 1/R (everything else decays much more rapidly). Setting coordinates so that the
origin is inside the source region, x− y ≈ x, and:

p ≈ 1
4π

xixj

x3

∫
V

1
c2
0

∂2

∂t2
Tij(y, t−R/c0) dV.

There is no general solution for this equation, but we can derive a scaling law for the radiated acoustic
power. Figure 8.4 shows the labelling for a jet characteristic quantities. We take a characteristic length L,
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L V

Figure 8.4: Parameters for jet noise.

characteristic velocity V and a mean density ρ0. Then:

Tij ∼ ρ0V
2,

∂

∂t
∼ V

L
,

p ∼ 1
4π

1
x

1
c2
0

(
V

L

)2

ρ0V
2L3,

and the pressure scales as:

p ∼ ρ0
V 4

c2
0

L

x
.

From (2.24), the intensity scales as

Ī ∼ ρ0
V 8

c5
0

(
L

x

)2

.

The total acoustic power W is the intensity integrated over a spherical surface of radius x and

W ∼ ρ0
V 8

c5
0

L2. (8.2)

The acoustic power thus scales on the eighth power of jet velocity. This is Lighthill’s eighth power
law and was derived before experimental data were available to confirm it: it is one of the few major
scientific predictions to have been made before the data were available. It is strictly only true for low speed
flows, because we have implicitly assumed the source to be compact. At higher speeds, the characteristic
frequency of the source increases and interference and convection effects become important.

Example: Modern aircraft

Using Lighthill’s scaling law, we can estimate the difference in noise from a twin-engine and four-engine
aircraft. We know that the thrust from an engine is proportional to ρV 2D2. The total thrust F is the same
in both cases, and:

F = 4ρV 2
4 D2

4 = 2ρV 2
2 D2

2,

and the total noise W is:

W4 = 4V 8
4 D2

4,

W2 = 2V 8
2 D2

2.

We can calculate the ratio of the total noise, by calculating the ratio of the jet velocities:

F/4
F/2

=
(

V4

V2

)2(
D4

D2

)2

,

V2 =
√

2
D4

D2
V4,
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Figure 8.5: Trends in aircraft design: the Boeing 777 has two engines providing almost as much thrust as
the four engines of the Boeing 747, a quieter, more fuel-efficient solution.

Figure 8.6: Jet noise spectra at 120 jet diameters, in the jet exhaust plane (Lilley, 1995)

and, if we assume that D2 = 2D4,

W2

W4
=

1
2

(√
2

2

)8

(2)2 ,

= 1/8,

which is a noise reduction of 9dB.

Jet noise fields

As noted above, the general problem of jet noise is a bit too complicated for this course, but we can have
a look at some general features. Some typical spectra, taken from a NASA publication, are shown in
Figure 8.6, and these show most of the typical features of subsonic jet noise. The frequency range scales
on jet diameter and speed, through a Strouhal number, but the essential features are quite similar: there is
a peak in the spectrum above which the spectrum decays quite rapidly, with the acoustic power generally
being concentrated in a frequency range 2πfa/c / 2, where a is the exhaust radius.
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More detailed studies of the noise field of jets have been conducted (Lilley, 1995, for more details), to
attempt to reveal details of the source location and characteristics, and to acquire some understanding of
the structure of the acoustic field. As we know from page 43, the relationship between a ‘source’ and its
acoustic field is a tenuous one, and certainly not one which can be uniquely defined from field measurements
alone. On the other hand, certain definite statements can be made, on the basis of correlation measurements
of the acoustic pressure.

It is known, for example, that the acoustic field is dominated by only two or three azimuthal modes, i.e.,
the form of the acoustic field is very simple as a function of angle (answer Question 4 to see why), which
gives us one first clue that the acoustic field is much simpler than the jet flow field. A turbulent flow has
appreciable energy in a large number of azimuthal modes, so obviously they are not all radiating.

Studies using the POD, applied to the flow and to the acoustic field, have found that the flow requires 350
modes to capture 50% of the flow energy, while the acoustic field only required 24 modes to capture 90% of
the acoustic energy. The effect of source filtering, or cancellation, is very powerful. There is some argument
about the precise reasons for this disparity in complexity, but it is agreed that it might open possibilities for
active and passive noise control.

Questions

1. Find a domestic jet such as a hairdryer or toilet hand-dryer. Switch it on and probe the flow by
moving your hand in and out along radii at different distances from the nozzle. How does the force
on your hand vary as a function of axial and radial displacement? The cooling rate? What should
equations for the velocity profile look like?

2. Sketch the structure (velocity profiles, etc.) of a turbulent jet, using the data given by Hussein et al.
(1994).

3. Using the same jet as in Question 1, try to sketch how the noise varies as a function of orientation
with respect to the jet axis. You might find this easiest to do with a hairdryer which you can rotate to
vary the orientation.

4. In Question 3 of Chapter 6, you derived an expression for the sound radiated to the far field by a
circular source with azimuthal variation. Look up some properties of the Bessel function (graphically
or otherwise) and say which azimuthal modes you think will radiate for a source of wavenumber k.
Can you estimate the cross-spectrum and auto-spectrum for two points in the acoustic field?
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Appendix A

Further reading

These notes are based on a number of standard texts and lecture notes by other people, which are worth
reading for a deeper knowledge, or for a different point of view. In particular:

• CRIGHTON, D. G., DOWLING A. P., FFOWCS WILLIAMS, J. E., HECKL, M. & LEPPINGTON, F.
G. 1992, Modern methods in analytical acoustics, Springer-Verlag. Very mathematical but covers a
lot of material.

• DOWLING, A. P. & FFOWCS WILLIAMS, J. E. 1983, Sound and sources of sound, Butterworth.
This is quite a slim book compared to Pierce but it covers more of the things in these notes.

• FFOWCS WILLIAMS, J. E. 1984, The acoustic analogy—thirty years on, IMA Journal of Applied
Mathematics, 32:113–124. A readable account (not many equations) of the development and appli-
cation of Lighthill’s acoustic analogy.

• GRADSHTEYN, I. & RYZHIK, I. M. 1980, Table of integrals, series, and products, Academic, Lon-
don. A big book of all the mathematical formulae anyone could ever need.

• GEORGE, W. K., Lectures in Turbulence for the 21st Century, lecture notes available from http:
//www.turbulence-online.com.

• HUBBARD, H. H. ed 1995, Aeroacoustics of flight vehicles, Acoustical Society of America. This is
a two volume review of almost everything connected to noise from aircraft.

• LIGHTHILL, M. J. 1952, On sound generated aerodynamically: I General theory, Proceedings of the
Royal Society A, 211:564–587. This is the foundation of modern aeroacoustics and is very readable
for a paper of such fundamental importance.

• PANTON, R. L. 2005, Incompressible flow, John Wiley, Hoboken. This is a very good, comprehen-
sive textbook on the fluid dynamics you need for this course.

• PIERCE, A. 1994, Acoustics: An introduction to its physical principles and applications, American
Institute of Physics, New York. This is the standard modern reference for acoustics. If you want to
buy one comprehensive book on acoustics, this is the one. It doesn’t really cover aerodynamically
generated noise so you might want to look at Dowling & Ffowcs Williams as well.

• TENNEKES, H. & LUMLEY, J. 1972, A first course in turbulence, MIT Press. This has long been
one of the most highly-regarded textbooks on turbulence and is a very good place to start.

• Radio 4’s The Life Scientific featured an interview with Dame Ann Dowling, one of the world’s
leading researchers into aircraft noise, talking about her life and work in the field, and about the
Silent Aircraft Initiative. You can download the recording from: http://www.bbc.co.uk/
podcasts/series/tls
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56 APPENDIX A. FURTHER READING

Fiction

There are not nearly enough novels about turbulence, but one very good one, with a main character loosely
based on Lewis Fry Richardson is:

• FODEN, G. 2009, Turbulence, Faber & Faber. This is available in paperback (get it at Mr B’s Empo-
rium of Reading Delights opposite the Salamander; tell them I sent you) and is an excellent fictional
account of deciding whether or not the weather would allow the 1944 Normandy landings to go
ahead.



Appendix B

Basic equations

Potential flow:

u = ∇φ,

ui =
∂φ

∂xi
.

Bernoulli equation:

∂φ

∂t
+
∇φ.∇φ

2
+

p

ρ
= const
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Appendix C

Some useful mathematics

Complex variables

We often use complex variable notation to make life
easier. If we write a complex number z = x + jy
where j =

√
−1, then:

z = |z|ejφ,

|z| = (x2 + y2)1/2,

φ = tan−1 y/x.

In dealing with constant frequency waves, we can
use the relation:

e−jωt = cos ωt− j sin ωt

and if we wish to consider a general wave p of a
fixed frequency, say, this can be written:

p(t) = P e−jωt,

where now P contains information about the ampli-
tude and the phase.

The Dirac delta

The basic rule for integrating the delta function is:∫ ∞

−∞
f(x)δ(x− x0) dx = f(x0),

and in the more complicated case where the argu-
ment of the delta function is itself a function:∫ ∞

−∞
f(x)δ(g(x)) dx =

f(xg=0)
|dg/dxg=0|

.

Coordinate systems

Cylindrical coordinates:

y

z

x

r

z

θ

x = r cos θ, y = r sin θ;

r = (x2 + y2)1/2, θ = tan−1 y/x.

Spherical coordinates:

y

z

x

r

θ

φ

x = r sinφ cos θ, y = r sinφ sin θ,

z = r cos φ;

r = (x2 + y2 + z2)1/2, θ = tan−1 y/x,

φ = tan−1 z/(x2 + y2)1/2.
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60 APPENDIX C. SOME USEFUL MATHEMATICS

Differential operators

In Cartesian coordinates:

∇f =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
,

∇.f =
∂fx

∂x
+

∂fy

∂y
+

∂fz

∂z
,

∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

In cylindrical coordinates:

∇f =
(

∂f

∂r
,
1
r

∂f

∂θ
,
∂f

∂z

)
,

∇.f =
1
r

∂

∂r
(rfr) +

1
r

∂fθ

∂θ
+

∂fz

∂z
,

∇2f =
1
r

∂

∂r

(
r
∂f

∂r

)
+

1
r2

∂2f

∂θ2
+

∂2f

∂z2
.

In spherical coordinates:

∇f =
(

∂f

∂r
,
1
r

∂f

∂φ
,

1
r sinφ

∂f

∂θ

)
,

∇.f =
1
r2

∂

∂r

(
r2fr

)
+

1
r sinφ

∂

∂φ
(fφ sinφ)

+
1

r sinφ

∂fθ

∂θ
,

∇2f =
1
r2

∂

∂r

(
r2 ∂f

∂r

)
+

1
r2 sinφ

∂

∂φ

(
sinφ

∂f

∂φ

)
+

1
r2 sin2 φ

∂2f

∂θ2
.

Tensors

Summation convention for repeated indices:

aii = a11 + a22 + a33,

aibi = a1b1 + a2b2 + a3b3.

Kronecker delta:

δij =
{

1, i = j,
0, i 6= j.

Double inner product:

S : T = SijTji,

with the summation convention applied.



UNIVERSITY OF BATH

Faculty of Engineering & Design

DEPARTMENT OF MECHANICAL ENGINEERING

ME40328: Turbulence and noise
Semester 1

Day/date 2011/Time

Candidates should attempt all questions from Section A, one question from
Section B, and one question from Section C.

Air density at sea level, ρ = 1.225kg/m3;
Acceleration due to gravity at sea level, g = 9.81m/s2;
Speed of sound at sea level, c = 340m/s.



Section A

There will be five questions in this section, all worth ten marks each

1. Outline the main features of a turbulent jet flow. How does the flow become
turbulent after leaving the nozzle?

2. With suitable sketches, describe the process of shear layer instability and
transition to turbulence in a circular jet. What main features would you
expect to see immediately after transition?

3. Give a definition of a ‘coherent structure’ in turbulence. What form would
these structures take in a turbulent jet?

4. With the aid of sketches, describe qualitatively the essential features of
sound propagation in a circular duct and the characteristics of the sound
radiated from the duct termination. In an aero engine, how does the modal
content of the sound field relate to the engine configuration?

5. State Lighthill’s eighth power law for noise from a turbulent jet. Describe
the implications of this law for the development of aircraft engines and
aircraft configurations.

6. Describe the operation of a Helmholtz resonator. How might such a device
be used in practice, in high and low frequency applications?

7. The image below is a Wikimedia Commons photograph of clouds in Aus-
tralia. Why have they taken this particular form and what physical process
is at work? What other examples of this process are common in nature
and how does it end?

2



8. Turbulence is a phenomenon which occurs over a range of length and
velocity scales. What are suitable scales for the description of turbulence
and how are they related in any given problem? How is turbulent kinetic
energy transferred between these scales and dissipated?

9. What are the statistical properties of homogeneous, isotropic turbulence?
Under what circumstances does turbulence deviate from these assump-
tions?

10. With reference to noise generated by a vibrating surface, describe the role
of the Helmholtz number ka in determining the nature of the acoustic field.
Refer to the field complexity and radiation efficiency.
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Section B

There will be four questions in this section, all worth twenty five
marks each

11. A plane acoustic wave of frequency ω is incident at angle θ on one side of
a slab of material of acoustic impedance Zsl.

(a) Show that the transmitted wave amplitude is given by:

T =
2ρc/ cos θ

Zsl + 2ρc/ cos θ
,

where ρ and c are the density and speed of sound for the fluid.
[10 marks]

(b) If the slab of material can be assumed limp, and has mass m per unit
area, show that:

|T | =

[
1 +

(
ωm

2ρc

)2

cos2 θ

]−1/2

.

[8 marks]

(c) It is believed that laser velocity measurements of window vibrations
have been used to detect speech inside buildings. If the density of
glass is 2500kg/m3, and a standard laser unit can measure velocities
of the order of 1µm/s, estimate the lowest SPL for speech at 3kHz
which could be detected using such a method on a window of thick-
ness 5mm.

[7 marks]

12. (a) A circular piston of radius a set in a rigid wall vibrates at frequency
ω with velocity amplitude v. Show that in the far field, the acoustic
pressure is:

p(ω) ≈ −j
ρcvka2

2

2J1(ka sin φ)

ka sin φ

ejkR0

R0

,

where k is wavenumber, R0 is distance from the centre of the source,
φ is the angular separation from the source axis and J1( · ) is the first
order Bessel function. You may use the relations:

J0(x) =
1

2π

∫ 2π

0

e−jx cos θ1 dθ1,

4



and: ∫
xJ0(x) dx = xJ1(x),

and assume that in the far field:

1

R
≈ 1

R0

and R ≈ R0 − r1 sin φ cos θ1.

[15 marks]

(b) The noise radiated from the intake of an aircraft engine can be ap-
proximated as that due to a piston set in the intake. Sketch the
directivity pattern, indicating the directions of zero radiation, for the
noise radiated from the intake of a Trent 900 with the fan rotating
at 1500rpm. The intake radius is 1.5m and there are 24 fan blades.
A graph of J1(x) is shown in Figure Q12.

[10 marks]
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0
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0.8

x

J
1
(x

)

Figure Q12: First order Bessel function

13. In the turbulent energy cascade, it can be assumed that the energy dissi-
pation rate ε is independent of wavenumber κ.

(a) Show that the energy distribution E is given by:

E(κ) = Cκ−5/3ε2/3,

where C is some constant.
[8 marks]
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(b) With the aid of suitable sketches and equations, describe the Kelvin-
Helmholtz instability and the process of transition to turbulence.

[8 marks]

(c) In a jet which has undergone transition, describe the role of vortex
ring dynamics and its effect on the turbulence statistics.

[9 marks]

14. A point source rotates at radius a and angular velocity Ω.

(a) Given that the Bessel function of order n can be represented:

Jn(x) =
jn

2π

∫ 2π

0

ej(nθ1−x cos θ1) dθ1,

derive an expression for the acoustic pressure of the nth harmonic in
the far field. You may assume that in the far field:

1

R
≈ 1

R0

and R ≈ R0 − r1 sin φ cos θ1.

[15 marks]

(b) For a point source rotating at a Mach number of 0.5, sketch the spec-
trum of the radiated noise at a polar angle φ = π/4, to within a scaling
factor. The first few Bessel functions are sketched in Figure Q14.

J0(x)

J1(x)
J2(x) J3(x) J4(x)

0 4 8

0

−1

1

Figure Q14

[10 marks]

15. (a) Sketch the structure of a turbulent jet, clearly identifying all regions,
with appropriate notation.

[8 marks]
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(b) For the self-similar region of the jet, sketch and describe the mean
and turbulent velocity profiles, clearly indicating the coordinates used.

[10 marks]

(c) You have been given the job of measuring the two-point axial velocity
correlations along the axis of a turbulent jet. Sketch the correlations
which you expect to see, being careful to show the correct behaviour
for magnitude and time delay.

[7 marks]

16. Far field noise from a turbulent flow in a volume V can be approximated
by:

p(x, t) = A
∂2

∂t2

∫
V

Tij(y, t − R/c)

R
dV,

where the factor A contains constants of proportionality.

(a) Discuss the significance of the term Tij and how it is related to the
turbulence statistics?

[8 marks]

(b) Show that the pressure autocorrelation is given by an integral of the
form:

p(x, t)p(x, t + τ) = B

∫
V

∫
V ′

Tij(y, t − R/c)Tij(y′, t − R′/c + τ)

RR′ dV ′ dV.

[10 marks]

(c) What elements of the flow make up the term Tij(y, t)Tij(y′, t + τ) and
what is their physical significance?

[7 marks]
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