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rotating cavity with a/b_=_0.5 and gap ratio
G_=_s/b=_0.3 (see Fig. 1). The range of rotational
Reynolds numbers tested was 1.5 x 105 < Reφ < 1.5 x 106.

In addition to the flow due to the stationary casing, Gan
et al (1996) also investigated the effect of a peripheral
flow of air, simulating the flow used to cool gas−turbine
discs. Heat transfer for these "superposed flow" cases was
measured and computed by Mirzaee et al (1997).

Abrahamson et al (1989) carried out flow visualisation
in a similar rotating cavity to that described above, again
with a/b_=_0.5, but with the axial spacing between the
discs varied so that 0.013 <_G_< 0.1. The range of
rotational Reynolds numbers studied was the same as that
considered by Gan et al. Orderly circumferential
asymmetries were observed in the flow, with a number of
vortices in the outer part of the cavity precessing relative
to the discs. Near solid−body rotation occurred in the
inner region towards the hub. The number of vortices
decreased (and the level of relative motion in the inner
region increased) when the axial separation between the
discs was increased. Ensemble−averaged tangential
velocities on the mid−plane between the discs (inferred
from flow visualisation results) were presented for
Reφ_=_4.5 x 105 and G = 0.05. These showed a clear
distinction between free−vortex−type flow in the outer
region, near the casing, and forced−vortex−type flow in
the inner part of the cavity.

Fig._1 shows the secondary flow recirculations for
axisymmetric, steady flow computed by Wilson et al
(1996), for Reφ = 104 and G = 0.3. The recirculations are
symmetric about the axial mid−plane, with radial outflow
in the boundary layers on the discs and radial inflow at the
mid−plane. (Abrahamson et al (1989) also noted this
structure). Gan et al (1996) found, from both experiment
and computation, that the inward penetration of these
recirculations reduced with increasing rotational Reynolds
number. LDA measurements of tangential velocities on
the mid−plane (z*/s = ½) followed a Rankine (combined

ABSTRACT

__Unsteady axisymmetric solutions of the Navier−Stokes
equations have been obtained, using the
vorticity−streamfunction formulation, for the flow in a
rotating cavity with a stationary outer casing. The
secondary flow is characterised by counter−rotating
vortices in the outer part of the system, with radial inflow
near the mid−plane between the co−rotating discs.
Computed tangential velocity distributions follow
Rankine (combined free and forced) vortex distributions,
and are in reasonable agreement with available
experimental data. Comparisons are also made between
the results of the unsteady computations and steady flow
results obtained using a two−equation low Reynolds
number turbulence model.

1 INTRODUCTION

The rotating cavity illustrated in Fig. 1, formed by
co−rotating discs separated by a rotating inner cylinder (or
hub), and with a stationary outer casing, has been studied
in relation to two practical engineering situations.
Abrahamson et al (1989) described an experimental study
carried out in order to provide information on the air flow
in computer disc drives, and Chang et al (1990) also
carried out axisymmetric, steady calculations for this
application. Gan et al (1996) and Mirzaee et al (1997)
carried out experiments and computations for flow and
heat transfer in a similar rotating cavity, using this as a
simplified model for co−rotating turbine discs in a
gas−turbine engine. A comprehensive review of flow and
heat transfer in rotating cavities is given by Owen and
Rogers (1995).

Gan et al (1996) made laser−Doppler anemometry
(LDA) velocity measurements, and carried out steady
turbulent flow computations (using a low
Reynolds−number k−ε turbulence model for the
Reynolds−averaged Navier−Stokes equations), for a



free and forced) vortex structure, which was not well
predicted using the Launder and Sharma (1974) low
Reynolds−number k−ε turbulence model. Wilson et al
(1997) described results of unsteady axisymmetric
computations of the flow (some of this work is
reproduced in this paper), and Lewis et al (1997) studied
the effect of buoyancy on the stability of the flow, in
heat transfer computations carried out at selected
conditions.

This paper describes unsteady, axisymmetric,
incompressible computations for the flow in the rotating
cavity at three conditions, varying both rotational
Reynolds number and gap ratio, with comparison against
experimental data (where available) and the results of
steady flow computations employing "statistical"
turbulence models. Section 2 describes the
computational method. The results of time−dependent
simulations are described and discussed in Sections 3, 4
and 5. Conclusions (and recommendations for future
work) appear in Section 6.

2 COMPUTATIONAL METHOD

The Navier−Stokes equations for axisymmetric,
incompressible flow, expressed in a rotating frame of
reference, were solved in non−dimensional form using
the streamfunction−vorticity formulation. This was
preferred to the primitive variables formulation in order
to overcome the difficulties, associated with the latter, in
determining values of pressure at the boundaries. The
method also requires around 50% fewer operations than
the vorticity−velocity formulation, for which an
additional Poisson equation needs to be solved and for
which a staggered grid is required in order to obtain

 Fig. 1  The rotating cavity, and computed secondary flow 
  streamlines, for steady flow at  Reφ = 104  

 Fig. 2  Instantaneous secondary flow streamlines for 
      unsteady flow computation:  Reφ = 104  

divergence−free velocity and vorticity vectors.

The non−dimensional form of the equations is:

∂ω + ∂ω∂Φ − ∂Φ ∂ω − 1 (Φ∂ω + ω∂Φ) − 2ν∂v
∂t ∂r ∂z ∂z ∂r r ∂z ∂z r ∂z

− 2Reφ ∂v = ∇2 ω − ω
∂z r2

where the vorticityω is given byω = (∇2Φ − Φ / r2), and:

∂v + ∂v ∂Φ − ∂Φ ∂v + 1 (v∂Φ − Φ∂v)
∂t ∂r ∂z ∂z ∂r r ∂z ∂z

+ 2Reφ ∂Φ = ∇2 v − v
∂z r2

For convenience, the streamfunctionψ (which satisfies
the continuity equation exactly) has been re−scaled using
ψ_=_rΦ. The non−dimensional variables appearing in the
above equation are given from:

r* = br , z* = bz , v* = νv/b , t* = b2t/ν ,
w* = νw/b2 , Φ* = νΦ

The rotational Reynolds number, Reφ = Ωb2/ν, appears
only in the Coriolis coupling terms. For the tangential
velocity results described below, the absolute velocity
was deduced from:

Vφ = v* + Ωr*

No−slip conditions apply on the boundaries of the
cavity, givingΦ = 0 and zero relative tangential velocity
on the boundaries. For the vorticity,ω = ∂2Φ/∂r2 was
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iii/ update the boundary values forω at the new time,
using the new time values forΦ

__The fluid was initially at rest in the stationary frame
of reference, and the rotating surfaces assumed a fixed
given speed instantaneously at time t = 0. In order to
perturb the solution from a symmetric twin recirculation
structure (as ilustrated in Fig. 1), a small axially varying
perturbation to the tangential velocity could be
introduced. It was found, however, that amplification of
round−off errors in the solution was sufficient to perturb
the flow, and the results presented here do not include
the use of an imposed perturbation.

3 RESULTS FOR Reφ = 104, G = 0.3

__Fig. 2 shows instantaneous computed streamlines for
unsteady laminar flow in the rotating cavity at
Reφ_=_104. For this computation, the nondimensional
time−step (ν∆t/b2) was around 7 x 10−7, and an 80 x 96
axial by radial grid was used (b = 0.382 m was used for
this case, matching the geometry of the experimental rig
in the study referred to in Section 4 below).

__The computed flow was periodic, as illustrated in
Fig._3 by the variation with time of the maximum and
minimum value of the streamfunction. These extrema
occur at the centre of the two recirculations established
about the axial mid−plane of the cavity (z*/s_=_½). In
Fig._2 the stronger recirculation is nearer the left−hand
disc and there is a stagnation point on the left−hand disc
in the inner part of the cavity, The periodic variation is
between this structure and the mirror−image situation,
where the stronger recirculation is closer to the
right−hand disc. The situation shown in Fig. 2
corresponds to the peak of the streamfunction values in
Fig. 3. (The secondary peaks seen in the streamfunction
variations were found to reduce when smaller time steps
were used, however the other features of the solution
were not affected).

Fig. 4 shows the computed tangential velocity on the
mid−plane between the discs (z*/s_=_½). The axes are
chosen to illustrate the approach to Rankine (combined
free and forced) vortex behaviour in the flow (see Owen
and Rogers, 1995), since for such a flow:

Vφ = C / r* + Dr* => V φ / Ωr* = A r −2 + B (5)

where A and B are constants (different for each test
condition).

The standard deviation S plotted in Fig. 4 shows that
there is little effect of unsteadiness on the mid−plane
tangential velocity. The time−averaged velocity
distribution is in good agreement with a steady
axisymmetric laminar flow computation performed by
Lewis et al (1997), except in the lower part of the

used at the inner and outer surfaces (at r*=a and r*=b),
and ω_=_∂2Φ/∂z2 was used at the surfaces of the two
discs (at z*=0 and z*=s).

__At high rotational Reynolds numbers, the boundary
layers on the rotating discs are thin and a fine grid is
required for adequate resolution. Thus, the equations
were discretised on a non−uniform mesh in which
grid−spacing increased away from solid boundaries as a
geometric progression, using expansion factors between
1.1 and 1.2. Uniform spacing (in each direction),
matched to this near−wall grid, was used for the mesh in
the interior of the cavity.

__Hybrid−upwind differencing was used for the
non−linear convection terms, in which either
second−order accurate central differences, or first−order
accurate upwind differences, were used depending upon
the local value of the Peclet number Pe = Vh/ν, where V
and h represent, respectively, the local velocity and
grid−spacing (the appropriate non−dimensional
quantities were used within the computational
sequence). Further details of the grid, and the results of
grid−dependence tests, are given in subsequent sections.

__The conditionally−stable, first−order accurate
Du−Fort Frankel method was used for the temporal
derivatives, in which the dependent variables were
averaged between old and new time values. This gave
decreased computational expense per time−integration
(compared with unconditionally stable methods), and the
fixed solution time−step for each different calculation
was determined from numerical stability studies.

__A fixed V−cycle multigrid algorithm, with
line−relaxation smoothing provided by the tri−diagonal
matrix algorithm, was used to accelerate the solution of
the Poisson equation for the streamfunction. Multigrid
convergence at each time−step required the total
absolute residual on the mesh to fall below 10−6 for the
Poisson equation solution (for a case in which the
maximum streamfunction value was around 50). Values
of vorticity on the boundaries were updated using the
streamfunction solution at the new time level. The
numerical methods were successfully validated against
previously published computational results (for heat
transfer) for buoyancy induced flow in differentially
heated cavities (in a separate programme of work using
this code).

__In outline, the solution sequence at each time level is
as follows:

i/ solve forω and v at the new time, using current and
old time values, on all internal grid points,

ii/ solve implicitly, using the multigrid method, forΦ
at the new time, using the new time values forω on
the right hand side,



Fig. 7 shows the good agreement obtained between the
time−averaged tangential velocities for the unsteady
computation and experimental data from the study
described by Gan et al (1996). The data is consistent with
Rankine vortex flow. An axisymmetric steady
computation, carried out using the low Reynolds number
two equation turbulence model of Launder and Sharma
(1974), failed to reproduce this behaviour and is in poor
agreement with the data. (Mirzaee et al (1997) found the
turbulence model to be deficient for this flow. The model
is able to represent transition from laminar to turbulent
flow, and the results suggest that low turbulence levels
occur in this case. Computations carried out by Mirzaee
(1997) assuming steady laminar flow were in slightly less
good agreement with the data.)

Wilson et al (1997) also compared the results of the
unsteady computation described here with LDA data for
the axial distribution of radial velocity at two radial
locations. The computed time−averaged distributions
were in reasonably good agreement with the data,
however the large standard deviation about the computed
mean value (as suggested by the results shown in Fig. 5)
was not confirmed by similar unsteadiness in the
experimental observations. Three−dimensional
computations may be required to capture more accurately
the behaviour of this flow.

Computations were also attempted for Reφ = 3.75 x 105

and G = 0.3, where experimental data were also available.
However, reliable results could not be obtained for grid
resolutions up to 144 x 176. Results were obtained at a
similar rotational Reynolds and a narrower gap ratio
G_=_0.05, for which sufficient resolution in the centre of
the cavity was possible without computation times
becoming excessive. The results of this calculation are
described below.

system (r−2 > 2.5 => r < 0.65 approx.): in the unsteady
computation, solid body rotation occurs in this region.
The symmetric recirculations obtained for the steady flow
computation are those shown in Fig. 1.

4 RESULTS FOR Reφ = 1.46 x 105 , G = 0.3

This case was selected for computation as it was the
lowest rotational Reynolds number for which
experimental velocity data were obtained in the study
reported by Gan et al (1996). For numerical stability, a
97_x_129 grid and non−dimensional time step
∆t_=_0.355_x_10−7 were required. The calculation time
for 200,000 time steps (to t*_=_56.s) was around 24 CPU
hours on a single processor of a Silicon Graphics Power
Challenge machine.

Unlike the case at Reφ = 104 described above, the
computation at Reφ = 1.46 x 105 gave rise to an unsteady
solution which was not periodic. Fig. 5 shows
instantaneous computed flowfields for this case for
t*_=_22.5 s and t* = 28.2 s, and the time−history of the
streamfunction extrema in this interval is shown in Fig. 6.

Fig. 5a shows a secondary flow structure based on a
system of two principal recirculations, similar to that
obtained for Reφ = 104 (Fig. 2) but with greater variation
of inward penetration with time. Fig. 5b shows contours
of non−dimenisonal tangential velocity, v, at the
corresponding times. The axial distribution of tangential
velocity is roughly uniform outside the thin boundary
layers on the discs, except close to the mid−plane where
high angular−momentum fluid is convected inwards from
the boundary layers meeting on the stationary casing.
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 Fig. 3 Streamfunction time−history:  Reφ = 104 , G = 0.3 
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et al (1989). In the present work, computations were
performed on a 64 x 128 nonuniform grid with a
non−dimensional time step∆t = 0.2 x 10−7 (for
convenience, b = 0.382 m was used as above, though this
did not match the value for the experiment).

Instantaneous computed streamlines, shown in Fig. 8a−c,
again show two principal recirculations, in the outer part
of the cavity, affecting the radial inflow between the
discs. The inflow was directed more toward the left or
right hand disc at different times, depending on the
relative size of the recirculating regions near the outer
casing. Fig. 9 shows the behaviour of the streamfunction
extrema with time for the entire computation (16.8 s,
requiring 150,000 time steps), and Fig. 10 shows the
time−averaged mid−plane tangential velocity distribution
in comparison with the measured data. There is solid body
rotation in the inner part of the system, extending to
around r = 0.8 for the computations. The measurements,
inferred from flow visualisations by Abrahamson et al
(1989) and digitised here from the results presented,
suggest further inward penetration of the recirculating
flow than was predicted, either in this unsteady
calculation or in a steady turbulent computation carried
out for this case by Mirzaee (1997). As for the case
described above, three−dimensional calculations are
required to identify the possible restrictiveness of the
axisymmetric assumption, and the importance of the
vortical structures observed and secribed by Abrahamson
et al on the development of the flow.

6 CONCLUSIONS AND FUTURE WORK

Axisymmetric computations have been carried out for
unsteady flow in a rotating cavity with a stationary outer
casing, for rotational Reynolds numbers between 104 and
4.5 x 105. Reasonable agreement has been obtained
between time−averaged results and experimental data for
tangential velocity distributions, which follow a Rankine
vortex structure. Three dimensional computations are
required to confirm the unsteady behaviour of the

5 RESULTS FOR Reφ = 4.5 x 105 , G = 0.05
_

This case was studied experimentally by Abrahamson
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 Fig. 6 Streamfunction time−history: 
Reφ = 1.46 x 105 , G = 0.3 

Fig. 7 Time−averaged tangential velocity distribution and
comparison with experimental data: Reφ = 1.46 x 105 , G = 0.3
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Fig. 5 Instantaneous computed flowfields:
Reφ = 1.46 x 105 , G = 0.3



Φ re−scaled streamfunction (ψ = rΦ )
ω vorticity ( ω = ∂u/∂z − ∂w/∂r )
Ω angular speed of discs

superscripts

* dimensional value ( see equation (3) )
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NOMENCLATURE

a, b inner, outer radius of disc
G gap ratio ( = s/b)
k turbulent kinetic energy
r , φ , z radial, tangential, and axial coordinates
Reφ rotational Reynolds number ( =ρΩb2/µ )
s axial gap between discs
S standard deviation
t time
u , w radial, axial velocity
v tangential velocity in a rotating frame
Vφ tangential velocity in the stationary frame
∇2 Laplace operator ( = (1/r)∂(r∂/∂r)/∂r + ∂2/∂z2 )
ψ streamfunction (u,w) = ( (1/r)∂ψ/∂z , −(1/r)∂ψ/∂r )
∆t non−dimensional solution time step ( =ν∆t*/b2 )
ε turbulent energy dissipation rate
ν kinematic viscosity (for air,ν = 1.84 x 10−5 m2/s)

a) t* = 5.6 s b) t* = 11.2 s c) t* = 16.8 s
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 Fig. 9 Streamfunction time−history:  Reφ = 4.5 x 105 , G = 0.05  
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