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Abstract Concerns the laminar flows from a permeable heated surface which arise in fluids due
to the interaction of the force of gravity and density differences caused by the simultaneous
diffusion of thermal energy and of chemical species. Species concentration levels in air are assumed
to be small in many processes in the atmosphere. Under the usual Boussinesque approximations, a
set of non-similar equations for combined buoyancy effects and the permeability of the surface are
obtained. The resulting equations have been integrated by four distinct methods: perturbation
method for small transpiration rate; asymptotic solutions for large transpiration rate; Keller-box
methods; and local non-similarity method for any transpiration rate. Effects of various practical
values of the Schmidt number, of the multiple buoyancy parameter and that of the transpiration
rate of fluid through the surface on the local skin-friction, the local Nusselt number and the local
Sherwood number are shown graphically as well as in tabular form.

Nomenclature
C = concentration in the boundary layer
C1 = ambient concentration
Cfx = local skin-friction
D = molecular diffusivity of the species

concentration
g = gravitational acceleration
Grx = modified Grashof number
Grx,C = Grashof number for concentration

diffusion
Grx,T = Grashof number for thermal

diffusion
n = temperature or concentration

gradient (equation (5))
N = N = Grx,C /Grx,T

Nux = local Nusselt number
Pr = Prandtl number
Sc = Schmidt number
Shx = local Sherwood number
T = temperature of the fluid
T1 = free stream temperature

u = axial velocity component
v = velocity component normal to u
w = w = N /(1 + N)
V = transpiration velocity
x = axial coordinate
y = coordinate normal to x

Greek letters
� = thermal diffusivity
�T = volumetric expansion coefficient for

temperature
�C = volumetric expansion coefficient for

concentration
� = dimensionless concentration function
 = stream function
� = dimensionless temperature function
� = kinematic viscosity
� = dynamic viscosity
� = transpiration parameter
� = pseudo similarity variable

The current issue and full text archive of this journal is available at
http://www.emerald-library.com
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Introduction
The importance of suction and blowing in controlling the boundary layer
thickness and the rate of heat transfer has motivated many researchers to
investigate its effects on forced and free convection flows. Eichhorn (1960)
considered power law variations in the plate temperature and transpiration
velocity and gave similarity solutions of the problem. Sparrow and Cess (1961)
discussed the case of constant plate temperature and transpiration velocity and
obtained series expansions for temperature and velocity distributions in
powers of x1/2, where x is the distance in the stream-wise direction measured
from the leading edge. Later, Merkin (1972; 1975) and Perikh et al. (1971)
presented numerical solutions for free convection heat transfer with blowing
along an isothermal vertical flat plate. Hartnett and Eckert (1975) and Sparrow
and Starr (1966) reported the characteristics of heat transfer and skin-friction
for pure forced convection with blowing; the former dealt with a non-similar
case. Locally non-similar solutions for convection flow with arbitrary
transpiration velocity were obtained by Kao (1975; 1976), applying GoÈrtler-
Meksin transformations. Free convection flow along a vertical plate with
arbitrary blowing and wall temperature has also been investigated by
Vedhanayagam et al. (1980). Lin and Yu (1988) investigated the free convection
flow over a horizontal plate, considering temperature and transpiration rates
which both followed power-law variations.

Flows arising from differences in concentration or material constitution,
alone or in conjunction with temperature effects, have also received much
attention by researchers, as these types of flows are of great practical
importance. Clearly atmospheric flows, at all scales, are driven appreciably by
both temperature and water concentration differences. Also, flows in bodies of
water are driven through equally important effects of temperature, of
concentration of dissolved materials, and of suspended particulate matter.
Much information on simultaneous heat and mass transfer in laminar free
convection boundary layer flows over plates can be found in the monograph by
Gebhart et al. (1988) and in the papers by Khair and Bejan (1985), Lin and Yu
(1995, 1997) and Mongruel et al. (1996).

Simultaneous heat and mass transfer in buoyancy-induced laminar boundary
layer flow along a vertical plate was studied by Lin and Yu (1995) for any ratio of
the solutal buoyancy force to the thermal buoyancy force by using a
transformation. Tsuruno and Iguchi (1980) were the first to predict the effect of
uniform blowing on combined forced and free convection heat transfer along a
vertical isothermal plate, using a method similar to that of Terill (1960) and
paying special attention to clarification of the limit between the combined
convection and the effectively pure (either forced and free) convection region of
flow. Hossain (1992) investigated the effect of uniform transpiration rate on the
heat and mass transfer characteristics in mixed convection flow of a viscous
incompressible fluid along a vertical permeable plate, under the combined effects
of thermal and mass diffusion and subject to uniform wall temperature and
species concentration. He considered the transpiration parameter given by
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V0 = (V/U0)Re
1=2
x /�, where � is the mixed convection parameter representing the

thermal buoyancy effect, U0 is the free stream velocity and V is the transpiration
at the plate. Recently, Hossain et al. (1999) investigated the problem of combined
heat and mass transfer above a near-horizontal surface in a porous medium. The
conjugate effect of heat and mass transfer in natural convection flow from a
vertical wavy surface has been investigated by Hossain and Rees (1999).

The problem considered here is that of a natural convection boundary layer
flow, influenced by the combined buoyancy forces from mass and thermal
diffusion from a permeable vertical flat surface with non-uniform surface
temperature and non-uniform surface species concentration, but with a uniform
rate of suction of fluid through the permeable surface. The transformed
boundary layer equations are solved numerically near to and far from the
leading edge, using extended series solutions and asymptotic series solutions.
Solutions for intermediate locations are obtained using the Keller-box
technique (Keller, 1978) as well as by the local non-similarity method developed
by Minkowycz and Sparrow (1978). In this investigation, consideration is given
to the situation where the buoyancy forces have aiding effects, for various
possible combinations of the buoyancy ratio parameter w, temperature and
concentration gradient n, and Schmidt number, Sc, for fixed Prandtl number
Pr = 0.72 against �, the stream-wise distribution of suction of fluid through the
surface. The results illustrate the different behavior that occurs when these
parameters are varied.

Formulation of the problem
A two-dimensional steady free convective flow of a viscous incompressible
fluid along a permeable vertical flat plate in the presence of soluble species is
considered. The coordinate system and the flow configuration are shown in
Figure 1.

Figure 1.
Physical configuration
and coordinate system
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Under the usual Boussinesq approximation the flow, the heat and mass
transfer processes are governed by the following equations:
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where u and v are the x- and y- components of the velocity field, respectively, g
is the acceleration due to gravity, �T and �C are the volumetric expansion
coefficients for temperature and concentration, respectively, � is the thermal
diffusivity and D is the molecular diffusivity of the species concentration.
Further, � = T ± T1 where T and T1 are the temperature of the fluid and the
ambient temperature, and � = C ± C1 is the difference between species
concentration in the boundary layer and the ambient concentration. In equation
(5), V represents the suction velocity of fluid through the surface of the plate. In
this study we shall consider only the suction case (rather than blowing) and
therefore V is taken as positive throughout. �0 and �0 are respectively the
constant temperature and constant species concentration at the surface of the
plate. In this study we have neglected stratification, viscous dissipation and
other additional effects.

As suggested by Gebhart and Pera (1971a; 1971b), the cross-diffusion effects
(i.e. Soret and Dufour effects) are assumed to be negligible compared with the
direct effects, modeled by Fourier's law and Fick's law.

We now define the following group of transformations to reduce the above
equations to convenient form:

 �x; y� � �Gr1=4
x f ��; �� � �� �; ��x; y� � g��; �; � ;

��x; y� � h�; �; ��; � � y

x
Gr1=4

x ; � � Vx

�
Gr1=4

x

�6�

where  is the stream function, defined by:
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u � @ 
@y

and v � ÿ @ 
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�7�

which satisfies the continuity equation (1). Here f, g, h, are the non-dimensional
stream-function, temperature and concentration functions, respectively; � is the
pseudo-similarity variable and � is the transpiration parameter which may also
be interpreted as being a scaled stream-wise variable. We define:

Grx � g��T�w � �C�w�
�2

x3 � Grx;T � Grx;C �8�

as the modified local Grashof number, with Grx,T being the local Grashof
number for thermal diffusion and Grx,C the local Grashof number for mass
diffusion.

Now, substituting the above group of transformations given in equation (6)
into equations (2)-(5) one obtains the following non-similarity equations:
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In these equations, primes denote differentiation of the functions with respect
to �.

The boundary conditions appropriate to the above equations are:

f ��; 0� � f 0��; 0� � 0; g��; 0� � h��; 0� � 1

f 0��;1� � g��;1� � h��;1� � 0
�12�

In equation (9), w = N/(1 + N), where N = Grx,C /Grx,T and w measures the
relative importance of solutal and thermal diffusion in causing the density
changes which drive the flow. It is to be noted that N = 0 corresponds to no
species diffusion and infinity to no thermal diffusion.

Once we know the solutions of the above equations, the physical quantities
of interest are the skin-friction, the Nusselt number and the Sherwood number
which may be calculated from:

CfxGr 3=4
x � f 00��; 0�; NuxGrÿ1=4

x � ÿg0��; 0�; ShxGrÿ1=4
x � ÿh0��; 0� �13�
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For an impermeable plate (i.e. with � = 0), the set of similarity equations (9)-(12)
take the form of the equations investigated by Gebhart and Pera (1971a; 1971b),
by simply converting w to N. Solutions obtained by the aforementioned authors
for the skin-friction, the Nusselt number or Sherwood number may be
reproduced simply by dividing or multiplying the present values by the
factor

���
2
p

respectively.
The purpose of the calculations given here is to assess the effects of the

parameters Sc, w or n and � upon the nature of the flow and transport. Results
are limited to the case of Prandtl number Pr = 0.72, representing air at 2008C at
1 atmosphere. The effect of different Prandtl number, Pr, has already been
discussed by Gebhart and Pera (1971a) for the flow past an impermeable plate.

Solution methodologies
In the present investigation we shall integrate the equations (9)-(12) for small
and large values of � by the perturbation method, and for all � values by the
implicit finite difference method of Keller (1978) as well as the local non-
similarity method of Minkowycz and Sparrow (1978).

Extended series solutions (ESS) for small �
Near the leading edge, or equivalently for small �, we expand the functions f, g
and h in powers of � as given below:

f ��; �� �
X1
i�0

�ifi���; g��; �� �
X1
i�0

�igi���; h��; �� �
X1
i�0

�ihi��� �14�

On substituting these into equations (9)-(12) and equating the terms of like
powers of � to zero, the leading order equations are obtained as follows:

f 0000 �
n� 3

4
f0f
00
0 ÿ

n� 1

2
f 020 � �1ÿ w�g0 � wh0 � 0 �15�

1

Pr
g000 �

n� 3

4
f0g
0
0 � 0 �16�

1

Sc
h000 �

n� 3

4
f0h
0
0 � 0 �17�

and the boundary conditions are:

f0 � f 00 � 0; g0 � 1; h0 � 1 at � � 0

f 00 ! 0; g0 ! 0; h0 ! 0 as �!1 �18�

The higher order equations, for i� 1, are obtained as given below:



Natural
convection flow

795

f 000i � f 00iÿ1 � �1ÿ w�gi � whi �
Xi

r�0

" 
n� 1

2
� r�1ÿ n�

4

!
f 0r f
0
iÿr

ÿ
 

n� 3

4
� r�1ÿ n�

4

!
frf
00
iÿr

# �19�

1

Pr
g00i � g0iÿ1 �

Xi

r�0

r�1ÿ n�
4

grf
0
iÿr ÿ

n� 3

4
� r�1ÿ n�

4

� �
frg
0
iÿr

� �
�20�

1

Sc
h00i � h0iÿ1 �

Xi

r�0

r�1ÿ n�
4

hrf
0
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� �
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In the above f0, g0 and h0 are the well-known free convection similarity
solutions for flow around a constant temperature semi-infinite vertical plate,
and the functions fi, gi and hi (i = 1, 2, 3, . . .) are effectively first and higher order
corrections to the flow due to the effect of the transpiration of fluid through the
surface of the plate. Further, the equations (14)-(20) (for each i � 1) are linear,
but coupled, and may be found by pair-wise sequential solution. These pairs of
equations have been integrated using an implicit Runge-Kutta-Butcher
(Butcher, 1964) initial value solver together with the iteration scheme of
Nachtsheim and Swigert (1965). In the present investigation, solutions of 13
pairs of equations have been obtained.

The solution of the above equations enables the calculation of various flow
parameters near the leading edge, such as the skin-friction, Cfx, Nusselt
number, Nux, and the Sherwood number, Shx. Using the relations given in
equation (13), the quantities Cfx, Nux and Shx can now be calculated
respectively from the following expressions:

CfxGr ÿ3=4
x � f 00��; 0� � �1=4�f 000 � �f 001 � �2f 002 � . . .� �22�

NuxGr ÿ1=4
x � ÿg0��; 0� � ÿ�g00 � �g01 � �2g02 � . . .� �23�

ShxGrÿ1=4
x � ÿh0��; 0� � ÿ�h00 � �h01 � �2h02 � . . .� �24�

Asymptotic solutions (ASS) for large �
In this section attention is given to the solution of equations (9)-(12) when � is
large. The order of magnitude analysis of various terms in (9)-(11) shows that
the largest are f000 and �f00 in equation (9), g00 and �g0 in equation (10), and h00 and
�h0 in equation (11). In the respective equations both the terms have to be
balanced in magnitude and the only way to do this is to assume that � is small
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and hence derivatives are large. Given that g = O(1) and h = O(1) as � !1, it
is essential to find appropriate scaling for f and �. On balancing the f000, g, h and
�f00 term in equation (9), it is found that � = O(�ÿ1) and f = O(�ÿ3) as � !1.
Therefore, the following transformations may be introduced:

f � � 3f
*�&; ��; � � ���; g � �g��; ��; h � �h��; �� �25�

Equations (9)-(12) together with the transformations given in equation (25) then
become:

�f 000 � �f 00 � �1ÿ w��g � w�h� n�ÿ4�f�f
00ÿn�ÿ4�f 02

� 1ÿ n

4
�ÿ3 �f 0

@�f 0

@�
ÿ �f 00

@�f
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� �
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4
�ÿ3 f 0

* @h
*
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* @f
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For sufficiently large � we expand the functions in powers of �ÿ4, considering
the terms up to O(�ÿ4). Equations for zeroth order then take the form:

�f 0000 � �f 000 � �1ÿ w��g0 � w�h0 � 0 �29�

1

Pr
�g000 � �g00 � 0 �30�

1

Sc
�h000 � �h00 � 0 �31�

These equations satisfy the following boundary conditions:

�f �0� � �f 0�0� � 0; �g�0� � �h�0� � 1

�f 0�1� � �g�1� � �h�1� � 0
�32�

The equations for the order of �ÿ4 are:

�f 0001 � �f0
�f 000 ÿ �f 020 � �f 001 � �1ÿ w��g1 � w�h1 � 0 �33�

1

Pr
�g001 � �g01 � n�f0

�g00 � 0 �34�
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1

Sc
�h001 � �h01 � n�f0

�h00 � 0 �35�

�f1 � �f 01 � 0; �g1 � �h1 � 0 at � � 0

�f 01 ! 0; �g1 ! 0; �h1 ! 0 as �!1 �36�

The solutions of the equations (29)-(36) enable us to calculate various flow
parameters. The skin friction, CfxGrx

±3/4, the rate of heat transfer in terms of the
local Nusselt number NuxGrx

±1/4 and the rate of mass transfer in terms of the
local Sherwood number ShxGrx

±1/4 at the surface are as given below:

CfxGrÿ3=4
x � �ÿ1 1ÿ w

Pr
� w

Sc

� �
� &ÿ5

"
nA9 ÿ 1

2 Pr
f�B1 ÿ nA5 � E3�

� 2�nA6 ÿ E1�g ÿ 1

2Sc
f�B3 ÿ nA7 � F3� � 2�nA8 ÿ F1�g

ÿ 3

2
�B5 ÿ nA1� ÿ �nA2 ÿ B2 ÿ E2�

Pr�1
ÿ �nA3 ÿ B4 ÿ F2�

Sc� 1

ÿ �E4 ÿ nA4 � F4�
Pr�Sc

#
� . . .

�37�

NuxGrÿ1=4
x � � Pr��ÿ3n

"
�1ÿ w��1� Prÿ2 Pr2�

2 Pr�1ÿ Pr2�

� w Pr2�1� PrÿPr Scÿ Sc2�
Sc2�1ÿ Sc��1� Pr��Pr�Sc�

#
� . . .

�38�

ShxGr 1=4
x � �Sc� �ÿ3n

"
w�1� Scÿ 2Sc2�

2Sc�1ÿ Sc2� �

Sc2fw�1� Sc� ÿ �1ÿ w�Pr�Pr�Sc�g
Pr2�1ÿ Pr��Pr�Sc��1� Sc�

#
� . . .

�39�

where:

A1 � �1ÿ w�2
Pr2�1ÿ Pr�2 �

2w�1ÿ w�
Pr Sc�1ÿ Pr��1ÿ Sc� �

w2

Sc2�1ÿ Sc�2

A2 � �1ÿ w�2�1� Pr2�
Pr3�1ÿ Pr�2 � w�1ÿ w�

Sc�1ÿ Pr��1ÿ Sc� �
w�1ÿ w�

Pr2 Sc�1ÿ Pr��1ÿ Sc�
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A3 � w�1ÿ w�
Pr Sc2�1ÿ Pr��1ÿ Sc� �

w�1ÿ w�
Pr�1ÿ Pr��1ÿ Sc� �

w2�1� Sc2�
Sc3�1ÿ Sc�2

A4 � w�1ÿ w�
Sc2�1ÿ Pr��1ÿ Sc� �

w�1ÿ w�
Pr2�1ÿ Pr��1ÿ Sc� ; A5 � �1ÿ w�2

Pr2�1ÿ Pr�2

A6 � �1ÿ w�2
Pr2�1ÿ Pr� �

�1ÿ w�w
Sc2�1ÿ Pr� ; A7 � w2

Sc2�1ÿ Sc�2

A8 � w�1ÿ w�
Pr2�1ÿ Pr� �

w2

Sc2�1ÿ Sc�

A9 � �1ÿ w�2
Pr3�1ÿ Pr� �

�1ÿ w�w
Pr Sc2�1ÿ Pr� �

w�1ÿ w�
Pr2 Sc�1ÿ Sc� �

w2

Sc3�1ÿ Sc�

B1 � �1ÿ w�2
Pr2�1ÿ Pr�2 ; B2 � 2�1ÿ w�2

Pr2�1ÿ Pr�2 ; B3 � w2

Sc2�1ÿ Sc�2

B4 � 2w2

Sc2�1ÿ Sc�2 ; B5 � �1ÿ w�2
Pr2�1ÿ Pr�2 �

w2

Sc2�1ÿ Sc�2

E1 � n�1ÿ w�2
1ÿ Pr

1

2 Pr2
ÿ Pr

1� Pr

� �
� nw�1ÿ w�Pr2

Sc�1ÿ Sc�
1

Sc2�Pr�Sc� ÿ
1

Pr�1

� �

E2 � n�1ÿ w�2 Pr

�1� Pr��1ÿ Pr� �
nw�1ÿ w�Pr2

Sc�1ÿ Sc��1� Pr� ; E3 � n�1ÿ w�2
2 Pr2�1ÿ Pr�

E4 � nw�1ÿ w�Pr2

Sc3�1ÿ Sc��Pr�Sc�

F1 � nw2

1ÿ Sc

1

2Sc2
ÿ Sc

1� Sc

� �
� nw�1ÿ w�Sc2

Pr�1ÿ Pr�
1

Pr2�Pr�Sc� ÿ
1

Sc� 1

� �

F2 � nw2Sc

�1� Sc��1ÿ Sc� �
nw�1ÿ w�Sc2

Pr�1ÿ Pr��1� Sc� ; F3 � nw2

2Sc2�1ÿ Sc�
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F4 � nw2Sc2

Pr3�1ÿ Pr��Pr�Sc�
From the above solutions it can be seen that for large � the value of the local
skin-friction, CfxGrx

±3/4 � [(1 ± w)/Pr + w/Sc]/�, the local Nusselt number,
NuxGrx

±1/4 � Pr� and the local Sherwood number ShxGrx
±1/4 � Sc�, which

shows that the value of all these quantities are independent of the surface
temperature and the surface species concentration gradient n.

These asymptotic solutions obtained for different values of the pertinent
parameters have been compared with finite difference solutions, discussed in
Table I and Figures 2 and 3.

Finite difference solutions (FDS) for entire � regime
For entire � regime we now proceed to integrate the locally non-similar partial
differential equations (9)-(11) subject to the boundary conditions (12) using the
implicit finite difference method. The partial differential equations (9)-(11) are
first converted into a system of first order equations with dependent variables
u(�,�), v(�,�), p(�,�) and q(�,�) as follows:

Nux=Gr
1=4
x � ÿg0��; 0� Shx=Gr

1=4
x � ÿh0��; 0�

� ESS and ASS FDS LNS ESS and ASS FDS LNS

n = 0.0
0.0 0.3485 s 0.3485 0.3488 0.4031 s 0.4031 0.4033
0.2 0.4198 s 0.4264 0.4187 0.5028 s 0.5125 0.5011
0.4 0.4988 s 0.5078 0.4977 0.6152 s 0.6282 0.6128
0.6 0.5857 s 0.5961 0.5845 0.7399 s 0.7550 0.7364
0.8 0.6804 s 0.6920 0.6783 0.8761 s 0.8929 0.8725
1.0 0.7827 s 0.7954 0.7801 1.0230 s 1.0411 1.0191
2.0 1.4031 a 1.4180 1.3977 1.8835 a 1.9034 1.8777
4.0 2.8000 a 2.8155 2.8000 3.7600 a 3.7806 3.7599
6.0 4.2000 a 4.2142 4.1999 5.6400 a 5.6589 5.6399
8.0 5.6000 a 5.6128 5.5859 7.5200 a 7.5370 7.5011

10.0 7.0000 a 7.0116 6.9719 9.4000 a 9.4153 9.3623

n = 0.5
0.0 0.35711 s 0.3571 0.3572 0.4132 s 0.4132 0.4134
0.2 0.4318 s 0.4375 0.4318 0.5177 s 0.5260 0.5175
0.4 0.5146 s 0.5228 0.5143 0.6347 s 0.6468 0.6343
0.6 0.6050 s 0.6149 0.6049 0.7636 s 0.7779 0.7633
0.8 0.7030 s 0.7140 0.7036 0.9032 s 0.9191 0.9026
1.0 0.8081 s 0.8220 0.8085 1.0525 s 1.0697 1.0522
2.0 1.4109 a 1.4380 1.4227 1.8984 a 1.9237 1.9028
4.0 2.8694 a 2.8179 2.8029 3.7581 a 3.7830 3.7629
6.0 4.3165 a 4.2146 4.1868 5.6394 a 5.6593 5.6220
8.0 5.7585 a 5.6127 5.5863 7.5197 a 7.5371 7.5015

10.0 7.1992 a 7.0112 7.0002 9.3998 a 9.4152 9.3601

Notes: Here s stands for series solutions and a stands for asymptotic solutions

Table I.
Comparison of the

solutions obtained by
different methods for

local heat transfer and
mass transfer against

the transpiration
parameter � for

different n for
Pr = 0.72, Sc = 0.94

and w = 1/3
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f 0 � u �40�

u0 � v �41�

g0 � p �42�

h0 � q �43�
Equations (9)-(12) then take the forms:

v0 � p1fvÿ p2u
2 � �v� p4g � p5h � p3� u

@u

@�
ÿ v

@f

@�

� �
�44�

Figure 2.
Values of: (a) local mass
transfer; (b) local heat
transfer; and (c) local
skin-friction against �
for Pr = 0.72, w = 0.5,
n = 0.5 for different
Schmidt number, i.e.
Sc =1.60, 0.94, 0.60
and 0.22
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1

Pr
p0 � p1fv� �p � p3� u

@g

@�
ÿ p

@f

@�

� �
�45�

1

Sc
q0 � p1fv� �q � p3� u

@h

@�
ÿ q

@f

@�

� �
�46�

f � u � 0; g � h � 1 at � � 0

u � 0; g � h � 0 as �!1 �47�

where

p1 � n� 3

4
; p2 � n� 1

4
; p3 � 1ÿ n

4
; p4 � 1ÿ w; p5 � w �48�

Figure 3.
Values of: (a) local mass

transfer; (b) local heat
transfer; and (c) local

skin-friction against �
for Pr = 0.72, Sc = 0.22

and n = 0.5 for
different w



EC
17,7

802

We now consider the net rectangle on the (�,�) plane and denote the net points
by:

�0 � 0; � i � � iÿ1 � ki i � 1; 2; . . . ;M �49�

�0 � 0; �j � �jÿ1 � lj j � 1; 2; . . . ; J ; �j � �1 �50�
Here i and j index points on the (�,�) plane, and ki and lj give the variable mesh
width.

We approximate the quantities (f, u, v, g, p, h, q) at points (� l ,�j) of the net by
(f i

j , ui
j, vi

j, gi
j , pi

j, hi
j, qi

j) which we call the net function. The notation mi
j is also

employed for any net function quantities midway between the net points as
follows:

�iÿ1=2 � 1

2
�i � � iÿ1
ÿ � �51�

�jÿ1=2 � 1

2
�j � �jÿ1

ÿ � �52�

m
iÿ1=2
j � 1

2
mi

j �miÿ1
j

� �
�53�

mi
jÿ1=2 �

1

2
mi

j �mi
jÿ1

� �
�54�

We now write the difference equations that are to approximate equations (40)-
(43) by considering one mesh rectangle. We start by writing the finite difference
approximation to equations (40)-(43) using central difference quotients and
average about the mid point (� i,�jÿ1=2) to obtain:

f i
j ÿ f i

jÿ1

lj
� ui

jÿ1=2 �55�

ui
j ui

j 1

lj
� vi

j 1=2 �56�

gi
j ÿ gi

jÿ1

lj
� pi

jÿ1=2 �57�

hi
j ÿ hi

jÿ1

lj
� qi

jÿ1=2 �58�
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Similarly the equations (44)-(46) can be expressed in finite difference form,
by approximating the functions and their derivatives by central differences
about the midpoints (�iÿ1=2,�jÿ1=2), giving the following non-linear difference
equations:

hÿ1
j vi

j � vi
jÿ1

� �
� �1 fv� �ijÿ1=2ÿ�2 u2

ÿ �i

jÿ1=2
�� i

jÿ1=2v
i
jÿ1=2 � p4g

i
jÿ1=2

� p5h
i
jÿ1=2 � �0 viÿ1

jÿ1=2f
i
jÿ1=2 ÿ f iÿ1

jÿ1=2v
i
jÿ1=2 � Riÿ1

jÿ1=2

� � �59�

1

Pr
lÿ1
j pi

j ÿ pi
jÿ1

� �h i
� �1�fp�ijÿ1=2 � � i

jÿ1=2p
i
jÿ1=2 � �0

h
uiÿ1

jÿ1=2g
i
jÿ1=2

ÿ ui
jÿ1=2g

iÿ1
jÿ1=2 � pi

jÿ1=2f
iÿ1
jÿ1=2 ÿ piÿ1

jÿ1=2f
i
jÿ1=2

i
� Tiÿ1

jÿ1=2

�60�

1

Sc
lÿ1
j qi

j ÿ qi
jÿ1

� �h i
� �1 fq� �ijÿ1=2�� i

jÿ1=2q
i
jÿ1=2 � �0

h
uiÿ1

jÿ1=2h
i
jÿ1=2

ÿ ui
jÿ1=2h

iÿ1
jÿ1=2�qi

jÿ1=2f
iÿ1
jÿ1=2 ÿ qiÿ1

jÿ1=2f
i
jÿ1=2

i
� Xiÿ1

jÿ1=2

�61�

where:

Riÿ1
jÿ1=2 � ÿLiÿ1

jÿ1=2 � �0 fv� �iÿ1
jÿ1=2ÿ u2

ÿ �iÿ1

jÿ1=2

h i
�62�

Liÿ1
jÿ1=2 �

h
lÿ1
j �vj ÿ vjÿ1� � �1 fv� �jÿ1=2:ÿ �2 u2

ÿ �
jÿ1=2

� � i
jÿ1=2 vi

ÿ �
p4gjÿ1=2 � pshjÿ1=2

iiÿ1 �63�

Tiÿ1
jÿ1=2 � ÿMiÿ1

jÿ1=2 � �0 fp� �iÿ1
jÿ1=2ÿ ug� �iÿ1

jÿ1=2

h i
�64�

Miÿ1
jÿ1=2 �

1

Pr
lÿ1
j pj ÿ pjÿ1

ÿ �� p1 fp� �jÿ1=2��pjÿ1=2

� �iÿ1

�65�

Xiÿ1
jÿ1=2 � ÿYiÿ1

jÿ1=2 � �0 fq� �iÿ1
jÿ1=2ÿ uh� �iÿ1

jÿ1=2

h i
�66�

Yiÿ1
jÿ1=2 �

1

Sc
lÿ1
j qj ÿ qjÿ1

ÿ �� p1 fq� �jÿ1=2��qjÿ1=2

� �iÿ1

�67�
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�0 � p3k
ÿ1
i � iÿ1; �1 � pi

1 � �0; �2 � pi
2 � � �68�

The wall and the edge boundary conditions are:

f i
0 � 0; ui

0 � 0; gi
0 � 1; hi

0 � 1

ui
j � 0; gi

j � hi
j � 0

�69�

If we assume f iÿ1
j , uiÿ1

j , viÿ1
j , giÿ1

j , piÿ1
j , wiÿ1

j , qiÿ1
j to be known for 0 � j � J,

equations (59)-(61) are a system of 7J+7 nonlinear algebraic equations for 7J + 7
unknowns (f i

j , ui
j, vi

j, gi
j , pi

j, wi
j, qi

j), j = 1, 2, . . ., J. This non-linear system of
algebraic equations is linearized by means of Newton's method and solved in
a very efficient manner by using the Keller-box method (see Cebeci and
Bardshaw, 1984). For a given �,the iterative procedure was stopped to give the
final velocity, temperature and concentration distribution when the diference in
computing these functions in the next procedure becomes less than 10±5, i.e.
|�fk| � 10±6, where the superscript k denotes iteration number. For these
computations, a non-uniform grid in the � direction has been used, with �j =
sinh((j ± 1)/a), where j = 1, 2, 3, . . ., J. Here, J = 351 and a = 100 had been chosen in
order to obtain quick convergence and thus save computational time and space.
It should be mentioned that convergent solutions at every � stations had been
found within three iterations only. In the present integration scheme, values of �
are increased with the increament �� = 0.05 until the asymptotic values for the
skin-friction, heat transfer and mass transfer were reached for every variation of
the pertinent parameters, such as w, Sc and n, for Pr = 0.72.

Local non-similarity method (LNS)
The local non-similarity method was developed by Sparrow and Yu (1971) and
has been developed and applied by many investigators, for example
Minkowycz and Sparrow (1978) and Chen (1988) and Hossain (1992), to solve
various non-similar boundary layer problems. This method embodies two
essential features. First, the nonsimilar solution at any specific stream-wise
location is found (i.e each solution is locally autonomous). Second, the local
solutions are found from differential equations. These equations can be solved
numerically by well-established techniques, such as forward integration (e.g a
Runge-Kutta scheme) in conjunction with a shooting procedure to determine
the unknown boundary conditions at the wall. The method also allows some
degree of self-checking for accuracy of the numerical results.

In the local non-similarity method, all the terms in the transformed
conservation equations are retained, with the � derivatives distinguised by the
introduction of the new functions f1 = @f/@�, g1 = @g/@� and h1 = @h/@�. These
represent three additional unknown functions, therefore it is necessary to
deduce three further equations to determine f1, g1 and h1. This is accomplished
by creating subsidiary equations by differentiation of the transformed
conservation equations and boundary conditions (i.e. f, g, h system of
equations) with respect to �. The subsidiary equations for f1, g1 and h1 contain
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terms �f1/��, �g1/��, �h1/��, and their � derivatives. If these terms are neglected,
the system of equations for f, g, h, f1, g1 and h1 reduces to a system of ordinary
differential equations that provides locally autonomous solutions in the stream-
wise direction. This form of the local non-similarity method is referred to as the
second level of truncation, because approximations are made by dropping terms
in the second level equation (the f, g, h equations being the first level equations).

To carry the local non-similarity method to the third level of truncation, all
terms are retained in both the f, g, h and the f1, g1, h1 equations. The �
derivatives appearing in the f1, g1, h1 are now distinguised by introducing f2 =
@f1/@� = @2f/@�2, g2 = @g1/@� = @2g/@�2, h2 = @h1/@� = @2h/@�2. The f1, g1, h1

and their boundary conditions are then differentiated with respect to � to obtain
three additional equations for the functions f2(�,�), g2(�,�) and h2(�,�). In these
new equations, terms involving @f2/@�, @g2/@� and @h2/@� and their �
derivatives are neglected, so that once again a locally autonomous system of
ordinary differential equations for f, g, h, f1, g1, h1, f2, g2 and h2 can be derived.

The procedure as described above in the formulation of the local non-
similarity method can result in a large number of ordinary differential
equations that may require simultaneous solution. For example, at the third
level of truncation there will be nine equations involving f, g, h, f1, g1, h1, f2, g2

and h2. It is expected that the accuracy of the local non-similarity method
results will depend upon the truncation level. Below we give only the equations
valid up to the third level of truncation:

f 000� n� 3

4
ff 00 ÿ n� 1

2
f 02 � �f 00 � �1ÿ w�g � wh

� 1ÿ n

4
� f 0f 01 ÿ f 00f1

� � �70�

1

Pr
g00 � n� 3

4
fg0 � �g0 � 1ÿ n

4
� f 0g1 ÿ g0f1� � �71�

1

Sc
h00 � n� 3

4
fh0 � �h � 1ÿ n

4
� f 0h1 ÿ h0f1� � �72�

f 0001 �
n� 3

4
ff 001 ÿ

3n� 5

4
f 0f 01 � f1f

00 � f 00 � �f 001 � �1ÿ w�g1 � wh1

� 1ÿ n

4
� f 021 � ff 02 ÿ f1f

00
1 ÿ f 00f2

� � �73�

1

Pr
g001� f1g

0 � n� 3

4
fg01 ÿ

1ÿ n

4
f 0g1 � g0 � �g01

� 1ÿ n

4
� f 0g2 � g1f

0
1 g01 g0f2

� � �74�
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1

Sc
h001� f1h

0 � n� 3

4
fh01 ÿ

1ÿ n

4
f 0h1 � h0 � �h01

� 1ÿ n

4
� f 0h2 � h1f

0
1 ÿ h01 ÿ h0f2

� � �75�

f 0002 �
n� 3

4
ff 002

3n� 5

4
f 0f 02 ÿ

1ÿ n

2
ff 02 �

5ÿ n

4
f2f
00 � 2f1f

00
1 ÿ

n� 3

2
f 021

� 2f 001 � �f 002 � �1ÿ w�g2 � wh2

� 1ÿ n

4
� 2f 01f

0
2 � f1f

0
2 ÿ f1f

00
2 ÿ 2f 001 f2

� � �76�

1

Pr
g002�

5ÿ n

4
f2g
0 � 2f1g

0
1 �

n� 3

4
fg02 ÿ

1ÿ n

2
f 01g1 ÿ

1ÿ n

2
f 0g2

� 2g01 � �g02 �
1ÿ n

4
2f 01g2 � g1f

0
2 ÿ g02f1 ÿ 2g01f2

� � �77�

1

Sc
h002�

5ÿ n

4
f2h
0 � 2f1h

0
1 �

n� 3

4
fh02 ÿ

1ÿ n

2
f 01h1 ÿ

1ÿ n

2
f 0h2

� 2h01 � �h02 �
1ÿ n

4
� 2f 01h2 � h1f

0
2 ÿ h02f1 ÿ 2h01f2

� � �78�

f ��; 0� � f 0��; 0� � g��; 0� � h��; 0� � 1

f1��; 0� � f 01��; 0� � f2��:0� � f 02��; 0� � 0

g1��; 0� � g2��; 0� � h1��; 0� � h2��; 0� � 0

f 0��;1� � 1; f 01��;1� � f 02��;1� � 0

g1��;1� � g2��;1� � h1��;1� � h2��;1� � 0

�79�

At the third level of truncation, equations (78)-(80), the terms with @f2/@�, @g2/@�,
and @h2/@� have been neglected. It can be seen that equations (72)-(81) form a
coupled non-linear system of ordinary differential equations taking � as a parameter.
Equations (72)-(81) are solved numerically, employing here the Nachtsheim-Swigert
iteration technique. Here, solutions of these equations are obtained, up to the third
level of truncation, for different values of n and Sc, for Prandtl number equal to 0.72
and with � values starting from 0.0 to 10.0. Results for surface heat transfer and
mass transfer are given in Table I. Comparison between the non-similarity solutions
and the finite difference solutions shows that consideration of the above equations
up to the third level of truncation is sufficient for the present case.

Results and discussion
Natural convection flows driven by a combination of thermal and solutal
diffusion effects from a permeable surface are very important in many
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technological applications. The foregoing formulations may be used to analyze
the interaction of the various contributions to buoyancy forces in addition to
surface mass flux. These contributions may aid or hinder each other and be of
different magnitudes, as characterized by the value of N, representing the ratio
of heat and species concentration gradients. When the thermal and solutal
effects are opposed, the value of N is negative in order to ensure that the flow is
in the positive x direction. For example, Gebhart and Pera (1971a) used Pr = Sc
for which N = ±1 (i.e. w = 1). It is to be noted that N = 0 corresponds to no
species diffusion and infinity to no thermal diffusion. Positive values of N
correspond to both effects combining to drive the flow, whereas negative
values correspond to opposing effects from the two diffusing components. We
further see that when N = 0, w = 0 and as N!1, , w! 1. The physical extent
(�) of the two effects in the convection region is governed by the values of the
Prandtl number and Schmidt numbers and by their relative magnitudes. It may
be noted that the present problem with w = 0 (i.e. N = 0) has been discussed by
Merkin (1975).

For steady flows, other authors have discussed at length the effects of
varying the parameters Pr, Sc, w on the nature of the fluid flow and heat and
mass transport, but in the absence of the effect of transpiration. Here we restrict
our discussion to the aiding (or favorable) case only for a fluid with Prandtl
number Pr = 0.72, which represents air at 2008C at 1 atmosphere. Diffusing
chemical species of most common interest in air have Schmidt numbers in the
range from 0.1 to 10.0; the present investigation considers a range from 0.2 to
2.0. These values of Sc are chosen to represent the presence of the species
Benzene (Sc = 1.60), carbon dioxide (Sc = 0.94), water vapor (Sc = 0.60) and
hydrogen (Sc = 0.22). The conjugate buoyancy parameter w equals 0.0, 0.5 and
1.0. Values of the parameter n are chosen to be 0.0, 0.5 and 1.0.

Computed values of the local heat flux, Nux/Gr
1=4
x and mass flux, Shx/Gr

1=4
x ,

at the surface of the plate, obtained by the methods mentioned above for
Sc = 0.94 with w = 1/3 (that corresponds to N = 0.5) and n = 0.0, 0.5, 1.0 are
shown in Table I against values of � in [0, 10]. The comparison shows that the
solutions for small and large � are in excellent agreement with those of the
finite difference solutions as well as the local non-similarity solutions. From
this table it is also observed that an increase in the value of the temperature and
concentration gradient n leads to a small increase in the value of both the local
heat and mass flux. But for the higher values of � both the heat and mass
transfer start to decrease slowly. In this computation we have taken w = 1/3
which gives N = 0.5 in order to make a comparison with the results obtained by
Gebhart and Pera (1971a). For n = 0.5 and w = 1/3 Gebhart and Pera (1971a)
gave 0.66378, 0.49292, 0.57019 as the results for Cfx/Gr

3=4
x , Nux/Gr

1=4
x , and

Shx/Gr
1=4
x , respectively. From the present computations, the corresponding

values of the above physical quantities are found to be 0.66874, 0.49294 and
0.57018. Undoubtedly it may be concluded that the present results are in
excellent agreement with those of the earlier investigators. It should further be
mentioned that the present results, obtained by the perturbation method for
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small �, the asymptotic solutions for large � and the finite difference solutions
for all �, taking Pr =1 and w = 0 agree very well with those of Merkin (1975) (for
the sake of brevity the comparison is not shown here).

The effect of varying Schmidt number, Sc, on the local Sherwood number,
Shx/Gr

1=4
x , the local Nusselt number, Nux/Gr

1=4
x , and the local skin-friction, Cfx/Gr

3=4
x

are depicted in Figure 2(a)-(c), respectively, for the case Pr = 0.72 and n = 0.5. In
these figures the dotted curves and the broken curves represent the solutions
obtained, respectively, for the low and high values of the local transpiration
parameter, �. It can be seen from Figure 2(a) that there is an increase in
Shx/Gr

1=4
x due to the increase in the value of the Schmidt number, Sc. This effect

is most significant at large values of the surface transpiration parameter, �.
From Figure 2(b) it can be seen that the value of Nux/Gr

1=4
x increases very

slowly with the increase of Sc. Thus, we may consider that the effect of foreign
species on the surface heat transfer rate is negligible. From Figure 2(c) we see
that the value of the local skin-friction, Cfx/Gr

3=4
x , increases as the value of the

Schmidt number, Sc, decreases. Here we also observe that for each value of Sc,
there attains a local maxima of Cfx/Gr

3=4
x near the leading edge and then its

value decreases to the asymptotic value as � increases. The numerical values
show that, for Sc = 1.60 the maximum value of the local skin-friction is just at
the leading edge, i.e. the maximum value is 0.8482 at � = 0.0. The maximum
value of skin-friction for Sc = 0.94 is 0.8973 and occurs at � = 0.35 (at the
vicinity of the leading edge). For Sc = 0.60, the maximum value is 0.9521 at � =
0.5. Finally, the maximum value of skin-friction for Sc = 0.22 is found to be
1.1360 at � = 1.30.

Effects of the combined buoyancy parameter, w, on Shx/Gr
1=4
x , Nux/Gr

1=4
x ,

and Cfx/Gr
3=4
x , taking n = 0.5 and Sc = 0.22 are depicted, respectively, in Figure

3(a)-(c). From these figures we again see excellent agreement between the
results obtained for low and high values of the local transpiration parameter, �,
with those obtained by the finite difference method. It can be seen from Figure
3(a) that, near the leading edge, the value of Shx/Gr

1=4
x , increases, owing to

increase in the value of the combined buoyancy parameter, w. On
the other hand, one can see, from Figure 3(b), that the increase in the value of
Nux/Gr

1=4
x , due to the increase of w, is very small. Figure 3(c) shows that an

increase in the value of the combined buoyancy parameter, w, leads to an
increase in the value Cfx/Gr

3=4
x . Figure 3(c) also shows that there exist local

maxima of skin-friction for different values of w. For w = 0.0 the maximum
value of Cfx/Gr

3=4
x is 0.9291 which occurs at � = 0.45. For w = 0.5 and 1.0 the

corresponding maxima exist at � = 1.30 and 1.86, respectively and the
corresponding maximum values are found to be 1.1383 and 1.4102, respectively.

Attention is now given to the effect of pertinent parameters on the
dimensionless velocity f0(�,�) (= xu/�Grx), the dimensionless temperature,
g(�,�) (= (T ± T1)/(Tw ± T1)), and the dimensionless concentration h(�,�) =
(C ± C1)/(Cw ± C1) distributions in the flow field, computed only by the finite
difference method. Values of the dimensionless velocity, temperature and
concentration distributions are shown graphically in Figure 4(a)-(c),
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respectively, against the pseudo-similarity variable � for values of the
transpiration parameter � = 0.0, 1.0, 2.5 and 5.0 while Pr = 0.72, w = 1/3 and
n = 0.0 for two values of Sc = 0.94 (representing the presence of CO2 as the
chemical species) and 0.22 (representing the presence of H2).

From Figure 4(a) it can be observed that the velocity profiles decrease with
the increase of transpiration parameter �. It can also be seen that at each value of
the transpiration parameter � there exist local maximum values of velocity in the
boundary layer region. These maximum values are found to be 0.538, 0.317,
0.091 and 0.020 at � = 1.37, 0.89, 0.45 and 0.24, respectively, while Sc = 0.94. For
Sc = 0.22 the velocity reaches to the maximum values 0.6149, 0.4422, 0.2151 and

Figure 4.
(a) Velocity profiles,

(b) temperature profiles
and (c) concentration
profiles against � for

different values of � for
Sc =0.94 and 0.22 for

Pr = 0.72, w = 0.33
and n = 0.0



EC
17,7

810

0.0555, respectively, at � = 1.44, 1.06, 0.64 and 0.33. For an eventual experimental
verification it is interesting to indicate the percentage decrease in the maximum
velocity. Thus when Sc = 0.94, the relative maximum values of the velocity
decrease by 41, 83 and 96 percent for � = 1.0, 2.5 and 5.0, respectively, obtained
with respect to � = 0.0. Due to the presence of H2 (i.e. for Sc = 0.22), the
corresponding percentage decrease in the maximum values of the velocity are
found to be 28, 65 and 90 percent, respectively, for � = 1.0, 2.5 and 5.0.

Now from Figure 4(b) and (c) we see that owing to increase of the value of the
transpiration parameter � both the temperature and concentration decrease.
With Sc = 0.94 and at � =1.51, the numerical values of temperature of the fluid
are obtained at � =0.0, 1.0, 2.5 and 5.0 as 0.49638, 0.27372, 0.07367 and 0.00411,
respectively. The corresponding values of the species concentration are
obtained as 0.43391, 0.19017, 0.03320 and 0.00071. As before, the calculated
values show that the temperature of the fluid decreases by 44.85, 79.11 and
99.17 percent, respectively, for � = 1.0, 2.5 and 5.0 relative to � = 0.0. The
corresponding decreases in the species concentration are by 56.17, 92.34 and
99.83 percent. For Sc = 0.22, corresponding decrease of the temperature and the
species concentration are 48.00, 84.65 and 99.01 percent and 14.16, 36.64 and
72.29 percent, respectively. Finally, from the Figure 4(a)-(c) it may be concluded
that, as the value of Schmidt number, Sc, decreases both the velocity and the
species concentration distribution in the boundary layer regime increase;
whereas, the temperature decreases. The momentum boundary layer and the
concentration boundary layer thickness increase, and the thermal boundary
layer thickness decreases, with decrease in the value of the Schmidt number.
We may further observe that increase of transpiration parameter � leads to
decrease in all the boundary layer thicknesses.

Conclusions
In this paper we have sought to determine how the presence of non-uniform
species concentration affects the natural convection boundary layer flow from a
non-uniformly heated permeable surface with uniform withdrawal (or suction)
of fluid. Solutions of the governing local non-similarity equations are obtained
by three distinct methodologies, namely, the extended series solution method
for lower values of �, the asymptotic solutions for higher values of �, the local
non-similarity method with third level of truncation and the finite difference
method for all � 2 [0, 1]. The presence of species concentration serves to
introduce two extra parameters into the problem, namely w and Sc. The
detailed effect of varying n and w are complicated and selected results have
been presented for a Prandtl number of 0.72, representing air at 208C and at 1
atmosphere with the presence of CO2 and H2 for which the values of the
Schmidt number are 0.60 and 0.22. Detailed numerical calculations have been
carried out and presented in terms of local Nusselt number, Sherwood number
and skin-friction. In general it is seen that the asymptotic solutions for small
and large values of the transpiration parameter are in excellent agreement with
the finite difference as well as the local similarity solutions.
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From the above investigations we may also draw the following conclusions:

. an increase in the value of Sc serves to increase the momentum
boundary layer thickness and to decrease the concentration and thermal
boundary layer thickness;

. the values of the local Nusselt number, Sherwood number and skin-
friction increase due to increase of the combined buoyancy parameter w;

. an increase in the value of the transpiration parameter, �, leads to
decrease in the momentum, thermal as well as species concentration
boundary layer thickness.
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