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Abstract

We present axisymmetric numerical simulation and modelling of the turbulent flow between corotating disks with a stationary

outer casing, the enclosed corotating disk pair configuration. This follows previous work on laminar flow for an identical geometry

defined by a gap ratio G ¼ 0:6 (¼ s=ðb� aÞ) and a=b ¼ 0:5, where a and b are the inner and outer radii, and s is the inter-disk
distance [J. Fluid Mech. 434 (2001) 39]. The rotation rate considered in the present case is equivalent to Re ¼ 1:46� 105, where Re
(¼ Xb2=m) is the rotational Reynolds number. This corresponds to a value at which mean flow measurements have been obtained for
the same configuration [Flow in a rotating cavity with a peripheral inlet and outlet of cooling air, in: ASME Int. Gas Turbine and

Aeroengine Cong., paper 96-GT-309, Birmingham]. In computed laminar regimes, it was found previously for this aspect ratio that

the flow structure is first characterized by a shift-and-reflect symmetry at lower values of Re before bifurcating to symmetry breaking
at higher rotation rates. For the rotation rate under consideration here, the flow is turbulent and shows an unsteady behaviour in the

mean, characterized by flapping of the flow between the two disks, inducing symmetry breaking with respect to the inter-disk

midplane. Similarities are observed between the centripetal flow coming from the stationary casing and an impinging jet in a cavity.

Comparisons are made between the computed results from the axisymmetric numerical simulation (ANS), a Reynolds Stress

Transport Model (RSM) and the available experimental data. The RSM predictions are in close agreement with the mean flow

measurements. The ANS results give a more detailed description of the flow characteristics, but suffer from the axisymmetry

assumption which is not compatible with the three-dimensional turbulence.

� 2004 Elsevier Inc. All rights reserved
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1. Introduction

The Enclosed Corotating Disk Pair (ECDP) config-
uration is formed by two corotating disks delimited by

an inner cylinder, the hub, corotating with the disks and

an outer, stationary casing. The geometry considered

here is characterized by a large hub outer radius ratio:

a=b ¼ 0:5. Applications include mainly computer disk
storage systems and disk cavities in some gas turbine

engines.

The present numerical study is concerned with the
behaviour of the turbulent flow observed at
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Re ¼ 1:46� 105 for G ¼ 0:6, corresponding to the low-
est value of the rotation rate at which mean flow mea-

surements have been obtained at the University of Bath
(Gan et al., 1996).

In experiments with air, Schuler et al. (1990) delin-

eated five distinct flow regions (illustrated in Fig. 1) for

values of the rotational Reynolds number 2:22� 1046
Re6 2:66� 105 with G ¼ 0:196 and a=b ¼ 0:537: the
region near the hub driven by solid-body rotation (de-

noted region IV), the boundary layer close to the sta-

tionary casing or shroud (region I), the inviscid core
(region II) characterized by negligible gradients of the

velocity components in the radial and axial directions,

region III corresponding to the transition between re-

gions II and IV, and the Ekman-type boundary layers

along the two disks (region V). The core region is

mail to: anthony.randria@irphe.univ-mrs.fr


Nomenclature

a inner radius

b outer radius

Cw dimensionless mass flowrate _m=lb
Cij structure parameter of turbulence

G aspect ratio s=ðb� aÞ
k turbulent kinetic energy
�k time mean kinetic energy

k0 fluctuating turbulent kinetic energy

k
z}|{

total kinetic energy
_m mass flowrate in the half of the cavity

P pressure

r radius

Re rotational Reynolds number Xb2=m
ReT turbulent Reynolds number

Rc curvature parameter ðaþ bÞ=ðb� aÞ
Rij turbulent Reynolds stress tensor
Rij time mean value of the turbulent Reynolds

stress tensor u0iu
0
j

R0
ij fluctuating Reynolds stress tensorfRij pseudostress tensor eui euj
Rij

z}|{
apparent stress tensor

s distance between corotating disks

Tm Chebyshev polynomial of degree m
Uj velocity vector

hUji phase-averaged velocity vectoreuj organized macrocomponent of velocity

u0j turbulent fluctuating velocity

x reduced radius r=b
y reduced axial coordinate z=s
z axial coordinate

Greeks

h azimuthal coordinate

f vorticity

g Kolmogorov scale

q density

l dynamic viscosity
m kinematic viscosity

jj wavevector in spectral space

X rotation speed

Operators

hUi phase average of U
U time mean value of UeU organized fluctuation of U: U � hUi
U0 turbulent fluctuation of U: hUi � U

Fig. 1. Schematic diagram of the ECDP section with relevant dimen-

sions and definition of the five regions in the (r; z) plane (based on
Schuler et al., 1990).
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composed of two separate zones in the meridional (r–z)
plane, which may or may not exhibit symmetry with

respect to the inter-disk midplane. Region III (visualized

by Abrahamson et al. (1989) as a polygon in the (r; h)
plane) constitutes a detached shear layer, resulting from
the meeting of the three-dimensional vortical structures

in region II with the two-dimensional flow in region IV

(which satisfies the Taylor–Proudman theorem). This

separation is found to act like a compliant surface, with

the presence of a critical radius where the azimuthal

angular velocity peaks. Exchange between the two re-

gions II and IV occurs via spiral arms (see Akhmetov

and Tarasov, 1987; Randriamampianina et al., 2001).
Schuler et al. (1990) also analysed the different scales of

the flow dynamics in each region. On the other hand,

from their experiments with water as the working fluid,

Abrahamson et al. (1989) reported that the ‘‘inner and

outer regions are very two-dimensional, with little var-

iation in the direction parallel to the spin axis. The

shroud boundary layer region was more three-dimen-

sional’’. For a fixed gap ratio, they observed the
occurrence of three flow regimes with increasing rota-

tion rate: indeterminate, alternating vortex states and

stable vortices. They also mentioned that the number of

outer vortices tends to decrease when the rotation rate

increases, and emphasized the presence of intransitivity

(‘‘the flow can exist in a number of states at any given

disk speed’’), although a predominant state could be

obtained.
Experimental and computational studies have been

carried out at the University of Bath (Gan et al., 1996;

Mirzaee et al., 1997) for the present configuration



A. Randriamampianina et al. / Int. J. Heat and Fluid Flow 25 (2004) 897–914 899
(G ¼ 0:6), at high rotation rates leading to turbulent
flows. In particular, Gan et al. (1996) identified a Ran-

kine (combined free and forced) vortex structure for the

measured mean flow (see also Owen and Rogers, 1995,
for a review of flow and heat transfer in rotating cavi-

ties). Dependence upon radial location of the local

rotation rate of the flow in rotor–stator systems has been

reported both experimentally (Gauthier et al., 1999) and

numerically (Randriamampianina et al., 1997). The

main difference in the present configuration comes from

the characteristic behaviour in the different regions, in

particular the variation as a Rankine vortex with the
presence of an inner detached shear layer.

In this paper, numerical simulations are performed

for axisymmetric flow regimes; extension to fully three-

dimensional calculations will be described in the future.

Such a strategy has been applied successfully in a pre-

vious study of the Ekman boundary layer instability in

rotating cavities with a superposed throughflow (Crespo

del Arco et al., 1996). These axisymmetric solutions were
able to give correct prediction of the threshold for the

instability compared with data available in the litera-

ture, and to capture the main features of the unsteady

flow. The results were confirmed later by full three-

dimensional computations (Hugues et al., 1998; Serre

et al., 2001). It is inferred that this approach will be also

useful in turbulent regimes. Indeed, Coleman et al.

(1990) observed that ‘‘the turbulent Ekman layer has
more in common with the turbulent two-dimensional

boundary layer than with the quasi-laminar Ekman

layer (due especially to the lack of longitudinal rolls)’’.

Moreover, axisymmetric propagating vortices, visual-

ized as circular rolls, have been observed in recent

experiments in rotating disk systems (Gauthier et al.,

1999; Schouveiler et al., 2001). Numerical simulation,

which produces the time-dependent evolution of the
flow field, gives a detailed description of flow structures,

their geometrical extent and unsteadiness and also per-

mits statistical treatment providing mean values, corre-

lations and spectra.

For the present configuration (see Randriamam-

pianina et al., 2001), it was found that axisymmetric

solutions exist at low rotation rates, initially showing

symmetry with respect to the inter-disk midplane, before
undergoing a pitchfork bifurcation characterized by a

breaking of this symmetry (see also Herrero et al., 1999).

Further increase in rotation rate yields a Hopf bifurca-

tion, where the oscillatory motion is induced by a flap-

ping between the two disks of the centripetal flow from

the stationary casing. For the rotational Reynolds

number considered in the present study,

Re ¼ 1:46� 105, the flow is found to be turbulent.
However, the mean flow exhibits unsteady behaviour,

similar to the phenomenon described above during the

Hopf bifurcation; similarity with an impinging jet in a

cavity is observed and discussed below. Other results,
based on one-point statistical modelling with a low-

Reynolds number, second-order, stress-transport clo-

sure (RSM), are also produced for the present problem,

and comparisons of the mean flow with available mea-
surements from Gan et al. (1996) are carried out.

The characteristics of the turbulence field in systems

subjected to high rotation rates are very specific. Rota-

tion not only inhibits the inertial cascade process but

modifies the structural properties of the turbulence field

(see Cambon and Jacquin, 1989). Advanced turbulence

closures are thus necessary to handle such types of flows

(see Elena and Schiestel, 1996). The flow is particularly
complex due to the occurrence of strong shear within the

very thin Ekman layer region along the disk and also

near the upper corners formed by the periphery of the

disks and the stationary casing. As a consequence, the

turbulence field reaches high intensities in these regions,

while laminarized zones prevail in the inner part of the

cavity towards the rotating hub (resulting from the

Taylor–Proudman theorem).
The main objective of this work is to study the

structure and properties of the flow developing in

the enclosed corotating disk pair, and in particular the

oscillating jet-like structure originating from the sta-

tionary outer casing. The numerical simulation is a first

approach based on the axisymmetry hypothesis that will

be extended to a full three-dimensional description in

the future. At the present time, it is interesting to ana-
lyze to what extent the axisymmetric computations

could contribute to an understanding of this kind of

complex flow.

The experimental rig used by Gan et al. (1996) is

described in Section 2. The mathematical models and

solution methods for the axisymmetric numerical sim-

ulation and the turbulent prediction are given respec-

tively in Sections 3 and 4. Results and discussion are
provided in Sections 5 and 6, where comparisons of the

mean flow with available measurements from Gan et al.

(1996) are discussed. Concluding remarks appear in

Section 7.
2. Details of the experimental rig

A full description of an ECDP experimental rig and

test programme was given by Gan et al. (1996) and

Mirzaee et al. (1997); details relevant to sealed cavity

experiments are summarized here. The disks were

2b ¼ 762 mm in diameter and were separated by a dis-
tance s ¼ 113 mm with an inner cylinder of diameter
2a ¼ 381 mm, giving a gap ratio G ¼ s=ðb� aÞ ¼ 0:6
and radius ratio a=b ¼ 0:5. The working fluid was air at
atmospheric pressure and temperature, and the rotation

rate considered in the present study corresponds to

X ¼ 15:7 rd/s. Separate measurements of radial and
tangential velocities were made at selected axial and
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radial locations, using a transparent disk for optical

access and backscatter laser doppler anemometry. The

positional uncertainty of the optical probe volume was

0.13 mm and the uncertainty in individual velocity
measurements was estimated as ±3%.
3. Mathematical model and solution method for the

axisymmetric numerical simulation (ANS)

3.1. Governing equations

The instantaneous motion is governed by the Navier–

Stokes equations for incompressible fluids. With the

axisymmetry assumption, the formulation in stream-

function w and vorticity f is preferred to primitive
variables, reducing the number of equations to be solved

and satisfying the mass conservation irrespective of the

resolution considered. The definitions of w and f are as
follows:

f ¼ oUr

oz
� oUz

or
ð3:1Þ

Ur ¼
1

r
ow
oz

; Uz ¼ � 1
r
ow
or

ð3:2Þ

where (Ur, Uh and Uz) are the velocity components in a

stationary frame of reference in the radial, azimuthal

and axial directions respectively.

The space variables are normalized into the square

½�1; 1� � ½�1; 1�, a prerequisite for the use of Chebyshev
polynomials (see Fig. 1, dimensionless variables are

marked with a star):

r� ¼ 2r � b� a
b� a

and z� ¼ 2z
s
� 1

Characteristic time and velocity scalings are

tref ¼ s=2bX and Uref ¼ Xb respectively.
In a stationary frame of reference, the resulting

dimensionless system is (with the � notation dropped):

oUh

ot
þ GUr

oUh

or
þ Uz

oUh

oz
þ G

UrUh

r þ Rc
¼ Rc þ 1

GRe
DUh ð3:3Þ

of
ot

þ GUr
of
or

þ Uz
of
oz

� G
Urf

r þ Rc

¼ 2G Uh

r þ Rc

oUh

oz
þ Rc þ 1

GRe
Df ð3:4Þ

G2
o2w
or2

� G2
1

r þ Rc

ow
or

þ o2w
oz2

¼ ðr þ RcÞf ð3:5Þ

where D is the dimensionless Laplacian operator:

D ¼ G2
o2

or2

 
þ 1

r þ Rc

o

or
� 1

ðr þ RcÞ2

!
þ o2

oz2
The characteristic parameters governing the motion

are: the rotational Reynolds number, Re ¼ Xb2=m; the
cavity aspect ratio, G ¼ s=ðb� aÞ; the curvature
parameter, Rc ¼ ðaþ bÞ=ðb� aÞ.
The boundary conditions for the vorticity are derived

directly from Eq. (3.5), and using the no-slip conditions

at rigid walls (Randriamampianina et al., 1986; Ran-

driamampianina et al., 1987):

fw ¼ G2
1

r þ Rc

o2w
on2

	 

w

where n is the normal direction.
The inner cylinder and the two disks rotate with the

same angular velocity X, while the outer cylinder is
stationary. However, in order to maintain the spectral

accuracy of the solution, a regularization is introduced

for the tangential velocity component at the corner

discontinuity between the disks and the casing:

Uh ¼ Uh0ðrÞ ð3:6Þ
where Uh0ðrÞ ¼ ðRc þ rÞð1� expðArð1� rÞÞÞ=ðRc þ 1Þ;
Ar is a constant (see Randriamampianina et al., 1997),

chosen to allow a small radial clearance d between the
disk and the casing such that d=b < 0:02 (see also Ta-
vener et al., 1991; Randriamampianina et al., 2001).

3.2. Temporal scheme

The time integration used is second order accurate

and is based on a combination of Adams-Bashforth and

Backward Differentiation Formula schemes, chosen for

its good stability properties (Vanel et al., 1986). The

resulting AB/BDF scheme is semi-implicit, and for the

transport equation of any dependent variable f
(f ¼ f;Uh) can be written as

3f lþ1 � 4f l þ f l�1

2dt
þ 2Nðf lÞ �Nðf l�1Þ ¼ ðRc þ 1Þ

GRe
Df lþ1

ð3:7Þ
whereNðf Þ stands for nonlinear terms, n is the normal
direction, dt the time step and the superscript l refers to
time level. For the initial step, we have taken f �1 ¼ f 0.
At each time step, the problem then reduces to the

solution of Helmholtz and Poisson equations.

3.3. Numerical approach and computational details

The spatial approximation is based on a pseudo-

spectral collocation-Chebyshev technique. Each depen-

dent variable f is expanded in the approximation space
PNM , composed of Chebyshev polynomials of degrees
less than or equal to N and M respectively in the radial
(r) and axial (z) directions:

fNMðr; z; tÞ ¼
XN
n¼0

XM
m¼0

f̂nmðtÞTnðrÞTmðzÞ
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where ðr; zÞ 2 ½�1; 1� � ½�1; 1� and Tn and Tm are

Chebyshev polynomials of degrees n and m.
This approximation is applied at collocation points,

where the differential equations are assumed to be sat-
isfied exactly (Gottlieb and Orszag, 1977; Canuto et al.,

1987). We have considered the Chebyshev–Gauss–

Lobatto points, corresponding to the extrema of the

Chebyshev polynomials of highest degrees, say N and
M : thus xi ¼ cosðipNÞ for i 2 ½0;N � and yj ¼ cosðjpMÞ for
j 2 ½0;M �.
The numerical approach is based on an influence

matrix technique introduced to treat the lack of
boundary conditions for the vorticity (Chaouche et al.,

1990). A complete diagonalization of operators yields

simple matrix products for the solution of successive

Helmholtz and Poisson equations at each time step

(Haldenwang et al., 1984). The computations of eigen-

values, eigenvectors and inversion of corresponding

matrices are performed once during a preprocessing

step.
A grid resolution N �M ¼ 180� 128 in the radial

and axial directions with a non-dimensional time step

dt ¼ 10�4 was used for the computations. A grid test
with a finer resolution N �M ¼ 200� 150 (associated
with the more severe numerical stability constraint

dt ¼ 6:25� 10�5) did not produce significant changes in
the flow features.

From the physical point of view, the mesh must be
chosen in order to capture all the scales present in the

flow. An estimate of the size of the smallest dissipative

eddies, known as the Kolmogorov scale, has been made

from statistical modelling results that produce the vis-

cous dissipation rate �:

g
s
¼ m3=4

s�1=4

An a posteriori estimate of a value obtained from

modelling (RSM) results for the Ekman layer gives

g=s � 0:01 outside the viscous sublayer, which is satis-
fied along the rotating disk by the present resolution.

Very small scales develop within these boundary layers

where the turbulence originates. This was not the case

towards the centre of the cavity, where a coarser grid

results from the Gauss–Lobatto–Chebyshev distribu-
tion. However, since larger scales are expected to prevail

in these central regions, we believe that the resolution

considered is sufficient to produce correct behaviour for

these largest eddies and for the mean flow, which is a

goal of the present study.

Another point that can be influential is the axisym-

metry hypothesis which leads to a form of two-dimen-

sional turbulence, in which the Kolmogorov scale
restriction is less crucial. Indeed, according to Lesieur

(1990), if energy is injected at a wavenumber jI in two-

dimensional turbulence, an enstrophy cascade b ¼ j2I �
will take place at high wavenumbers along with the in-
verse energy cascade at low wavenumbers. The dissipa-

tive scale of the enstrophy cascade is given by

jD ¼ b1=6=m1=2 and if we suppose � � k3=2jI this implies

that ‘D ¼ j�1
D � gRe1=4T (ReT ¼ k2=m�). When the turbu-

lence Reynolds number exceeds unity the dissipative

scale is larger than the Kolmogorov scale, and the

condition is less severe.
3.4. The axisymmetry assumption in the numerical

simulation

The axisymmetry hypothesis allows a huge economy
of computer storage and processor time. Considering

also that a statistical treatment requires long time

averaging, this practical constraint will be used in the

present approach. It is important, however, to discuss

the physical consequences of such an assumption.

It is well known that the two-dimensional hypothesis

inhibits the vortex-stretching phenomenon which con-

trols the energy cascade in three-dimensional turbu-
lence, even though stretching of vorticity gradients is

present. In this respect, therefore, the mechanisms in-

volved in two-dimensional turbulence are different from

those prevailing in more common turbulence (see Le-

sieur, 1990). However, it is worthwhile to note that such

two-dimensionality does not imply that Uh is zero in the

present situation. Consequently the turbulence intensity

u02h is nonzero, as it would be the case in a two-com-
ponent planar flow. In other words, the turbulence field

is two-dimensional but not ‘‘two-componental’’ (this is a

different concept, see Kassinos et al., 2001). Indeed, in

the present computations, the u02h is of the same order of
magnitude as the two other components u02r and u

02
z . The

axisymmetry assumption implies just that the turbulence
spectrum in the azimuthal direction is concentrated in a

Dirac distribution. Also, it seems logical to suggest that

the breaking of the inertial cascade process will have

more limited consequences if the Reynolds number is

not too high.

It should also be noted that vortex stretching by the

mean flow is still present in the case of axisymmetry;

toroidal vortices can be stretched by centrifugal velocity
components. Further point to mention is that, if the

usual mechanisms of turbulence production in a classi-

cal three-dimensional boundary layer are not relevant in

the present case, turbulence production is still not sup-

pressed. Thus, it appears that the axisymmetry hypoth-

esis is useful for a first approach. This was also the

conclusion of the work of Jacques et al. (2002) who

successfully carried out axisymmetric simulations of
turbulence in a rotor–stator enclosure.

Another consequence of the axisymmetry hypothesis

is that the pressure–strain correlation in the u02h equation
is zero, so that the return to isotropy process is

suppressed in this direction. Thus, higher levels of
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anisotropy may be expected. The consequences for the

turbulence field are clearly interpreted from the struc-

tural anisotropy, Chh ¼ 0, according to the definition
given by Kassinos et al. (2001) and Cambon et al. (1992)
in homogeneous turbulence:

Cij ¼
Z

jijj

j2
Eð~jÞdð~jÞ

where Eð~jÞ corresponds to the energy spectrum and
~j � ðjiÞ is the wavevector. This is true, however, only in
homogeneous turbulence and in the present case the

confinement by the lateral walls tends to break this

structural tendency. Further, the axisymmetry hypoth-

esis on the instantaneous field obviously does not in-

volve axisymmetry of the turbulent stresses. Turbulence

axisymmetry is a different concept which would imply
that locally two eigenvalues of the Reynolds stress ten-

sor are equal (see Chasnov, 1995); this is not the case

here.

These remarks suggest that, although some important

features of the flow will be altered by the axisymmetry

assumption, the numerical simulation can produce use-

ful initial results, as in Jacques et al. (2002). Another

argument for the usefulness of such calculations is the
presence, as already mentioned in the Introduction, of

the propagating circular axisymmetric rolls observed in

experiments that are believed to be characteristic struc-

tures of the flow near a rotating disk.
4. Mathematical model and numerical method for turbu-

lent flow prediction (RSM)

4.1. Governing equations

For turbulent mean flow prediction, the governing

equations for the conservation of mass and momentum

are deduced by statistical averaging from the Navier–

Stokes equations using the Reynolds decomposition: the

instantaneous velocity (and respectively pressure) is
decomposed into a mean part hUii (hPi) and a fluctu-
ating part u0i (p

0):

dhUii
dt ¼ � hPi

q

 �
;i
þ mhUii;j � Rij

 �
;j

hUji;j ¼ 0

(
ð4:1Þ

with Rij ¼ hu0iu0ji where h�i denotes statistical ensemble
average.

In order to close this system, a differential or Rey-
nolds stress model (RSM) is used. This approach is also

commonly referred to as unsteady Reynolds-averaged

Navier–Stokes (URANS) model. The transport equa-

tions for the Reynolds stress tensor can be written as

dRij

dt
¼ Pij þ DTij þ Uij � �ij þ mRij;mm ð4:2Þ
where Pij, DTij, Uij and �ij respectively denote the pro-
duction, turbulent diffusion, pressure–strain correlation,

and dissipation terms. These last three processes require

modelling since they involve unknown correlations.
Second order closures present distinct advantages for

modelling complex turbulent flows involving extra

phenomena such as an imposed rotation.
4.2. Outline of the differential Reynolds stress model

The model used in the present study is described fully

in Elena and Schiestel (1996) and Schiestel and Elena
(1997) (see also Randriamampianina et al., 1997). It is

derived from the Launder and Tselepidakis model

(Launder and Tselepidakis, 1994), and its main charac-

teristics are summarized below. The full equations are

given in Appendix A.

• In a classical way, the pressure–strain term is split
into three parts:

Uij ¼ Uð1Þ
ij þ Uð2Þ

ij þ UðwÞ
ij

The contribution Uð1Þ
ij is interpreted as a nonlinear

return to isotropy and is modelled as a quadratic

development in the stress anisotropy tensor, with coef-

ficients sensitized to the invariants of anisotropy. In

particular the flatness parameter A ¼ 1� 9
8
ðA2 � A3Þ is

introduced, where A2 and A3 are the second and the
third invariants of anisotropy.

A very weak turbulent region prevails in the lower
(inner) part of the cavity away from the wall, and the

modelling functions proposed by Launder and Tselep-

idakis (1994) lead to realizability problems (Elena,

1994). The damping functions used in the model equa-

tions were modified by Elena and Schiestel (1996) to

overcome the problems encountered in relaminarized

regions far from the wall. These modifications have been

shown to be satisfactory for various confined flows
(Elena, 1994).

The linear part of the pressure–strain correlation is

modelled using the classical form proposed by Gibson

and Launder (1978). However, the widely adopted

length scale k3=2=� is replaced by kðRijninjÞ1=2=�, which is
the length scale of the fluctuations normal to the wall.

Since the nonlinear slow part of the pressure–strain

correlation is already damped near the wall, a wall
correction is only applied to the linear rapid part.

The following further details are noted:

• The classical (Daly and Harlow, 1970) form for the
turbulent diffusion term, which is interpreted as the

diffusion due to both velocity and pressure fluctua-

tions, has been used here. The viscous diffusion is

retained since it cannot be neglected in the low-
Reynolds number region.
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• The behaviour of the viscous dissipation tensor �ij of
the Reynolds stresses has been modelled in order to

conform with the wall limits obtained from Taylor

series expansions of the fluctuating velocities (Laun-
der and Reynolds, 1983).

• The coefficients in the � equation are also sensitized to
the anisotropy invariants.

• The extra terms involving directional anisotropy
introduced in Elena and Schiestel (1995a) and Schies-

tel and Elena (1997) have only a weak effect in the

present application.

4.3. Numerical method

This part of the numerical investigation was carried

out using a computer code developed from an

adapted version of the UMIST finite volume code

TEAM. In order to overcome severe stability problems

associated with high rotation rates, several stabilizing

techniques were introduced in the numerical procedure,
such as those proposed by Huang and Leschziner

(1985).

The code was extended to unsteady flows using first

order time discretization with internal iterations. The

solution of the six Reynolds stress components was

obtained by a block tridiagonal algorithm, rather than

the pointwise block resolution technique described by

Elena and Schiestel (1995b,c) for an earlier (steady-
state) version of the code.

4.4. Boundary conditions and grid arrangement

Owing to the use of low-Reynolds number models, no

specialized treatment is needed at the boundaries. All

the variables are set to zero at walls except hUhi and �.
The dissipation rate � is assigned the exact limit,
2mðok1=2=onÞ2.
The use of a low-Reynolds number turbulence model

requires a very fine mesh near walls in order to take into

account the strong variations of the different variables.

The mesh was built according to geometrical series

variations. Grid dependence studies resulted in the use

of a 158 · 198 mesh in the axial and radial directions
respectively.
5. Results

Some definitions are required before the presentation

of results.

The instantaneous velocity is split into a three term

decomposition (see Reynolds and Hussain, 1972):

Ui ¼ Ui þ eui þ u0i for i � r; h; z

where Ui is the time-averaged mean velocity, eui corre-
sponds to the unsteady organized macrocomponent and
u0i to the turbulent fluctuation. The total fluctuation is
then

vi ¼ eui þ u0i:

The macrocomponent is defined from a statistical

ensemble average and can be obtained for instance by a
phase average (as long as periodic behaviour is reached):

hUii ¼ Ui þ eui :
Assuming that eui and u0i are uncorrelated, the total

apparent stresses are

Rij

z}|{
¼ vivj ¼ eui euj þ u0iu

0
j ð5:1Þ

where fRij ¼ eui euj is a pseudostress tensor due to ma-
crocomponents and Rij ¼ u0iu

0
j is the time mean value of

the true turbulent Reynolds stress.

The simulation produces the instantaneous values of

velocity. Statistical treatment in time gives vivj, while the
determination of turbulent stresses requires the splitting

of vi into eui and u0i. Considering the limited duration of
the simulation, phase averaging is not practicable: we

have obtained here hvii ¼ eui as a time mean value over a
short interval of time. The numerical modelling gives

instantaneous values of hUii and hu0iu0ji directly; Ui and

u0iu
0
j are then obtained through a long time average. Use

of short time averages instead of true phase averages

introduces some loss of accuracy, but it is not very sig-

nificant as the frequency of the jet flapping is very low
compared with the rotation speed.

It is worthwhile to point out some fundamental dif-

ferences between the two approaches. The simulation is

based on the hypothesis of axisymmetry of the instan-

taneous velocities; the tangential velocity is allowed to

fluctuate but o=oh � 0. This assumption impedes all
three-dimensional interaction mechanisms in turbulent

flows, such as three-dimensional vortex stretching. In
the RSM calculation, the axisymmetry hypothesis affects

only the ensemble averaged quantities. The turbulent

fluctuations are still modelled using three-dimensional

closure hypotheses. These remarks should be kept in

mind when comparing numerical results.

5.1. Time mean flow

The time mean flow field and the isocontours of the

tangential velocity component obtained from the axi-

symmetric numerical simulation (ANS) and the RSM

are shown in Fig. 2.

Symmetry of the mean flow with respect to the inter-

disk midplane is observed. The five regions described by

Schuler et al. (1990) (see Fig. 1) can be identified from

the isovalues of the mean tangential velocity component.
The core region II, characterized by the occurrence of

two large vortices, spreads over about two thirds of

the cavity for the ANS, while the predicted recircula-

tion zone is larger in the case of the RSM results, in
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particular near the two disks. Ekman-type layers clearly
develop along the rotating disks in this region, but not in

the inner region, and this behaviour is reflected by the

tangential velocity contours. In the separation zone III

(between the inner region and the core region II), the

tangential velocity Uh exhibits a local extremum in the

ANS; Uh shows a linear radial variation in the inner

region and a 1=r-dependence in the outer region, as
indicated by the spacing between the isovalues. In the
case of the RSM, the transition region III is located very

close to the bottom wall (the hub), in accordance with

the streamline patterns.

Gan et al. (1996) identified Rankine vortex behaviour

in their measurements for this configuration. Owen and
Rogers (1995) described the occurrence of such behav-
iour in some rotating cavity flows, characterized by the

following variation of the normalized tangential velocity

Uh=Xr with x�2 ¼ ðr=bÞ�2:

Uh=Xr ¼ Ax�2 þ B ð5:2Þ
where A and B are constants.
The variation of the time-averaged Uh=Xr with x�2 is

shown in Fig. 3. Also reported is a steady flow solution

previously obtained by Gan et al. (1996) with a first

order closure based on the Launder and Sharma (1974)

turbulence model (LSM). These profiles show some of

the characteristics of the different regions of the flow

illustrated in Fig. 2. The discrepancy in the variation of
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slopes between the results in the Rankine vortex region

II is due to the different behaviour of the Ekman-type

boundary layers along the rotating disks obtained for

the different computational approaches. In particular,

due to the regularization introduced in the simulation

(Eq. (3.6)), the peak observed in the other computations
near x ¼ 1 is replaced by a smooth variation close to the
stationary casing.

Fig. 3 shows that the RSM profile follows closely the

experimental data. The ANS numerical simulation, and

the LSM (Gan et al., 1996), exhibit a larger extent of the

inner region, characterized by near solid-body rotation

satisfying the Taylor–Proudman theorem. From their

experimental study for the same configuration but with
G ¼ 0:1, Abrahamson et al. (1989) reported the presence
of solid-body rotation in the inner region extending

from the hub to a radial location of about x ¼ 0:65
(x�2 � 2:37) at a high rotation rate corresponding to
Re � 5� 105. They found also that the most turbulent
flow is confined within the boundary layer along the

outer casing, corresponding to the only region where

significant mean three-dimensional motion develops.
The slight overestimate of the rotation rate (Uh=Xr > 1)
for the ANS to the data in the inner region (Fig. 3)

compared with the measurements results from the

instantaneous occurrence of small vortices with opposite

circulation to the primary ones in region II, as observed

by Abrahamson et al. (1989). These structures generate

forced vortex behaviour (with A ¼ 0 in Eq. 5.2). Such an
inner region is not clearly distinguishable from the
experimental data, however, nor from the RSM results.

It has been already noticed that the flow rotates faster

than the disks for x�2 > 2:5 for the ANS. This feature
can be explained by considering the counter-rotating
mean vortices in a cross section (see w in Fig. 2). The
centrifugal flow near the disks is progressively gaining

swirl, this fluid is then deflected towards the outer casing

and feeds the centripetal central jet. This rapidly rotat-

ing fluid reaches regions at a lower radius where the disk

velocity is weaker.

The axial variations of the normalized mean radial

velocity Ur=Xr and tangential velocity Uh=Xr are com-
pared with measured data at the four radial locations

x ¼ r=b ¼ 0:55, 0.65, 0.75 and 0.85 (see Fig. 2) in Figs.
4–7 respectively. The profiles reflect the behaviour seen

in Fig. 3. The axial mean flow profiles from the

numerical simulation show symmetry with respect to the

inter-disk midplane y ¼ z=s ¼ 0:5. At the innermost
location, x ¼ 0:55 (Fig. 4) belonging to region IV, where
near solid-body rotation is expected, the profile from the
numerical simulation confirms the slight overestimate of

Uh mentioned above (see Fig. 3). From the variation of

the radial velocity, we note the appearance of inward

flow along the disks, with an adjacent weak outflow

characterizing the presence of small vortices in these

zones. According to the variation of the tangential
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velocity in the simulation, the disks rotate slower than

the fluid thus generating inward flow on the disks. Such

behaviour occurs for a fluid rotating over a stationary

disk (see B€odewadt, 1940; Schlichting, 1968). The mea-
sured radial velocities are very small and do not support

conclusively either radial inflow on the disks, or the

outflow in very thin boundary layers obtained for the

RSM solution. Both the measured tangential velocity

and the RSM solution suggest slower rotation of the
flow compared to the disks, so that this location

x ¼ 0:55 already corresponds to region II (with
x�2 ¼ 3:306 in Fig. 3) for the RSM results and the

experiments.
The location x ¼ 0:65 is in the region of the detached

shear layer (region III in Fig. 2), known to act like a

compliant surface between regions II and IV. (Experi-

mental data are available for the radial velocity only at

this location.) The development of the Ekman-type

layers on the disks is evident in both the ANS simulation

and the measurements, while these boundary layers are

well established in the RSM results (Fig. 5). Depending
on the radius location x, there is also different behaviour
between the boundary layers, but in each case the levels

of radial velocity are very small. Fig. 3 shows that there

are significant differences in the behaviour of the mean

tangential velocity at the midplane for the different sets

of results around this location x ¼ 0:65 (corresponding
to x�2 ¼ 2:37).
At radial locations closer to the stationary outer

casing (Figs. 6 and 7), the Ekman-type layers are very

thin, with outflow just outside the boundary layers

suggested by the experimental data. The measured radial

velocity variation at both radial locations is reasonably

well represented by the RSM results. The ANS gives
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only qualitative agreement in comparison with the

measurements, particularly in the region of the central

inflow around z=s ¼ 0:5. The peak radial velocity in the
boundary layer at x ¼ 0:85 (corresponding to the region
II) is similar for both computations. All of the results

show virtually uniform tangential velocity between the

boundary layers, with the ANS simulation giving too

high a rotation rate (as also shown in Fig. 3 with

x�2 < 1:78 for x > 0:75). The deficiencies of the ANS are
visible for both the radial and the tangential velocity

components, and this is explained by the axisymmetry

assumption: the coherent vortices observed in the near-
wall region for a real turbulent boundary layer cannot

be present in the flow field resulting from the ANS.

The total kinetic energy k
z}|{

¼ 0:5 Rjj

z}|{
(see Eq. (5.1))

is reported in Fig. 8 for the numerical simulation and the

RSM. These include both macrocomponents and tur-

bulent contributions. There is qualitative correspon-

dence between the two approaches, but, differences

appear towards the inner region where low levels of
turbulence develop, resulting from the motion of small

vortices in this region as already displayed by the

velocity profiles. High turbulence values now occur in

the boundary layers, and the boundary layer transition

to turbulence is located approximately at the mid-height

of the cavity. The RSM result clearly shows the turbu-

lent energy in the thin Ekman layers. A sharp peak in

turbulence develops at the upper corners. This is less
pronounced in the ANS result because of the numerical

smoothing (Eq. (3.6)) introduced at the corners. The
ANS

Fig. 8. Isocontour plots of the total kinetic energy: for the ANS

06 k
z}|{

=ðX2s2Þ6 0:0765 with an increment of 0.0003.
highest turbulence levels in the RMS are found in the

strongly sheared layers on the stationary casing formed

from the outward flow on the disks. Turbulence is then

convected into the jet where the levels decrease.
The ANS contours shown in Fig. 8 reveal that

practically no turbulence is produced in the Ekman

layers along the rotating disks, in contrast with the real

DNS by Coleman et al. (1990) and Lygren and An-

dersson (2001). Nevertheless, the ANS results compare

fairly well with the experimental data and the RSM

predictions, suggesting some justification for the ANS.

The comparisons presented in Figs. 3–7 show that the
unsteady RSM predictions are in closer overall agree-

ment with the measurements than the ANS predictions.

The RSM calculations imply only axisymmetry of the

mean quantities, and full account is taken of the Rey-

nolds stress components. The ANS allows a more

detailed calculation of the instantaneous flow charac-

teristics but the axisymmetry hypothesis is applied over

the whole velocity field, impeding the development of
truly three-dimensional turbulence.
5.2. Unsteady flow

In order to investigate the periodic nature of the

flapping jet between the two disks, induced by organized

macrocomponents eui , we have considered the local mass
flowrate circulating within the cavity. The temporal

evolution of the instantaneous dimensionless flowrate

computed through the half cross-section 06 y ¼
RSM

, 33 levels with 06 k
z}|{

=ðX2s2Þ6 0:11312, and for the RSM,
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z=s6 0:5 is shown in Fig. 9 at a fixed value of the radial
location x. The local mass flow is defined as

_m ¼ 2pqr
Z s=2

0

Ur dz

giving in dimensionless form:

Cw ¼ _m
lb

¼ pxRe
Z 0:5

0

Ur dz

where x is the radial location at which the flowrate is
computed. We have taken a value x ¼ 0:92 before the
‘‘jet’’ impinges upon the disk (similar to the Coanda

effect, Tritton, 1988).

We can identify a period TX ¼ 104 from Fig. 9, while
in the present results the RSM was found to produce a

periodic behaviour with TX � 86.
The temporal evolution of the instantaneous kinetic

energy k ¼ hu0iu0ii=2 over half a period TX=2 is displayed
in Fig. 10 from the ANS and in Fig. 11 from the RSM.

The contours from the ANS correspond to fixed iso-

values of the kinetic energy.

From the ANS results, it is worthwhile to note first

the time spent by the ‘‘jet’’ along the central line, which

is relatively short compared with the evolution towards

the disks. Unsteadiness is induced specifically by the

central jet, while the lateral boundary layers exhibit
almost steady behaviour. The unsteady behaviour is

only apparent on the Ur and Uz velocity components in

the central region of the cavity where the jet develops.

Fig. 3, representing time mean values Uh, would not be
significantly different if instantaneous hUhi values were
used. The flapping motion is also associated with a shift

of the location along the stationary casing where the jet

originates; this is not clearly distinguishable from the
RSM results, indeed the turbulence levels within the jet

decrease towards the centre of the cavity. Reverse flow

can be observed from the contours of the instantaneous

kinetic energy obtained with both the ANS and RSM.

Similarity with an impinging jet in a cavity can be ob-

served, with a feedback effect (see Mataoui et al., 2003).

However, the main difference comes from the moving of

the jet origin on the outer casing. In the present con-
figuration the feedback is generated by the separation

region III, seen to be limited to around x ¼ 0:6. Small
vortices develop within the inner region, but remain in

this region, even though exchange between regions II

and IV does occur (Randriamampianina et al., 2001).

The residual wiggles, appearing in the upper part of the

cavity (see Fig. 10), correspond to very weak values and

probably result from the boundary conditions at the
upper corners, where very strong shear stresses develop

at the junction between the rotating disks and the sta-

tionary casing. We recall that these isocontours have

been taken at the same values to follow their temporal

behaviour, corresponding to small values of the vortic-

ity. On the other hand, Botella and Peyret (1998) have

proposed a subtraction technique to remove effects

(recalling the Gibbs phenomena) resulting from singu-
larities at corners, as in the case of the classical lid-dri-

ven cavity. Such a filtering approach could be

introduced in the present computations, but the ob-

served wiggles do not significantly affect the flow

behaviour.

Fig. 11 illustrates the flow patterns during half a

period of time from the RSM. These are in qualitative

agreement with the ANS results shown in Fig. 10, and
exhibit clearly the alternate deviation of the centripetal

jet between the two disks. In each case, the jet pattern

passing through the centre line is very short-lived. Most

of the time, the jet is deflected towards one or other of

the disks.
6. Discussion

A crude physical model of the mechanisms involved is

proposed. If the transverse velocity is supposed to be

mainly governed by pressure effects, then the z-compo-
nent of the momentum equation reduces to

dUz

dt
� � oðP þ qu02z Þ

oz
ð6:1Þ

If g denotes the shift of the jet axis from the symmetry
line due to the deflection of the jet at the mean location
of the impingement h, then
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dg
dt

¼ Uz and
d2g
dt2

� � oðP þ qu02z Þ
oz

ð6:2Þ

Assuming now that the pressure is created by the kinetic

energy of the normal component at the jet impingement:

P ¼ ðUJ sin aÞ2

2
and

oðP þ qu02z Þ
oz

¼ U 2J j g j g
2h2s

ð6:3Þ

where a is the angle of deflection of the jet, such that
sin a ¼ Uz=UJ , where UJ is the velocity on the jet axis.

These velocities can be considered as phase averages.

If jgj is approximated by its mean value s=4, this gives
oðP þ qu02z Þ
oz

¼ U 2J
8h2

g

and finally the equation of motion for the flapping of the

jet

d2g
dt2

¼ � U 2J
8h2

g

allows the frequency of the oscillation to be determined:

f ¼ x
2p

¼ 1
2p

UJ

h
ffiffiffi
8

p ð6:4Þ
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Considering that the two Ekman layers along the disks

are the source of the recirculating flow feeding the cen-

tral jet, this recirculating mass flowrate can be consid-
ered constant. The mean velocity on the jet axis near the

point of impingement rJ on the disks is denoted by UJ .

Assuming that the mass flowrate is

_m
lrJ

¼ 2pUJDmax
m

we thus have
2pUJDmax
m

¼ Cwmax

xJ
; xJ ¼

rJ
b

and finally

f ¼ 1

4p2
ffiffiffi
8

p m
hDmax

Cwmax

xJ
¼ 1

4p2
ffiffiffi
8

p Cwmax

xJRe
b2

hDmax
X

or

TX ¼ 4
ffiffiffi
8

p
p2

hDmax
b2

xJRe
Cwmax
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For the present configuration, with Re ¼ 1:46� 105
and s=b ¼ 0:3, and taking the value Cwmax ¼ 4000 from
Fig. 9 this corresponds to

TX � 85:6
where the mean value of the radial location of the jet is

given by xJ � 0:7 i.e. midway between the observed
limits of the jet impingement x ¼ 0:9 and x ¼ 0:5 (see
Fig. 10), so that h=b ¼ 1� xJ ¼ 0:3. The mean value of
the jet width can be estimated in this expression by

Dmax � s=3 on the basis of the present numerical results.
Thus, from these relations we can deduce a Reynolds

number for the jet:

RðxJ Þ ¼
UJDmax

m
¼ Cwmax

2pxJ
� 909:5

We note the good agreement for the prediction of the

period of jet oscillations between the theoretical value

and the result obtained from the RSM computations.

The very close agreement observed between the avail-
able experimental data and the results from the RSM

suggests that the period of the jet oscillation in the

present configuration with the parameters considered is

TX � 86.
7. Concluding remarks

The turbulent flow in an enclosed corotating disk pair

with a stationary outer casing has been investigated

numerically for a rotational Reynolds number Re ¼
1:46� 105, corresponding to the experimental study of
Gan et al. (1996). An axisymmetric numerical simula-

tion and one point statistical modelling of the flow have

been performed. Both approaches produce an unsteady

periodic behaviour for the mean flow. This is visible
mainly for the central recirculating flow, which takes on

the appearance of a flapping centripetal jet originating

from the boundary layers developing along the station-

ary outer casing. The Ekman layers along the rotating

disks are found to be almost steady. A high level of

turbulence intensity is reached in the region near the

upper corners of the cavity, where strong shear is gen-

erated between the periphery of the rotating disks and
the stationary casing. On the other hand, very weak

intensities of turbulence prevail towards the innermost

region of the cavity, where a low speed fluid layer be-

haves like a cushion at which the central jet is deflected.

The overall structure of the mean flow is consistent

with the five regions described by Schuler et al. (1990),

and comparisons with experimental data show reason-

able agreement. In particular, the mean tangential
velocity variation along the radial direction confirms the

Rankine vortex behaviour found by Gan et al. (1996).

There is very good agreement between experimental

measurements and RSM predictions. The unsteady
nature of the flow produced by the flapping jet explains

the main features of the isocontour plots of turbulence

double velocity correlations. The frequency of the

oscillating motion is relatively low compared with the
rotational frequency of the disks. A simplified analytical

model suggests that the driving force for the unsteadi-

ness is linked to pressure–velocity effects rather than

instabilities convected from the Ekman layers. It is

remarkable that the one point statistical closure suc-

ceeds in representing this unsteady behaviour. The

present results confirm that RSM modelling may be an

attractive means to compute turbulent confined flows in
the presence of rotation, and to recover some unsteady

features of the flows.

The unsteady RSM predictions, due to a full account

of the individual stress components, are in closer

agreement with the experimental data than the ANS

predicitions. In spite of the axisymmetry hypothesis, the

ANS numerical simulation produced a detailed

description of the instantaneous flow structures and
turbulence correlations (obtained by statistical treat-

ment) that are compatible with both the experimental

data and the RSM predictions. Despite the fact that the

axisymmetry assumption precludes some purely three-

dimensional features such as vortex stretching, some

redistribution mechanisms are included which lead to

results with noticeably different behaviour to those ob-

served in purely two-component planar flows. Full
three-dimensional simulations will be carried out in the

future in order to account for the three-dimensional

mechanisms of actual turbulence.
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Appendix A. Model equations in a nonrotating frame of

reference

The transport equations of the turbulent stresses (see

Section 4.1)

dRij

dt
¼ Pij þ DTij þ /ð1Þ

ij þ /ð2Þ
ij þ /ðRÞ

ij þ /ðW Þ
ij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Uij

�eij

þ mRij;ss þ DR
ij þ Bij þ Jij|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
extra termsðRÞ

ðA:1Þ
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are detailed by specifying each term in the right-hand

side:

Production term of the Reynolds stresses

Pij ¼ �RimUj;m � RjmUi;m ðA:2Þ
Production of turbulent kinetic energy

P ¼ 1
2
Pjj

Turbulent diffusion

DTij ¼ CSðrpmRij;pÞ;m ðA:3Þ

with

rpm ¼ k � Rpm

e

Pressure–strain correlation: nonlinear part

/ð1Þ
ij ¼ � ~c1aij

�
þ c01ðaipapj �

1

3
A2dijÞ

�
e ðA:4Þ

with

~c1 ¼ ð3:1
ffiffiffiffiffiffiffiffiffiffiffiffi
A � A2

p
þ 1Þ � ½1� expð�Re2T=40Þ�

c01 ¼ 3:72
ffiffiffiffiffiffiffiffiffiffiffiffi
A � A2

p
� ½1� expð�Re2T=40Þ�

Pressure–strain correlation: linear part

/ð2Þ
ij ¼ �0:6 Pij

	
� 1
3
Pssdij



þ 0:3e:aij

Pss

e

� 0:2 RmjRli

k
ðUm;l

�
þ Ul;mÞ �

Rlm

k
ðRimUj;l

þ RjmUi;lÞ
�
�minð0:6;AÞ � A2ðPij

�
� DijÞ

þ 3amianjðPmn � DmnÞ
�

ðA:5Þ

Pressure–strain correlation: wall reflection term with

rotation effect

/ðwÞ
ij ¼ c02 ð/ð2Þ

pm

�
þ /ðRÞ

pm Þnpnmdij �
3

2
ð/ð2Þ

ip þ /ðRÞ
ip Þnpnj

� 3
2
ð/ð2Þ

pj þ /ðRÞ
pj Þnpni

�
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rpqnpnq

p
ey

ðA:6Þ

where y is the distance from the nearest wall and np is the
normal unit vector at the wall.

Dissipation rate of the Reynolds stresses

eij ¼ fAe�ij þ ð1� fAÞ fS
eRij

k

�
þ 2
3
ð1� fSÞe � dij

�
ðA:7Þ

fA ¼ expð�20A2Þ � expð�Re2T=20Þ
fS ¼ expð�Re2T=40Þ

with ReT ¼ k2

m~e

Limiting wall values of the dissipation rates
e�ij ¼
e
k
� Rij þ Rimnjnm þ Rjmninm þ Rmlnlnmninj

1þ 3
2

Rpq

k npnq

Dissipation rate of turbulent kinetic energy equation

de
dt

¼ �Ce1
e
k
RijUi;j � Ce2fe

~e � e
k

þ Ce
k � Rij

e
e;j

	
þ me;i



;i

þ Ce3m
k
e
RjmUi;jlUi;ml þ Ce4 m

~e
k
k;i

 !
;i

ðA:8Þ

with

fe ¼ 1=ð1þ 0:63
ffiffiffiffiffiffiffiffiffiffiffiffi
A � A2

p
Þ

Extra terms due to rotation effects (see Schiestel and

Elena, 1997):

• Extra term in the pressure–strain contribution

/ðRÞ
ij ¼ �0:6 DCij

	
� 2
3
PCdij



� 2
5
kðUi;j þ Uj;iÞ ðA:9Þ

PCij ¼ �CipUj;p � CjpUi;p; DCij ¼ �CipUp;j � CjpUp;i

PC ¼ 1
2
PCmm ¼ 1

2
DCmm ¼ �CipUi;p

• Inhomogeneous effects

DR
ij ¼ CS

k2

e
fRoYlmRij;l

	 

;m

ðA:10Þ

fRo ¼
2:Ro�1=2t

1þ 15:Ro�1=2t

; Ylm ¼ X�
lX

�
m

X�2

where X�
i denotes the intrinsic rotation vector.

• Spectral jamming term

Bij ¼ �aB Rij

	
� k � dij þ

1

2
Cij



ðA:11Þ

with the structure parameter:

Cij ¼
2

3
1

	
þ fC
2



k � dij � fC � k

X�
i X

�
j

X�2

and

aB ¼ 1
2
X� CpqYpq

2k
; fC ¼ Ro�1t

5þ Ro�1t

• Inverse flux due to rotation which opposes the energy
cascade

Jij ¼
2

3
ð1
�

� fT Þdij þ fT
Rij

2k=3

�
J ðA:12Þ

J ¼ fJ
1þ fJ

~e; fT ¼ 1

1þ Ret=10



fJ ¼
0:12Ro�2t þ 0:015Ro�1t � 0:3 expð�Re2t Þ � ð0:4Ro�2t þ 0:05Ro�1t Þ

0:254Ro�2t þ 0:1567Ro�1t þ 1
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Rot ¼
e

k � X� ; A ¼ 1� 9
8
ðA2 � A3Þ; A2 ¼ aijaij;

A3 ¼ aijajkaki

Numerical coefficients:

C0
2 ¼ 0:2; CS ¼ 0:22; Ce ¼ 0:18; Ce1 ¼ 1:0;

Ce2 ¼ 1:92; Ce3 ¼ 2:0; Ce4 ¼ 0:92
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