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Abstract—This paper studies the effect of a magnetic field and temperature-dependent viscosity on the unsteady flow and heat
transfer for a viscous laminar incompressible and electrically conducting fluid due to an impulsively started rotating infinite disc. The
unsteady axisymmetric boundary layer equations are solved using three methods, namely, (i) perturbation solution for small time,
(ii) asymptotic analysis for large time and (iii) finite difference method together with Keller box elimination technique for intermediate
times. The solutions are obtained in terms of local radial skin friction, local tangential skin friction, and local rate of heat transfer at
the surface of the disc, for different values of the pertinent parameters: the Prandtl number Pr, the viscosity variation parameter ε
and magnetic field parameter m. The computed dimensionless velocity and temperature profiles for Pr = 0.72 are shown graphically
for different values of ε and m.  2001 Éditions scientifiques et médicales Elsevier SAS
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Nomenclature

r radial coordinate . . . . . . . . . . . . m
z normal coordinate . . . . . . . . . . . . m
u radial velocity component . . . . . . . m·s−1

v tangential velocity component . . . . . m·s−1

w axial velocity component . . . . . . . . m·s−1

Cp specific heat at constant pressure . . . . J·kg−1·K−1

f dimensionless radial velocity function
g dimensionless tangential velocity

function
h dimensionless axial velocity function
t time . . . . . . . . . . . . . . . . . . . s
T temperature in the flow region . . . . . K
Tw surface temperature . . . . . . . . . . . K
T∞ temperature of the ambient fluid . . . . K

B0 magnetic field . . . . . . . . . . . . . . kg·s−2·A−1

m magnetic field parameter

σ electrical conductivity . . . . . . . . . m−2·kg−1·s3·A2

* Correspondence and reprints.
E-mail address: anwar@du.bangla.net (A. Hossain).

α thermal diffusivity . . . . . . . . . . . m2·s−1

ε viscosity variation constant

q̄ rate of heat transfer . . . . . . . . . . . J·s−1·m−2

q dimensionless rate of heat transfer

Pr Prandtl number

ρ∞ density of the fluid . . . . . . . . . . . kg·m−3

θ dimensionless temperature function

φ angular coordinate

µ temperature-dependent viscosity . . . . kg·m−1·s−1

µ∞ viscosity in the ambient fluid . . . . . . kg·m−1·s−1

κ thermal conductivity of the fluid . . . . J·s−1·m−1·K−1

η dimensionless normal distance

ν kinematic coefficient of viscosity . . . m2·s−1

Ω angular velocity

τ dimensionless time . . . . . . . . . . . kg·m−1·s−2

τ̄r radial skin friction . . . . . . . . . . . . kg·m−1·s−2

τ̄φ tangential skin friction

τr dimensionless radial skin friction

τφ dimensionless tangential skin friction
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1. INTRODUCTION

Rotating disc flow and heat transfer is one of the clas-
sical problems of fluid mechanics that has both theoret-
ical and practical value. Heat transfer from a rotating
body is of importance for the rotating components of
various types of machinery, for example, computer disc
drives (Herrero et al. [1]) and gas turbine rotors (Owen
and Rogers [2]). In some applications where the rotat-
ing object is a candidate for overheating, and limitations
exist on the allowable rotational speed, further heat re-
moval is feasible by means of jet impingement. This is
also a common cooling technique for some transmission
gearing where the mechanism bearings are subject to im-
pingement cooling by a liquid lubricant. The interaction
of rotation and impingement creates a complex but pow-
erful flow capable of increasing heat transfer consider-
ably.

The rotating disc problem was first formulated by von
Kármán [3]. He showed that the Navier–Stokes equations
for steady flow of a viscous incompressible fluid due to
an infinite rotating disc can be reduced to a set of ordi-
nary differential equations, and solved them by an ap-
proximate integral method. Later, Cochran [4] obtained
more accurate results by patching two series expansions.
It is found that the disc acts like a centrifugal fan, the fluid
near the disc being thrown radially outwards. This in turn
impulses an axial flow towards the disc to maintain con-
tinuity.

Benton [5] improved Cochran’s solutions and ex-
tended the hydrodynamics problem to flow starting im-
pulsively from rest. Bödewadt [6] studied the inverse
problem of the disc at rest and fluid at infinity rotating
with uniform angular velocity. Roger and Lance [7] stud-
ied numerically a similar problem with the disc rotating
with different angular velocity to that of the surrounding
fluid. Stuart [8], following a suggestion made by Batche-
lor [9], investigated the effect of uniform suction of fluid
from the surface of the rotating disc. The effect of suction
is essentially one of decreasing both radial and azimuthal
components of the velocity and increasing the axial flow
towards the disc at infinity. The boundary layer thinned,
as a consequence. Ockendon [10] used the asymptotic
method to determine the solutions of the problem for
small values of suction parameter in the case of a rotat-
ing disc in a rotating fluid. Wagner [11] and Millsaps and
Pohlhausen [12] determined the heat transfer from a disc
with a uniform surface temperature different from that of
isothermal surroundings. Later, Sparrow and Gregg [13]
obtained the heat transfer from a rotating disc to a fluid
for arbitrary Prandtl number. Ostrach and Thornton [14],

considering the same isothermal rotating disc, extended
their investigation to a fluid with Prandtl number of 0.72
and variable physical properties. Hartnett [15] examined
the influence of variation in surface temperature on the
heat transfer from a disc rotating in still air, allowing the
temperature difference between the disc surface and the
fluid at rest to vary as a power function of radius. Free
convection flow above a heated rotating horizontal circu-
lar disc was investigated by Merkin [16], in the region
from the outer edge of the disc to its center, which was
previously studied by Zakerullah and Ackroyd [17] for a
fluid with variable properties. The later investigation was
restricted to the region near the circumference of the disc.
The flow and heat transfer between torsionally oscillating
disc has been determined by Hossain [18]. Later Hos-
sain and Rahman [19] investigated the flow between two
porous rotating discs in presence of a transverse magnetic
field. Some interesting effects of magnetic field on the
steady flow from a uniformly rotating disc of infinite or
finite extent have also been examined by El-Mistikaway
et al. [21, 22]. Recently, the transient problem posed by
Benton [5] for flow due to an impulsively started infinite
rotating disc has been investigated by Attia [20] numeri-
cally, with the effects of the transpiration velocity as well
as a transverse magnetic field.

In all the above studies, the viscosity of the fluid was
assumed to be constant. However, it is known that this
physical property may change significantly with tem-
perature, and to predict the flow behavior accurately it
may be necessary to take into account viscosity varia-
tion for incompressible fluids. Gray et al. [23], and Mehta
and Sood [24] showed that, when this effect is included,
flow characteristics may be changed substantially com-
pared to the constant viscosity assumption. With this un-
derstanding, Kafoussias and Williams [25] and Kafous-
sias and Rees [26] investigated the effect of temperature-
dependent viscosity on mixed convection flow from a
vertical plate in the region near the leading edge, us-
ing the local nonsimilarity method. Hossain and Mu-
nir [27] investigated the problem of mixed convection
from a vertical plate, using the perturbation technique in
the two extreme flow regimes, namely, the forced convec-
tion and the natural convection dominated regimes. Solu-
tions were also obtained in the entire forced–free con-
vection regime employing the finite difference method
together with the Keller box elimination technique [28],
showing the effect of the viscosity variation by consider-
ing viscosity to vary as a linear function of temperature.
On the other hand, Hossain and Kabir [29] have inves-
tigated the natural convection flow from a vertical wavy
surface, with variable viscosity proportional to an inverse
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linear function of temperature which are appropriate for
liquid metals.

The present investigation is concerned with the effect
of temperature-dependent viscosity on the flow and heat
transfer along a uniformly heated impulsively rotating
disc subjected to a transverse magnetic field. Here,
although purely laminar flow is considered, the results
may have some relevance to turbulent flow, as heat
transfer and surface friction will be affected by the flow
in the viscous sub-layer very close to the disc surface.

2. MATHEMATICAL FORMALISM

Let the disc lie in the plane z = 0 and the space
z ≥ 0 be occupied by homogeneous incompressible,
electrically conducting fluid, where z is the vertical axis
in the cylindrical coordinate system with r and φ as the
radial and tangential axes, respectively. The geometry of
the problem is shown in figure 1.

The disc rotates with uniform angular velocity Ω , B0
is the externally applied magnetic field in the z direction,
Tw is the uniform temperature at the disc surface and
T∞ is the temperature of the ambient fluid. The basic
equations governing the flow of the fluid in presence of
magnetic field and electromagnetic equations of Maxwell
are as follows:

∇ · V = 0 (1)

ρ∞
(

∂V
∂t

+ (V · ∇)V
)

= −∇p + ∇ · (µ∇V) + J × B (2)

J = σ(E + V × B) (3)

Figure 1. The flow configuration and coordinate system.

∇ · J = 0, ∇ × E = 0, ∇ · B = 0 (4)

ρ∞Cp

(
∂T

∂t
+ (V · ∇)T

)
= k∇2T (5)

where V is the velocity field having the radial, tangential
and vertical components as u, v, and w, B is the magnetic
induction vector having the components (Br,Bφ,Bz),
E is the electric field vector having the components
(Er,Eφ,Ez), J is the current density vector having the
components (Jr, Jφ, Jz), Cp is specific heat at constant
pressure, ρ∞ is the fluid density, κ is the thermal
conductivity of the fluid, p is the pressure in the flow
region, σ is the electric conductivity and µ is the
viscosity of the fluid. If the magnetic Reynolds number
is small the induced magnetic field can be neglected in
comparison with the applied field B0, which is assumed
to be constant in space and time, transversely to the disc.
In addition, we assume that the viscosity depends on
temperature, i.e. µ = µ∞/{1 + ε(T − T∞)/(Tw − T∞)}
(see Ling and Libby [30]). All other material functions,
such as the fluid density ρ∞, the thermal conductivity
of the fluid κ , the pressure in the flow region p and the
electric conductivity σ , are treated as constant.

Further, assume that the Joule and viscous dissipation
effects are neglected from the energy equation and flow
is unsteady as well as symmetric about the vertical axis
z. Finally, we assume a short-circuit problem for which
applied electric field E = 0, and, hence, current density
J = (Jr , Jφ,0). Thus, equation (3) implies jr = σB0v,
jφ = −σB0u. Hence, by the usual boundary layer ap-
proximation, the basic equations transform into the fol-
lowing form:

ur + u

r
+ wz = 0 (6)

ρ∞
(

ut + uur + wuz − v2

r
+ σB2

0u

)

= −pr + ∂

∂r
(µur) + ∂

∂r

(
µ

u

r

)
+ ∂

∂z
(µuz) (7)

ρ∞
(

vt + uvr + uv

r
+ wvz + σB2

0 v

)

= ∂

∂r
(µvr) + ∂

∂r

(
µ

v

r

)
+ ∂

∂z
(µvz) (8)

ρ∞Cp(Tt + uTr + wTz) = κ

(
Trr + 1

r
Tr + Tzz

)
(9)

The boundary conditions for the present problem are:

u,w = 0, v = rΩ, T = Tw at z = 0
u,v → 0, T = T∞ as z → ∞

(10)
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To obtain the solutions of the governing equations,
these are first converted into a convenient form using
appropriate transformations. Considering this, we can
introduce the following transformations:

u = rΩ

(
τ

1 + τ

)
f (η, τ ), v = rΩg(η, τ )

w = −4(νΩ)1/2
(

τ

1 + τ

)3/2

h(η, τ )

T − T∞
Tw − T∞

= θ(η, τ )

η = 1

2

√
Ω

ν

(
τ

1 + τ

)−1/2

z, τ = Ωt

(11)

Now substituting the above transformations into equa-
tions (6)–(9), the following nonsimilarity equations are
obtained:

(1 + εθ)h′′′ − εθ ′h′′ − (1 + εθ)2
{

4

(
1

1 + τ

)2

h′

−2η

(
1

1 + τ

)2

h′′ + 4

(
τ

1 + τ

)
∂h′

∂τ
+ 4

(
τ

1 + τ

)2

h′2

−8

(
τ

1 + τ

)2

hh′′ − 4g2 + 4

(
τ

1 + τ

)
mh′

}
= 0

(12)

(1 + εθ)g′′ − εθ ′g′ − (1 + εθ)2
{

4

(
τ

1 + τ

)
∂g

∂τ

−2η

(
1

1 + τ

)2

g′ + 8

(
τ

1 + τ

)2

h′g

−8

(
τ

1 + τ

)2

hg′ + 4

(
τ

1 + τ

)
mg

}
= 0 (13)

1

Pr
θ ′′ + 2η

(
1

1 + τ

)2

θ ′ + 8

(
τ

1 + τ

)2

θ ′h

= 4

(
τ

1 + τ

)
∂θ

∂τ
(14)

The above equations should satisfy the following
boundary conditions:

h(0, τ ) = h′(0, τ ) = 0,

g(0, τ ) = 1, θ(0, τ ) = 1 (15)

h′(∞, τ ) = g(∞, τ ) = θ(∞, τ ) = 0

where Pr (= µ∞Cp/κ) is the Prandtl number, ε is termed
the viscosity variation parameter and m (= σB2

0/ρ∞Ω)

is the magnetic field parameter. Throughout, prime de-
notes the differentiation with respect to η.

The present problem, in absence of magnetic field, has
recently been investigated by Hossain and Hossain [31].

3. ALL TIME SOLUTION

Since the system of equations (12)–(14) are locally
nonsimilar by nature, we may obtain the solution by
both the local nonsimilarity method introduced by Spar-
row and Minkowycz [32] and the implicit finite differ-
ence method together with the Keller box elimination
technique [28]. Here we propose to simulate equations
(12)–(14) by the finite difference method, since it is
found to be efficient and accurate as well-documented
and widely used by Cebici and Bradshaw [33], and re-
cently applied by Hossain et al. [27, 29]. According to the
aforementioned method, the system of partial differential
equations are first converted to a system of seven first-
order differential equations by introducing new functions
of the η derivatives. This system is then put into a finite
difference scheme in which the resulting nonlinear dif-
ference equations are linearized by the use of Newton’s
quasi-linearization method. The resulting linear differ-
ence equations, along with the boundary conditions, are
finally solved by an efficient block-tridiagonal factoriza-
tion method introduced by Keller [28].

The action of the viscosity in the fluid adjacent to the
disc sets up a tangential shear stress, which opposes the
rotation of the disc. As a consequence, it is necessary
to provide a torque at the shaft to maintain a steady
rotation. To find the tangential shear stress, τ̄φ , we apply
the Newtonian formula:

τ̄φ =
[
µ

(
∂v

∂z
+ 1

r

∂w

∂φ

)]
z=0

(16)

There is also a surface shear stress τ̄r in the radial
direction, which can be obtained by applying the New-
tonian formula:

τ̄r =
[
µ

(
∂u

∂z
+ ∂w

∂r

)]
z=0

(17)

The rate of heat transfer from the disc surface to the
fluid is computed by the application of Fourier’s law as
given below:

q̄ = −k

(
∂T

∂z

)
z=0

(18)

When the values of the functions h, g and θ are
known, using the transformations given in (11), we can
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calculate the values of dimensionless radial skin friction,
tangential skin friction and heat transfer rate, from the
following relations:

τr(1 + ε) =
(

τ

1 + τ

)1/2

h′′(0, τ )

τφ(1 + ε) =
(

τ

1 + τ

)−1/2

g′(0, τ ) (19)

q = −
(

τ

1 + τ

)−1/2

θ ′(0, τ )

4. SMALL TIME SOLUTION

For small time, i.e. when τ � 1, then the transforma-
tions given in (11) take the following form:

u = rΩτf (η, τ ), v = rΩg(η, τ )

w = −4(νΩ)1/2τ 3/2h(η, τ )

T − T∞
Tw − T∞

= θ(η, τ )

η = 1
2

√
Ω

ντ
z, τ = Ωt

(20)

Introducing the above transformation, the flow governing
equations (6)–(9) are reduced to the following non-
similarity equations that are valid for small time:

(1 + εθ)h′′′ − εh′′θ ′

= (1 + εθ)2
(

4h′ − 2ηh′′ + 4τ 2h′2 − 8τ 2h′′h

−4g2 + 4mτh′ + 4τ
∂h′

∂τ

)
= 0 (21)

(1 + εθ)g′′ − εg′θ ′

= (1 + εθ)2
(

8τ 2h′g − 2ηg′

−8τ 2hg′ + 4τ
∂g

∂τ
+ 4mτg

)
= 0 (22)

1

Pr
θ ′′ + 2ηθ ′ + 8τ 2θ ′h = 4τ

∂θ

∂τ
(23)

The boundary conditions are as follows:

h(0, τ ) = h′(0, τ ) = 0,

g(0, τ ) = 1, θ(0, τ ) = 1 (24)

h′(∞, τ ) = g(∞, τ ) = θ(∞, τ ) = 0

It may be noticed that equations (21)–(23) are non-
similar partial differential equations by nature and of the
parabolic type. Since τ � 1, we can approximate the per-
turbation solutions of equations (21)–(23) by treating τ as
the perturbation parameter. Hence, the functions h, g and
θ can be assumed to be of the following form:

h(η, τ ) =
∞∑
i=0

τ ihi(η)

g(η, τ ) =
∞∑
i=0

τ igi(η) and (25)

θ(η, τ ) =
∞∑
i=0

τ iθi(η)

where hi(η), gi(η) and θi(η) are the functions depending
on η.

Now, substituting the expression (25) into the equa-
tions (21)–(23) and taking the terms only up to O(τ 2),
gives:

(1 + εθ0)h
′′′
0 − εh′

0θ
′
0

= (1 + εθ0)
2(4h′

0 − 2ηh′′
0 − 4g2

0

)
(26)

(1 + εθ0)g
′′
0 = εg′

0θ
′
0 − 2η(1 + εθ0)

2g′
0 (27)

1

Pr
θ ′′

0 + 2ηθ ′
0 = 0 (28)

h0(0) = h′
0(0) = 0, g0(0) = θ0(0) = 1

h′
0(∞) = 0, g0(∞) = θ0(∞) = 0

(29)

(1 + εθ0)h
′′′
1 + ε

(
θ1h

′′′
0 − h′′

0θ ′
1 − h′′

1θ ′
0

)
−(1 + εθ0)

2(8h′
1 − 2ηh′′ − 8g0g1 + 4mh′

0

)
−(

2εθ1 + 2ε2θ0θ1
)(

4h′
0 − 2ηh′′

0 − 4g2
0

) = 0 (30)

(1 + εθ0)g
′′
1 + ε

(
θ1g

′′
0 − g′

0θ
′
1 − g′

1θ
′
0

)
−(1 + εθ0)

2(4g1 − 2ηg′ + 4mg0
)

+2η
(
2εθ1 + 2ε2θ0θ1

)
g′

0 = 0 (31)

1

Pr
θ ′′

1 + 2ηθ ′
1 = 4θ1

h1(0) = h′
1(0) = 0, g1(0) = θ1(0) = 0

h′
1(∞) = 0, g1(∞) = θ1(∞) = 0

(32)

(1 + εθ0)h
′′′
2 + ε

(
θ2h

′′′
0 + θ1h

′′′
1 − h′′

0θ ′
2 − h′′

1θ
′
1 − h′′

2θ
′
0

)
−(1 + εθ0)

2(12h′
2 − 2ηh′′

2 + 4h′2
0

−8h′′
0h0 − 8g0g2 − 4g2

1 + 4mh′
1

)
−(

2εθ1 + 2ε2θ0θ1
)(

8h′
1 − 2ηh′′

1 − 8g0g1 + 4mh′
0

)

15



Md. A. Hossain et al.

−{
2εθ2 + ε2(2θ0θ2 + θ2

1

)}(
4h′

0 − 2ηh′′
0 − 4g2

0

) = 0

(33)

(1 + εθ0)g
′′
2 + ε

(
θ2g

′′
0 + θ1g

′′
1 − g′

0θ
′
2 − g′

1θ
′
1 − g′

2θ
′
0

)
−(1 + εθ0)

2(8g2 − 2ηg′
2 + 8h′

0g0 − 8g′
0h1 + 4mg1

)
−(

2εθ1 + 2ε2θ0θ1
)(

4g1 − 2ηg′ + 4mg0
)

+2η
{
2εθ2 + ε2(2θ0θ2 + θ2

1

)}
g′

0 = 0 (34)

1

Pr
θ ′′

2 + 2ηθ ′
2 − 8θ ′

0h0 = 8θ2 (35)

h2(0) = h′
2(0) = 0, g2(0) = θ2(0) = 0

h′
2(∞) = 0, g2(∞) = θ2(∞) = 0

(36)

It can be seen that equations (26) and (27) are coupled
and nonlinear by nature for the case of a fluid possess-
ing variable viscosity (ε �= 0.0) and the solution of which
is not possible analytically. A similar situation prevails
for the subsequent sets. Numerical solutions of equations
(26)–(29) are obtained using the Nachtshiem–Swigert it-
eration [34] together with the sixth-order implicit Runge–
Kutta–Butcher [35] initial value solver. Solutions of the
subsequent sets of equations (30)–(36) are also obtained
by the above method for different values of the pertinent
parameters.

Once the values of the functions hn, gn and θn for
n = 0,1,2, . . . and their derivatives are known, the values
of dimensionless radial skin friction τr , tangential skin
friction τφ and heat transfer rate q can easily be obtained,
from the expressions given below:

τr (1 + ε) = τ 1/2h′′(0, τ )

τφ(1 + ε) = τ−1/2g′(0, τ ) (37)

q = −τ−1/2θ ′(0, τ )

5. LARGE TIME SOLUTION

When τ � 1 then the transformations given in (11)
reduce to the following form:

u = rΩf (η, τ ), v = rΩg(η, τ )

w = −4(νΩ)1/2h(η, τ )

T − T∞
Tw − T∞

= θ(η, τ )

η = 1

2

√
Ω

ν
z, τ = Ωt

(38)

Using the above transformation, the flow governing
equations (6)–(9) take the following form:

(1 + εθ)h′′′ − εθ ′h′′ − (1 + εθ)2

·
(

4h′2 − 4g2 − 8h′′h + 4
∂h′

∂τ
+ 4mh′

)
= 0 (39)

(1 + εθ)g′′ − εθ ′g′

−(1 + εθ)2
(

8h′g − 8hg′ + 4
∂g

∂τ
+ 4mg

)
= 0

(40)
1

Pr
θ ′′ + 8θ ′h = 4

∂θ

∂τ
(41)

The boundary conditions to be satisfied by the above
equations are:

h(0, τ ) = h′(0, τ ) = 0,

g(0, τ ) = 1, θ(0, τ ) = 1
h′(∞, τ ) = g(∞, τ ) = θ(∞, τ ) = 0

(42)

At the steady state situation the τ -derivative in the
equations (39)–(41) can be neglected. Hence,

(1 + εθ)h′′′ − εθ ′h′′

−(1 + εθ)2(4h′2 − 4g2 − 8h′′h + 4mh′) = 0

(43)

(1 + εθ)g′′ − εθ ′g′

−(1 + εθ)2(8h′g − 8hg′ + 4mg
) = 0 (44)

1

Pr
θ ′′ + 8θ ′h = 0 (45)

and the boundary conditions become:

h(0) = h′(0) = 0,

g(0) = 1, θ(0) = 1
h′(∞) = g(∞) = θ(∞) = 0

(46)

The solutions of the above sets of equations are
obtained using the methods adopted in the preceding
section. As before, once the values of the functions h,
g and θ are known, we can calculate the values of
dimensionless radial skin friction, tangential skin friction
and heat transfer rate from the following relations:

τr (1 + ε) = h′′(0)

τφ(1 + ε) = g′(0)

q = −θ ′(0)

(47)
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6. RESULTS AND DISCUSSION

Numerical simulations were carried out for the motion
of a fluid having Prandtl number Pr equal to 0.72
(suitable for air), while the viscosity variation parameter
ε = 0.0, 2.0 and 4.0 and magnetic field parameter m =
0.0, 1.0, 2.0 and 3.0. The results are presented in terms of
nondimensional local radial skin friction and tangential
skin friction, as well as the rate of heat transfer at the disc
surface, against the time-dependent parameter τ .

The growth of the axial velocity component against
time is depicted in figure 2: (a) for ε = 0.0 and (b) for
ε = 2.0, for different values of magnetic field parame-
ter m = 0.0, 1.0, 2.0 and 3.0 and for Pr = 0.72. In fig-
ure 2(a), for constant viscosity (ε = 0.0), it can be seen
that increasing the value of the magnetic field parame-
ter m leads to a reduction in the (negative) axial velocity
towards the disc, from −0.88 to −0.061 in the steady
state. In figure 2(b) axial velocity reduces from −0.59 to
−0.036 with increase in m for ε = 2.0. For the uniform
viscosity case, the magnetic field has more apparent ef-
fect on the axial velocity than in the case of variable vis-
cosity (i.e. ε �= 0.0). Similar behaviour was observed by
Attia [20].

Numerical values of the local rate of heat transfer,
for ε = 0.0 and ε = 2.0 and different values of m

for the fluid with Pr = 0.72, are displayed in table I.
From table I it can be seen that the effect of magnetic
field parameter m on the heat transfer rate in the small
time dominated regime is negligible for both values of
the viscosity variation parameter ε. At the large time
dominated regime, the imposed magnetic field on the
flow affects the rate of heat transfer significantly for
both uniform and variable viscosity. An increase in the
viscosity variation parameter ε leads to a decrease in the
values of local heat transfer rate for each values of m far
from the disc surface.

(a) (b)

Figure 2. Time development of the axial velocity for (a) ε =0.0
and (b) ε =2.0 at infinity with different values of the magnetic
field parameter m.

The perturbation solutions for small τ , asymptotic
solutions for large τ and the finite difference solutions
for the entire τ regime are illustrated in figures 3 and 4 for
comparison. Comparison between these solutions shows
excellent agreement in the respective regimes, i.e. for
small and large times.

The effects of magnetic field parameter m = 0.0, 1.0,
2.0 and 3.0 on the dimensionless radial skin friction,
as well as tangential skin friction, for the fluid with
Pr = 0.72, are depicted in figures 3(a), 4(a) and 3(b),
4(b) for ε = 0.0 and ε = 2.0, respectively. From figure 3,
it can be seen that an increasing value of m causes
a decrease in radial skin friction, whereas the radial
skin friction increases monotonically as τ increases and
eventually reaches a constant value. Further inspection of
figure 3 reveals the fact that the approach of the radial

TABLE I
Numerical values of the local rate of heat transfer q

obtained by different methods for Pr =0.72 with ε =0.0
and 2.0 and the magnetic field parameter m =0.0 and 1.0.

τ ε = 0.0 ε = 2.0

Series & Keller Series & Keller
asymptotic box asymptotic box

m = 0.0
0.01 0.9591s 0.95918 0.95910s 0.95918
0.10 3.03443s 3.04144 3.03428s 3.04128
0.20 2.14881s 2.15348 2.14840s 2.15299
0.30 1.75878s 1.76228 1.75802s 1.76131
0.40 1.52834s 1.53106 1.52716s 1.52949
0.50 1.37295s 1.37507 1.37132s 1.37277
0.60 1.25999s 1.26156 1.25784s 1.25843
0.70 1.17381s 1.17482 1.17110s 1.17077
0.80 1.10586s 1.10627 1.10255s 1.10120
0.90 1.05102s 1.05073 1.04706s 1.04457
1.00 1.00599s 1.00489 1.00136s 0.99757

∞ 0.65719a 0.65719 0.57543a 0.57543

m = 1.0
0.0001 95.91019s 95.9186 95.91019s 95.9186
0.10 3.03443s 3.04138 3.03428s 3.04122
0.20 2.14881s 2.15312 2.14840s 2.15264
0.30 1.75878s 1.76131 1.75802s 1.76039
0.40 1.52834s 1.52914 1.52716s 1.52769
0.50 1.37295s 1.37184 1.37132s 1.36978
0.60 1.25999s 1.25665 1.25784s 1.25393
0.70 1.17381s 1.16788 1.17110s 1.16447
0.80 1.10586s 1.09696 1.10255s 1.09281
0.90 1.05102s 1.03873 1.04706s 1.03384
1.00 1.00599s 0.98990 1.00136s 0.98426

∞ 0.33580a 0.33580 0.27330a 0.27330
a for large τ and s for small τ .
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(a) (b)

Figure 3. Nondimensional radial skin friction τr(1 + ε) against
τ for different values of magnetic field parameter m, while
Pr =0.72: (a) ε =0.0 and (b) ε =2.0.

(a) (b)

Figure 4. Nondimensional tangential skin friction τφ(1 + ε)
against τ for different values of magnetic field parameter m,
while Pr =0.72: (a) ε =0.0 and (b) ε =2.0.

skin friction to the asymptotic state becomes slower as ε

increases.

From figure 4, it is observed that the tangential
skin friction decreases with a decrease in the values of
magnetic field parameter m. Further, it may be seen that
the tangential skin friction decreases monotonically as τ

increases up to a steady-state value. Increasing value of ε

causes slower approach of tangential skin friction to the
asymptotic state.

The effect of increase in the viscosity variation para-
meter, ε = 0.0, 2.0 and 4.0, for different values of mag-
netic field parameter m on the dimensionless velocity and
temperature profiles as function of η is depicted in fig-
ure 5. From figure 5(a), it can be seen that an increase
in the value of ε leads to a decrease in values of dimen-

(a) (b)

(c) (d)

Figure 5. The dimensionless (a) radial velocity profile f (η, τ),
(b) tangential velocity profile g(η, τ), (c) axial velocity profile
−h(η, τ) and (d) temperature profile θ(η, τ) against η for
different values of ε =0.0, 2.0, 4.0 and with m =0.0, 1.0 for
Pr =0.72.

sionless radial velocity. Further inspection of figure 5(a)
reveals that an increase in the magnetic field parameter m

causes a significant decrease in radial velocities and thin-
ning of the momentum boundary layer. In the absence
of a magnetic field (m = 0.0) and for constant viscos-
ity the maximum radial velocity appears at η = 0.45,
whereas for m = 1.0 the maximum radial velocity ap-
pears at η = 0.30, i.e. the point of maximum radial veloc-
ity moves closer to the surface of the disc. In figure 5(b),
we see that an increase in ε also leads to a decrease in
tangential velocities in the boundary layer for both val-
ues of the magnetic field parameter (m = 0.0 and 1.0).
In figure 5(c), the nondimensional (negative) axial veloc-
ity decreases negatively from 0.22 to 0.11 with increase
in the value of ε for m = 0.0. In presence of a magnetic
field parameter (m = 1.0) the axial velocity more rapidly
approaches the steady state situation with increase in the
viscosity variation ε. From figure 5(d), it may be ob-
served that temperature profiles and the thermal bound-
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ary layer thickness increase with increasing value of ε

for both m = 0.0 and m = 1.0.

7. CONCLUSIONS

In this paper, the effects of imposed magnetic field
and temperature-dependent viscosity on the behaviour of
unsteady flow of an incompressible, viscous and elec-
trically conducting fluid due to an impulsively started
rotating disc have been investigated. The local nonsim-
ilarity equations governing the unsteady flow and heat
transfer are developed for small time and large time
regimes as well as in the entire time regime. Different
solution methodologies have been employed for the com-
plete integration of the resulting nonsimilarity equations,
namely, (i) perturbation solutions, (ii) asymptotic solu-
tions and (iii) implicit finite difference methods with the
Keller box elimination technique, for small time and large
time regimes as well as in the entire time regime, as ap-
propriate.

From the present investigation, we can draw the
following conclusions:

1. The solutions obtained for the cases of small time
regime and large time regime are found to be in excellent
agreement with that for the entire time regime, at every
selected value of the magnetic field parameter m over the
range of 0 ≤ τ ≤ 8 with ε = 0.0 and 2.0 and Pr = 0.72.

2. At the surface of the disc, the local radial skin fric-
tion increases, whereas the local tangential skin friction
decreases with increasing values of the time dependent
rotating parameter τ in both the presence and absence of
a magnetic field until the steady flow limit is reached.

3. Increasing the value of the viscosity variation
parameter ε = 0.0, 2.0. and 4.0 leads to decrease in the
values of radial and tangential velocity profile in both the
presence and absence of magnetic field for the fixed value
of Prandtl number Pr = 0.72.

4. Increasing the viscosity variation parameter ε =
0.0, 2.0. and 4.0 reduces the axial velocity towards the
disc surface for both cases m = 0.0 and m = 1.0.

5. The effect of increasing the value of the viscosity
variation parameter ε = 0.0, 2.0. and 4.0 on the dimen-
sionless radial, tangential and axial velocity profiles is to
reduce the momentum boundary layer thickness, for both
cases when m = 0.0 and 1.0 for Prandtl number equal to
0.72.

6. As the value of the viscosity variation parameter ε

increases, values of dimensionless temperature also in-
crease for both cases m = 0.0 and 1.0. This effect causes

a small increase in the thermal boundary layer thickness
in the absence of a magnetic field, but for m = 1.0 there is
a greater increase in the thermal boundary layer thickness
for Prandtl number Pr = 0.72.

7. The effect of magnetic field parameter m = 0.0 and
1.0 on the local rate of heat transfer is negligible near the
disc surface for ε = 0.0 and 2.0, but at the outer edge of
the disc surface significant effects are found on the heat
transfer rate for both values of m, again for Pr = 0.72.
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