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gas turbines, are described in detail by Owen and Rogers
(1995).
__Fig. 1 also illustrates the twin, symmetric secondary
flow recirculations computed by Wilson et al (1997) for
rotational Reynolds number Reφ_=_104, under
assumptions of steady, axisymmetric laminar flow. There
is radial outflow in boundary layers on the two discs, and
a radial inflow is formed where the boundary layers meet
along the stationary outer surface. Gan et al (1996)
obtained similar results for steady turbulent flow at higher
rotational Reynolds numbers, and these computed flow
structures were supported by measurements of velocity
distributions made using laser Doppler anemometry. The
penetration of the recirculating flow radially inward
decreased with increasing Reφ.
__There were a number of simplifications and
uncertainties in the work on this cavity described Gan et al
(1996) and Mirzaee et al (1997), some of which
contributed to the incomplete agreement obtained between
the measurements of turbulent flow and heat transfer and
the axisymmetric, steady computations. First, an isotropic
k−ε turbulence model (Launder and Sharma, 1974) was
used to close the Reynolds−averaged Navier−Stokes
equations, and this was not able to predict accurately the
combined free and forced (or Rankine) vortex flow which
measurements showed to develop. Also, for heat transfer
cases (which involved 3D flow from discrete inlet nozzles
in the experiment), the surface temperature of the heated
disc was measured but the temperature of the other
(unheated) disc was not, and semi−empirical conduction
assumptions were made for this disc which had a
significant effect on computed heat transfer results.
Finally, incompressible flow was assumed.
__Wilson et al (1997), motivated by convergence
difficulties encountered in the steady flow computations

ABSTRACT
__This paper describes the computation of laminar flow
and heat transfer in a rotating cavity with a stationary
outer surface, using time−dependent, axisymmetric
numerical simulations. The geometric configuration is
based on a cavity formed by co−rotating turbine discs in a
gas−turbine engine. Unsteady flow computations are
carried out for a rotational Reynolds number (based on the
outer radius of the disc) of 104, with one hot disc and one
cold disc. For incompressible flow, a periodic unsteady
flow develops, while for computations including variable
density effects (through the Boussinesq approximation)
the flow reaches a steady−state for some values of
Rayleigh number. The computed Nusselt number
distribution for the hot disc is significantly affected by
unsteady flow and variable density effects. Some of these
findings also apply to computations carried out at a higher
rotational Reynolds number.

1 INTRODUCTION
__Fig. 1 illustrates the rotating cavity studied in this
paper. The system comprises two corotating discs, one
heated and one unheated, a rotating inner surface and a
stationary outer surface. These two cylindrical surfaces
are both adiabatic. The aspect ratio of the cavity is given
by G_(_=_s/b_)_=_0.3. Gan et al (1996) made
measurements and carried out steady−state, axisymmetric
computations for the turbulent flow in such a system
under isothermal conditions. The configuration was used
as a model for the rotating cavity formed by co−rotating
turbine discs in a gas−turbine engine. Mirzaee et al (1996)
studied heat transfer for this system with the addition of a
superposed flow of air. The flow and heat transfer in
rotating cavities, and applications to air−cooling inside



2 COMPUTATIONAL METHOD
__Numerical simulations were carried out using the
axisymmetric time−dependent solver for the
streamfunction−vorticity form of Navier−Stokes
equations described by Wilson et al (1997), and including
solution of the energy equation. The time−dependent
vorticity and tangential velocity equations were solved
explicitly in a rotating frame of reference using the
Du−Fort Frankel method. The solution time−step was
determined from numerical stability studies for each
different calculation.
__A fixed V−cycle multigrid algorithm with
line−relaxation smoothing was used in solving the
Poisson equation for the streamfunction. Multigrid
convergence at each time−step required the total absolute
residual on the mesh to fall below 10−6 for the Poisson
equation solution (for which the maximum
streamfunction value was around 50). Values of vorticity
on the boundaries were updated using the streamfunction
solution at the new time level.
__Solutions were obtained on a collocated
finite−difference grid, contracted to the solid surfaces and
equi−spaced (separately in the axial and radial directions)
in the centre of the domain. Hybrid−upwind differencing
was used for the non−linear convection terms, and a
first−order−accurate forward difference in time was
employed. Further details of the grid, and the results of
grid−dependence tests, are given in subsequent sections.
__The fluid was initially at rest in the stationary frame of
reference, and the rotating surfaces assumed a fixed given
speed instantaneously at time t = 0. Inorder to perturb the
solution from a symmetric twin recirculation structure
(Fig. 1), a small axially varying perturbation to the
tangential velocity could be introduced. It was found,
however, that amplification of round−off errors in the
solution was sufficient to perturb the flow, and the
results presented here do not include the use of an
imposed perturbation.
__The time−dependent energy equation was solved in the
same way as those for the vorticity and tangential
velocity. The fluid was initially at the same temperature
as the isothermal cold disc, Ts = 308 K, and the hot disc
was given a higher uniform temperature To at time zero.
The disc temperatures considered were loosely based on
those given by Mirzaee et al (1997) for systems
involving a superposed cooling flow (heat transfer studies
were not conducted for the closed cavity). The cold disc
temperature Ts was used in this work to calculate
reference values of fluid properties.
__For variable density calculations the Boussinesq
approximation was introduced, in which the density is
assumed to be linearly dependent on temperature but
independent of pressure, i.e.

ρ = ρo[ 1 − β(T−Ts) ] (1)

whereρo is a reference density andβ is the volumetric

reported by Gan et al, carried outtime−dependent
axisymmetric computations for the "closed" rotating
cavity (i.e. without a superposed flow), at the lowest
rotational speed for which experimental flow data were
available (corresponding to Reφ_=_1.46_x_105). It was
found that unsteady flow developed which was not
periodic. This unsteady solution gave rise to a
time−averaged tangential velocity distribution showing
Rankine vortex behaviour, and in better agreement with
measurements than was obtained for a steady flow
solution.
__This paper describes computations of unsteady,
axisymmetric, laminar flow and heat transfer for the
closed cavity shown in Fig. 1, for which the computed
effects of unsteadiness can be studied without the
difficulties in matching experimental conditions referred
to above. It is expected that the laminar flow results
described here will inform future, improved
computations of turbulent flow cases for which
measured data exist.
__The computational procedure is described in section 2.
Flow and heat transfer results for incompressible flow
calculations are discussed in section 3, and the effects of
density variations are considered in section 4.
Conclusions and recommendations for future work are
given in section 5.
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 Fig. 1  The rotating cavity, and computed secondary flow 
streamlines, for steady incompressible flow at  Reφ = 104  



The nondimensional time−step (κδt/b2) was 10−6, and
an 80 x 96 axial by radial grid was used. The computed
flow was periodic, as illustrated in Fig. 3 by the
variation with time of the maximum and minimum
value of the streamfunction. These extrema occur at the
centre of the two recirculations established about the
axial mid−plane of the cavity (z/s_=_½). The periodic
variation is between the structure shown in Fig. 2,
where the stronger recirculation is nearer the heated disc
and the radial inflow moves toward the hot disc in the
inner part of the cavity, and the equal but opposite
situation where the stronger recirculation is closer to the
cold disc. (The secondary peaks seen in these
streamfunction variations were found to reduce when
smaller time steps were used, however the other
features of the solution were not affected).
__Fig. 4 shows the effect of the unsteadiness in the flow
on the heat transfer from the hot disc. The standard
deviation of local Nusselt number, Nu, about the
time−averaged radial distribution is shown (the absicca
x = r/b is the nondimensional radius on the disc). The
Nusselt number distribution resulting from a
steady−state calculation is also shown in Fig. 4, and is
in poor agreement with the distributions obtained for
unsteady flow. The steady solution was obtained by
solving the half−problem for the cavity, with symmetry
conditions imposed for the flow at the axial mid−plane,
and with the mid−plane fluid temperature set to
Ts_+_∆T/2. The solution, and the computed
steady−state Nu distribution shown in Fig. 4, was very
close to that obtained by solving the full problem with
the steady−state finite−volume solver used by Mirzaee
et al (1997), and with which the symmetric secondary
flow prediction shown in Fig._1 was obtained.
__The steady−state distribution shown in Fig. 4 has a
peak value for Nu at x_≈_0.65, which is close to the
innermost point of the recirculations shown in Fig. 1.
For the time−averaged distribution, the peak value for
Nu is further radially outward at x_≈_0.75, and
increased activity in the unsteady flow leads to higher

expansion coefficient. It is assumed that this
approximation is negligible in all but the Coriolis and
centrifugal terms, i.e. the fluid is a Boussinesq fluid. To
preserve the validity of this approximation, the largest
temperature difference considered was∆T
(_=_To_−_Ts_)_=_100 K. As buoyancy effects
introduce asymmetry into the flow, no other initial
perturbation to the flow would be required for these
calculations.

3 CONSTANT DENSITY FLOW RESULTS
__Fig. 2 shows instantaneous computed streamlines for
unsteady laminar flow at Reφ = 104, with ∆T = 50 K.
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 Fig. 2  Instantaneous secondary flow streamlines for 
unsteady incompressible flow computation:  Reφ = 104  

 Fig. 3 Streamfunction time−history for unsteady 
incompressible flow computation:  Reφ = 104  

 Fig. 4 Nusselt numbers for
incompressible flow computations:  Reφ = 104  
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 Fig. 5  Steady−state secondary flow streamlines for 
variable density flow computation:  Reφ = 104  
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 Fig. 6 Streamfunction time−history for unsteady 
variable density flow computation:  Reφ = 104  

 Fig. 7 Steady−state Nusselt numbers for
variable density flow computation:  Reφ = 104  

Rayleigh number Ra≈ 1.1 x 107 for this problem (the
definition of Ra is given in the nomenclature).
__The variable density time−dependent computation
developed to a steady flow structure, with asymmetric
secondary−flow recirculations, and this is shown in Fig.
5. The radial inflow between the discs is directed toward
the heated disc, at dimensionless radius x_≈_0.75. Fig. 6
illustrates the approach to the steady state in terms of the
variation of maximum and minimum values of
streamfunction with nondimensional time.
__Fig. 7 shows the computed local Nu distribution for the
heated disc for the steady−state solution. The two peaks in
Nusselt number correspond to the inner region where
recirculating flow is moving toward the disc (x_≈_0.6),
and the outer region where the radial inflow is turned
toward the disc (x_≈_0.85). This steady−state result was
also compared with computations carried out using the
steady elliptic solver from Mirzaee et al (1997), The latter
code incorporates variable density effects directly, i.e. the
Boussinesq approximation is not used. The code gave the
same general solution and distribution for Nu as shown in
Fig. 5 and Fig. 7: the position of the two peaks were
radially outward of those shown in Fig. 7, but were of
very similar magnitude.
__The influence of density variations on the stability of
the flow at Reφ = 104 was studied by carrying out further
computations for other values of∆T. It was found that
unsteady periodic flow, as described in section 3 but with
longer period, developed for∆T values up to 30 K
(Ra_=_6.6_x_106), and that steady−state conditions were
reached for∆T = 40 K (Ra_=_8.7_x_106) and above.
Similar computations were subsequently carried out for
the case Reφ = 1.46_x_105, for which Wilson et al (1997)
described isothermal axisymmetric computations which
were not periodic. For this case, unsteady non−periodic
flow continued to develop for Rayleigh numbers up to
Ra_=_4.2_x_109, although density effects caused
significant changes to time−averaged Nusselt numbers
compared with results assuming incompressible flow. As
for the Reφ_=_104 case described above, steady state heat

values for Nu over most of the disc than were computed
for steady flow. The standard deviation, S, of local
Nusselt number about the time−averaged distribution
(taken over the entire simulation) illustrates that the
greatest variation of Nu with time occurs in the lower part
of the cavity, where the radial inflow of air near the
mid−plane turns toward one or other of the discs.

4 EFFECTS OF DENSITY VARIATIONS
The unsteady computation described above was

repeated with density variations in the flow accounted for,
using the Boussinesq approximation, as described in
section 2. The conditions Reφ = 104 and∆T = 50 K give a
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z axial coordinate
β volumetric expansion coefficient (=2/(To+Ts ))
δt solution time step
∆T temperature difference ( = To − Ts)
ε turbulent energy dissipation rate
κ thermal conductivity
µ dynamic viscosity
ρ, ρo density, reference density
φ tangential coordinate
Ω angular speed of discs
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transfer computations carried out using a finite−volume
solver at Reφ_=_1.46_x_105 significantly underpredicted
time−averaged Nusselt numbers computed for the
unsteady flow.

5 CONCLUSIONS AND RECOMMENDATIONS
__Computational results have been obtained for unsteady
axisymmetric laminar flow and heat transfer in a rotating
cavity with a stationary outer surface. Computed flow
structures and disc surface Nusselt numbers are
significantly affected by modelling assumptions such as
steady flow and incompressibility. In particular, steady
flow solutions underpredict peak Nusselt numbers
obtained from unsteady calculations. It is probable that
unsteady flow and variable density effects also need to be
considered in making comparisons between
computational results and existing experimental data for
other cases involving turbulent flow.

NOMENCLATURE
a, b inner, outer radius of disc
G gap ratio ( = s/b)
k turbulent kinetic energy
Nu Nusselt number ( = qr/κ(To − Ts ) )
Pr Prandtl number
q heat flux from heated disc to air
r radial coordinate
Ra Rayleigh number ( =Reφ 2Prβ∆T)
Reφ rotational Reynolds number ( =ρΩb2/µ )
s axial gap between discs
S standard deviation
t time
T temperature
To surface temperature of heated disc ( z = 0 )
Ts surface temperature of unheated disc ( z = s )
Vr,Vφ,Vz time−averaged velocities in r,φ, z directions
x nondimensional radius ( = r/b )


