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1 Introduction

A Lie algebra L is called an Engel-n Lie algebra if it satisfies the additional
condition that ad(b)n = 0 for all b. Engel Lie algebras are related to the
”restricted Burnside problem”. This can be stated as follows: Given integers
n and r, is it true that there is an upper bound on the orders of finite r-
generator groups of exponent n?

The answer to this question is yes. In 1959 P. Hall and G. Higman[1]
made, given some assumptions about finite simple groups, the following re-
duction. ”It is sufficient to look at B(r, n) where n is a power of a prime.”
Here B(r, n) is the (relatively) free r-generator group of exponent n. From
the classification of finite simple groups we have that the assumptions of Hall
and Higman are valid.

The relationship with Lie algebras comes from the equivalence of the
following two statements.

1. There is a largest finite r-generator group of exponent pm;

2. The associated Lie-ring of B(r, pm) is nilpotent.

In 1959 Kostrikin[3] showed that statement 2 is true when m = 1 and
therefore solved the restricted Burnside problem for groups of prime expo-
nent. Here, in fact, the associated Lie algebra is an Engel-(p-1) Lie alge-
bra over a field of characteristic p. It was then not until 1989 that E. I.
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Zel’manov[10,11] completed the solution of the restricted Burnside problem
by showing that certain class of Lie algebras are locally nilpotent. This class
not only contains the Lie algebras in statement 2 for all prime powers but
also all Engel-n Lie algebras over a field. So as a corollary to Zelmanov’s
proof we have that Engel-n Lie algebras over fields are locally nilpotent. For
a more detailed discussion of the Burnside problem we refer to [4,7].

The natural question that now arises is what can be said about the nilpo-
tency class of finitely generated Engel-n Lie algebras. How does the nilpo-
tency class depend on the number of generators r and on n? In [8] Zel’manov
and Vaughan-Lee give upper bounds. Before we state their results we intro-
duce some notation. Define a function T :N ×N→N by induction in the
following way: T (m, 1) = m, T (m, r + 1) = mT (m,r). Let L be an Engel-n
Lie algebra generated by r elements. It follows from the work of Zel’manov
and Vaughan-Lee that L is nilpotent of class at most T (r, nnn

). When the
characteristic of the field is greater than n they get smaller bounds. So if
25 ≤ n < p then L is nilpotent of class at most T (r, 2n) and if 26 > n < p we
have that L is nilpotent of class at most T (r, 3n). The authors nevertheless
believe that these bounds are too high and make the conjecture that the class
can always be bounded by a function which is polynomial in r.

There is still not much evidence for this conjecture to be true. But we
have some supporting facts. From a theorem of Zel’manov[9] we have that
for each n there is a constant n0 such that every Engel-n Lie algebra over
a field k with char k > n0 or char k = 0 is nilpotent. Here the nilpotency
class does not depend on r, so we have a constant upper bound. We then
have some detailed information about Engel-n Lie algebras for small values
of n. It is well known that Lie algebras satisfying the Engel-2 identity are
nilpotent of class at most 3. In [5] it is shown that Engel-3 Lie algebras with
char k 6= 2, 5 are nilpotent of class at most 4. In that paper it is also shown
that for Engel-4 Lie algebras of characteristic 6= 2, 3, 5 we have that the class
is at most 7. For all these values of n it is known that we have a linear upper
bound in r whenever p ≥ n. For n = 3 we have that the class c is not more
than 2r when p = 5[5] and for Engel-4 Lie algebras we have c ≤ 3r when
p = 3[5] but c ≤ 6r when p = 5[2]. For Engel-5 Lie algebras we have also
linear upper bounds when char k ≥ 5[6]. It may well be that this is true for
all n.

When the characteristic p is less than n things are more complicated. In
this article we will find a polynomial upper bound fo the nilpotency class of
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Engel-3 Lie algebras over a field of characteristic 2. This can be used to get
similar results for Engel-4 Lie algebras over a field of characteristic 2.

2 Some preliminaries

Let L be an Engel-3 Lie algebra generated by {e1, . . . , er} over a field k of
characteristic 2. For a ∈ L we have the adjoint operator ad(a), defined as
follows. If v ∈ L then v ·ad(a) = va. It is easy to see that the set of all adjoint
operators is a Lie algebra with the Lie product given by [ad(a), ad(b)] :=
ad(a)ad(b) − ad(b)ad(a) = ad(ab). This Lie algebra is denoted ad(L). Let
A(L) be the associative algebra generated by ad(L) then we can think of
A(L) as a Lie algebra with the Lie product [u, v] := uv − vu. Note that the
Lie product of two elements of ad(L) is again in ad(L). The Engel-3 identity
gives us that a3 = 0 for all a ∈ad(L). This gives

0 = (λa + b)3 = λ(ab2 + bab + b2a) + λ2(a2b + aba + ba2),

and
0 = λ(a + b)3 = λ(ab2 + bab + b2a) + λ(a2b + aba + ba2).

In particular

a2b + aba + ba2 + ab2 + bab + b2a = 0,

and when |k| > 2 we can choose λ not equal to 0 or 1 which gives

a2b + aba + ba2 = 0 , ab2 + bab + b2a = 0.

But we do not want to exclude the case k = Z2. Therefore we shall only
be assuming that the first of these three identities holds. In the case when
|k| > 2 everything simplifies and we can in fact get stronger results. We will
come back to this later.

3 A polynomial upper bound

In [5] there is an example of an Engel-3 Lie algebra which shows that Id〈x〉
need not be nilpotent when char k = 2. It is therefore unlikely that there
is an linear upper bound for the nilpotency class. In this section we shall
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show that we can still get an upper bound for the nilpotency class which is
a polynomial in the number of generators.

Let L be an Engel-3 Lie algebra generated by {e1, . . . , er} over a field k of
characteristic 2. We will be working in the associative algebra A(L) generated
by ad(L).

Lemma 1 Let a, b ∈ad(L) then

b2ab + bab2 = 0, b2ab2 = 0.

Proof We have

0 = [a, b, b, b] = bab2 + b2ab.

We get the second identity by multiplying this identity with b from the left.
2

Lemma 2 Let a, b ∈ ad (L) then

b2a2b2 = 0.

Proof We have from the partial linearization of the Engel identity

(ab2 + bab + b2a)a = (ba2 + aba + a2b)a
= aba2 + a2ba
= [b, a, a, a]
= 0,

and similarly a(ab2 + bab + b2a) = 0. So

ab2a + baba + b2a2 = 0, (1)

ab2a + abab + a2b2 = 0. (2)

If we interchange a and b in (1) we get from (2)

ab2a = ba2b. (3)

Then using (1),(2) and (3) we have
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[a, b]2 = abab + ab2a + baba + ba2b = a2b2 + b2a2, (4)

and then

[a, b]b[a, b] = ab2ab + babab + bab2a
= b2a2b + bab2a (by (1))
= b · 0 (by (3))
= 0.

It now follows from the identities above that

0 = ([a, b]2b + [a, b]b[a, b] + b[a, b]2 + [a, b]b2

+b[a, b]b + b2[a, b])b

= b2a2b2 + b2ab2 + b2ab2

= b2a2b2

and we have the lemma. 2

Lemma 3 Let a, b, c ∈ad(L) then

[b, c]ac2 + c2a[b, c] = 0, [b, c]a[b, c] = b2ac2 + c2ab2.

Proof From the Engel identity we have

0 = bc[a, c, c] + cb[a, c, c] + [a, c, c]bc + [a, c, c]cb

+b[a, c, c]c + c[a, c, c]b

= bcac2 + cbac2 + cbc2a + ac2bc + c2abc + c2acb

+bc2ac + cac2b

= [b, c]ac2 + c2a[b, c] + c(bc2a + ac2b) + (bc2a + ac2b)c.

But using Lemma 1 and the Engel identity we get

c(bc2a + ac2b) + (bc2a + ac2b)c = c2(bca + acb) + (bca + acb)c2

= c2(bac + abc) + (cba + cab)c2

= c2[a, b]c + c[a, b]c2

= 0.
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So we have got the first identity. Now we have from Lemma 1

0 = (b + c)2a(b + c)2

= (b2 + c2 + [b, c])a(b2 + c2 + [b, c])

= b2a[b, c] + [b, c]ab2 + c2a[b, c] + [b, c]ac2 + [b, c]a[b, c]

+b2ac2 + c2ab2 + b2ab2 + c2ac2

= [b, c]a[b, c] + b2ac2 + c2ab2

which gives the second identity. 2

Lemma 4 Let x1 = a2, x2 = [b, c] and x3 = d where a, b, c, d ∈ad(L) then

∑

σ∈Sym(3)

xσ(1)xσ(2)xσ(3) = 0.

Proof Let u = [b, c]. From the Engel identity we have

0 = a[d, u, u]d + ad[d, u, u] + d[d, u, u]a + [d, u, u]da

+da[d, u, u] + [d, u, u]ad

= ad2u2 + au2d2 + d2u2a + u2d2a + [d, u, u]ad + da[d, u, u]. (5)

But since u2 = b2c2 + c2b2 = [b, c, c, b] ∈ad(L), we have

0 = (d + u2)2a(d + u2) + (d + u2)a(d + u2)2

= d2ad + dad2 + [d, u, u]au2 + u2a[d, u, u]

+[d, u, u]ad + da[d, u, u] + d2au2 + u2ad2.

And because

[d, u, u]au2 + u2a[d, u, u] = du2au2 + u2au2d + u2dau2 + u2adu2

= u2[d, a]u2

= 0

we have then by Lemma 3
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[d, u, u]ad + da[d, u, u] = d2au2 + u2ad2

= [d, u]a[d, u],

so (5) gives

0 = a[d, u]2 + [d, u]2a + [d, u]a[d, u].

From the Engel identity we now have

[d, u]a2 + a[d, u]a + a2[d, u] = a[d, u]2 + [d, u]2a + [d, u]a[d, u]
= 0.

Since from (3) we have a[d, u]a = da2u + ua2d, the lemma now follows. 2

Lemma 5 Let x1 = a2, x2 = [b, c] and x3 = d2 where a, b, c, d ∈ad (L) then

∑

σ∈Sym(3)

xσ(1)xσ(2)xσ(3) = 0.

Proof Let u = [b, c]. Because u2 ∈ad(L) we have by (2.6) and the Engel
identity

[a, d]u2 + u2[a, d] + u[a, d]u = adu2 + dau2 + u2ad + u2da
+au2d + du2a

= 0.

Therefore by the Engel identity

u[a, d]2 + [a, d]u[a, d] + [a, d]2u = [a, d]u2 + u2[a, d] + u[a, d]u
= 0.

But from Lemma 3 we have [a, d]u[a, d] = a2ud2 +d2ua2 and therefore, using
(4) for the second identity, we get

0 = u[a, d]2 + [a, d]2u + a2ud2 + d2ua2

= ua2d2 + ud2a2 + a2d2u + d2a2u

+a2ud2 + d2ua2
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and hence we have the lemma. 2

Consider now the Lie product

u = [x1, x2, . . . , xn]

where n ≥ 2 and xi = ai or a2
i with ai ∈ad(L). We then have u ∈ad(L).

This follows from

[a2, b] = [b, a, a] and [a2, b2] = [a, b, b, a].

We prove the second identity. We have

[a, b, b, a] = [a, b, b]a + a[a, b, b]
= ab2a + b2a2 + a2b2 + ab2a
= a2b2 + a2a2

= [a2, b2].

The first identity is easily proved by similar calculations. It is therefore clear
that if b ∈ad(L) then b2ub2 = 0 when n ≥ 2. But from Lemma 2, we have
that this is also true if n = 1. Note also the following fact, although we will
not have to use it.

[b2
1, b

2
2, . . . , b

2
n] = [b1, b2, . . . , bn]2

which follows by induction from [a2, b2] = [a, b]2.

Proposition 1 Let H= {x1, x2, . . . , x2s} = {a1, . . . , as, a
2
1, . . . , a

2
s} where ai ∈ad(L).

Suppose that

t ≥ 4s3 + 2s2 + s + 1,

that c is some Lie product in ad(L) of length greater than one, and that

u1, u2, . . . uj are Lie products of elements in H. If b ∈ad(L) then all products

of t + 1 b2’s and u1, . . . , uj, c are zero.

Proof We prove this by induction on j. If 0 ≤ j ≤ 2t−2 this is clearly true
since b2uib

2 = 0 and b4 = 0. So assume j ≥ 2t − 1 and that the proposition
is true when j is smaller. Now if c, ui or ui, uj are adjacent then the product
is symmetric in these two elements. This follows from
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· · · [c, ui] · · · = 0 and · · · [ui, uj] · · · = 0 (by the inductive hypothesis)

From lemmas 4 and 5 we have that the product is also symmetric in c, ui if
they are separated by b2, since

0 = (· · ·uicb
2 · · ·) + (· · · cuib

2 · · ·) + (· · · b2cui · · ·) + (· · · b2uic · · ·)

+(· · ·uib
2c · · ·) + (· · · cb2ui · · ·)

= 2(· · ·uicb
2 · · ·) + 2(· · · b2cui · · ·) + (· · · cb2ui · · ·) + (· · ·uib

2c · · ·)

= (· · · cb2ui · · ·) − (· · ·uib
2c).

It follows that we can bring any two u’s together without changing the value
of the product. Here c acts as a ”lift” to bring elements over b2. As an
example let us see how we can bring u1 and u5 together in the product
b2u1u2b

2u3cb
2u4u5b

2.

b2u1u2b
2u3cb

2a4a5b
2 = b2u2u1b

2cu3b
2u4u5b

2

= b2u2cb
2u1u3b

2u4u5b
2

= b2u2cb
2u3u1b

2u4u5b
2

= b2u2u3b
2cu1b

2u4u5b
2

= b2u2u3b
2u1cb

2u5u4b
2

= b2u2u3b
2u1u5b

2cu4b
2.

We argue by contradiction and assume that there is non-zero product with
j u’s. We choose such a product with a maximal number of u’s of length 1
and with a maximal number of u’s of length more than 1 ending in a square.
Now u1, u2, . . . , uj have one of the following forms

xf , [xf , xg], [xf , xg, xh], or [u, xf , xg, xh]

where u is some Lie product of elements in H. Since j ≥ (2s)3+(2s)2+(2s)+1,
two of the products u1, . . . , uj must have the same three last elements (could
be ∅, xi, xj or ∅, ∅, xi). Call these two elements v1, v2. We can now bring
these elements together and get the subproduct

v1v2 = [w1, xi][w2, xi].
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We consider two cases.

Case 1. xi is a square.

Then since xiuxi = 0 for all products u of elements in H, we have that
both w1, w2 must be non-empty if v1v2 is not to be zero. So

v1v2 = xiw1w2xi = [xi, w1, w2]xi

and we can replace v1, v2 with [xi, w1, w2], xi and get a product with more u’s
of length one. Therefore the product which we chose must have been zero
which is a contradiction.

Case 2. xi is not a square.

Now if one of the w’s were a square in H, then v1 = [xi, w1] and we would
have a product with more u’s ending in a square. But then the product would
have to be zero. We can therefore assume that the w’s are either empty or
in ad(L). If one of the w’s is empty, and therefore both, we would have

v1v2 = x2
i .

But then we could replace v1, v2 with a square from H. That is we would
have a product with fewer u’s and hence it would be zero by the induction
hypothesis. We can therefore assume that both the w’s are non-empty. If
both w1, w2 have length ≤ 2 then w1 = w2 so

v1 = w1xiw1xi + xiw1xiw1 + xiw
2
1xi + w1x

2
i w1

= w2
1x

2
i + x2

i w
2
1 (by (1),(2))

= [w1, x
2
i , w1]

and we would have a product with fewer u’s. We can therefore assume that
at least one of the w’s has length ≥ 3. Let us say it is w2, the other case can
be treated similarly. If w2 = [w, xj] then

x2
i w2 + xiw2xi + w2x

2
i =

x2
i [w, xj] + wx2

i xj + xjx
2
i w + [w, xj ]x

2
i = 0 (6)
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where we are using (3) for the first identity and Lemmas 4 and 5 for the
second. Now

v1v2 = w1xiw2xi + xiw1xiw2 + xiw1w2xi + w1x
2
i w2.

Then

w2w1x
2
i = [w1, w2]x

2
i + w1w2x

2
i

= [w1, w2]x
2
i + w1x

2
i w2 + w1xiw2xi (by (6))

= [w1, w2]x
2
i + w1x

2
i w2 + w1[w2, x

2
i ] (by (6))

and

w1xiw2xi + w2xiw1xi = xi[w1, w2]xi + [w1, w2]x
2
i

= x2
i [w1, w2]

where the first identity follows from the Engel identity and the second is
true for the same reason as (6). Therefore

[xi, w1, w2]xi = xiw1w2xi + w1xiw2xi + w2xiw1xi + w2w1x
2
i

= xiw1w2xi + x2
i [w1, w2] + [w1, w2]x

2
i

+w1[w2, x
2
i ] + w1x

2
i w2

which implies that

xiw1w2xi + w1x
2
i w2 = [w1, w2, x

2
i ] + w1[w2, x

2
i ] + [xi, w1, w2]xi.

So

v1v2 = w1[w2, x
2
i ] + [w1, w2, x

2
i ] + w1[w2, x

2
i ] + xiw1xiw2

+[xi, w1, w2]xi (using (6))
= [w1, w2, x

2
i ] + x2

i [w1, w2] + xi[w1, w2]xi + xiw2xiw1

+[xi, w1, w2]xi (using the Engel id.)
= [w1, w2, x

2
i ] + [w1, w2]x

2
i + [xi, w1, w2]xi + [w2, x

2
i ]w1. (by (6))

The first elements gives a product with fewer u’s. Products 2 and 3 give
products with more u’s of length 1, and the last element is product with
more u’s ending in a square. So therefore the product we chose must have
been zero. 2
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Corollary 1 Let H= {x1, x2, . . . , x2s} = {a1, . . . , as, a
2
1, . . . , a

2
s} where ai ∈ad(L).

Suppose that

t ≥ 4s3 + 2s2 + s + 1,

and that u1, u2, . . . , uj are Lie products of elements in H. If b ∈ad(L) then

all products of t + 2 b2’s and u1, u2, . . . uj are zero.

Proof From the proposition it follows that if b2 and ui are adjacent in such
a product then the product is symmetric in b2 and ui. This follows since

· · · [ui, b
2] · · ·

would be a product of t + 1 occurrences of b2, c = [ui, b
2] and j − 1 u’s and

would therefore be zero because of the proposition. We can therefore bring
two b2’s together and get b4. Therefore the product is zero. 2

Corollary 2 Let b ∈ad(L) then

Id〈b2〉4r3+2r2+r+2 = {0}.

Proof Let H= {ad(e1), . . . , ad(er), ad(e1)
2, . . . , ad(e2

r}. The corollary now
follows from the last corollary. 2

Let K= {ad(ei)
2, ad(ei + ej)

2 : 1 ≤ i ≤ r, 1 ≤ j ≤ r − 1 and j < i}.
Let J be the ideal of A(L) generated by K. In the product

ad(ei1) · · ·ad(eir+1) (∗)

one of the generators must appear twice. Since

[ad(eik), ad(eik+1
)] = ad(eik)

2 + ad(eik+1
)2 + ad(eik + eik+1

)2

we have that the elements in (∗) commute modulo J . So modulo J we have

ad(ei1) · · ·ad(eir+1) = ad(eiσ(1)
) · · · ad(eiσ(r+1)

)

for all σ ∈ Sym(r + 1). Suppose eil = eim then for a suitable σ we have

ad(ei1) · · ·ad(eir+1) = · · · ad(eil)ad(eim) · · ·
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which is in J . This implies that products of length (r+1)s can be written as
a sum of products including s elements from K. Since |K| = r + r(r−1)/2 =
r(r + 1)/2 and 4r3 + 2r2 + r + 1 ≤ 4(r + 1)3 it follows now from Corollary 2
that if

s ≥
r(r + 1)

2
4(r + 1)3 + 1

then products of length (r +1)s would be zero. This implies that the nilpot-
ency class of L is less than 2(r +1)6. We have therefore proved the following
theorem.

Theorem 1 If L is an Engel-3 algebra over a field k with characteristic 2
generated by r elements, then it is nilpotent of class less than

2(r + 1)6.

As we said earlier, everything simplifies when we add the assumption that
|k| > 2. By going through the same type of arguments as above one can
prove that if we have this extra condition then the nilpotency class is less
than

(r + 1)4

2
.

From this we get the following result for Engel-4 Lie algebras

Corollary 3 Let L be a Engel-4 Lie algebra over a field k of characteristic 2
and with |k| ≥ 4. Suppose L is generated by r elements. Then L is nilpotent

of class not more than

(r + 1)4

2
.

Proof Since char k = 2 we have

b(ax3) = bax3 − 3bxax2 + 3bx2ax − bx3a

= bax3 + bxax2 + bx2ax + bx3a

= 0.

Where the last equality follows from the Engel-4 identity since L is multi-
graded. Let I be the ideal in L generated by {ax3 |a, x ∈ L}. Then L/I is an
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Engel-3 Lie algebra and since |k| > 2 we have that L/I is nilpotent of class
less than (r + 1)4/2 and from the calculations above we have that Ib = 0 in
L for all b ∈ L. Therefore the corollary follows. 2
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