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Introduction

We say that a group G has the “congruence intersection property”, or more
shortly that the group is a CIP group, if

HG ∩ KG = (H ∩ K)G

for all H, K ≤ G.

The term “congruence intersection property” originates from universal al-
gebra [6]. The interested reader is referred to this paper for a more general
definition. As we will see, CIP groups are closely related to Dedekind groups.
A group is a Dedekind group if every subgroup is normal. These groups have
been classified [3,4]. A group G is a Dedekind group if and only if G is either
abelian or the direct product of a quaternion group of order 8 and an abelian
torsion group without elements of order 4. It is obvious that every Dedekind
group is a CIP group. Whether the converse holds is still an open question.
Our main result is the following.

Theorem 1 If G is a CIP group that is not a Dedekind group then G has a

factor N with the following properties:

1. N is torsion free.

2. If a, b ∈ N \ {1} then 〈a〉 ∩ 〈b〉 6= {1}.
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3. N is simple.

In Section 2 we will in fact get more detailed information about the structure
of G, given that it exists. Clearly a group N with the properties above is
a CIP group. The theorem therefore implies that the existence of a non-
Dedekind CIP group is equivalent to the existence of a group N with those
properties above. Both Adian[1,2] and Ol’shanskii[5] have constructed a
nonabelian group with properties 1 and 2. These groups are however not
simple. The author has spoken to Ol’shanskii who believes that such a group
exists. But as far as we know a construction of such a group has not yet been
made.

1 CIP groups which are finitely generated or

torsion groups

In this section we will show that CIP groups that are either finitely generated
or torsion groups are Dedekind groups. We will denote the normal closure
of a subgroup H by H .

Lemma 1 Let G be a CIP group. If a, b ∈ G do not commute then 〈a〉∩〈b〉 6=
{1}.

Proof We have 1 6= [a, b] ∈ 〈a〉 ∩ 〈b〉 = 〈a〉 ∩ 〈b〉. Therefore we must have
〈a〉 ∩ 〈b〉 6= {1}. 2

Lemma 2 If a, b are elements in a CIP group and a 6= 1, then there is an

n ∈ N such that an commutes with b and an 6= 1.

Proof If a and b commute then we can take n = 1. Suppose then that they
do not commute. By Lemma 1 we have that 1 6= an ∈ 〈a〉 ∩ 〈b〉 for some
n ∈ N. 2

Lemma 3 If G is a CIP group and a ∈ G has order p, where p is a prime,

then a ∈ Z(G).

Proof Let b ∈ G. By Lemma 2 we have that an = anb for some n 6≡
0 (mod p). Let m be the inverse of n modulo p. Then a = anm = anmb = ab.
So a commutes with b. 2
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Proposition 1 Let G be a CIP group. If a ∈ G is of finite order then

〈a〉 = 〈a〉.

Proof We prove this by induction on the order of a. This is true if the
order is a prime by Lemma 3. Now suppose a has order n = mp with m > 1
and suppose that the proposition is true when a is of smaller order. Then
am ∈ Z(G) by Lemma 3. Now consider H = G/〈am〉. This is also a CIP
group (easy to see) and we therefore have from the induction hypothesis that

〈a〉/〈am〉 = 〈a〉/〈am〉

which implies that 〈a〉 = 〈a〉. 2

Proposition 2 If G is a finitely generated CIP group then also 〈a〉 = 〈a〉
when a is of infinite order.

Proof Suppose G = 〈b1, b2, . . . , bm〉. By Lemma 2 there are integers n1, . . . , nm

such that ani commutes with bi. Let n = n1n2 · · ·nm then an ∈ Z(G). Now
consider H = G/〈an〉. Since H is a CIP group and a is of finite order modulo
〈an〉 we get from Proposition 1 that 〈a〉/〈an〉 = 〈a〉/〈an〉 which implies that
〈a〉 = 〈a〉. 2

It follows from Proposition 1 and Proposition 2 that torsion CIP groups
and finitely generated CIP groups are Dedekind groups. It is also clear that
every Dedekind group is a CIP group.

2 Non-Dedekind CIP groups

Let us now assume that G is a CIP group which is not a Dedekind group.
In this section we will prove Theorem 1. We will divide the proof into few
simple steps.

Step 1. All torsion elements of G are in Z(G).

Proof Since G is not a Dedekind group it must contain an element a of
infinite order by Proposition 1.

We first show that the torsion elements commute with elements of infinite
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order. So suppose b is of finite order and c of infinite order. If b and c do not
commute then we have by Lemma 1 that 〈b〉 ∩ 〈c〉 6= 1 which is absurd since
the intersection would contain an element which is both of finite order and
infinite order.

Now suppose b, c are of finite order. By last paragraph we have that c and
a commute which implies that ca is of infinite order. Then b commutes with
both ca and a and then also c = ca · a−1.

It follows that all torsion elements are in Z(G). 2

Step 2. By step 1 the torsion elements form a group τ(G). Let H = G/τ(G).
H is a torsion-free CIP group that is not a Dedekind group.

Proof It is clear that H is a torsion-free CIP group. Let us show that
it is not a Dedekind group.

Suppose H is a Dedekind group. Let a, b ∈ H and suppose ab = ar. By
Lemma 2 there is an n ∈ N with anb = an. Then

an = anb = anr.

But since a is of infinite order this implies that r = 1 and thus H must be
abelian if it is a Dedekind group.

Since G is not a Dedekind group we must have some non-commuting el-
ements c, d ∈ G. By Step 1 we have that c, d are both of infinite order.
Then

1 6= [c, d] ∈ 〈[c, d]〉 ∩ 〈c〉 = 〈[c, d]〉 ∩ 〈c〉

which implies that 〈[c, d]〉∩〈c〉 6= {1}. Therefore [c, d] is of infinite order since
c is of infinite order. But if H is a Dedekind group, and therefore abelian,
we have [c, d] ∈ τ(G). Therefore H is not a Dedekind group. 2

We remind the reader that a group is an Engel group if for each ordered
pair (x, y) of elements in the group there is a positive integer n(x, y) such
that [x, · · · , [x, [x

︸ ︷︷ ︸

n(x,y)

, y]]] = 1.
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Step 3. H is not an Engel group.

Proof Since H is not a Dedekind group there are a, b ∈ H such that
[a, b] 6= 1. If H was an Engel group there would be an integer n ≥ 1 such
that

c := [a, . . . , [a, [a
︸ ︷︷ ︸

n

, b]]] 6= 1

but with [a, c] = 1. By Lemma 2 there is an m ∈ N such that

[am, [a, . . . , [a, [a
︸ ︷︷ ︸

n−1

, b]]]] = 1.

But it is easy to see that the left hand side is equal to cam−1+···+a+1. Since a
commutes with c, it follows that

1 = cam−1+···+a+1 = cm

which is absurd since H is torsion free. 2

Step 4. H has the property that every two (non-trivial) cyclic subgroups
intersect non-trivially.

Proof Let I = H \ {1}. We define an equivalence relation on I as fol-
lows

a ∼ b iff 〈a〉 ∩ 〈b〉 6= {1}.

Let us first see why this is an equivalence relation. The only thing that
is non-trivial is the transitivity property. Suppose a ∼ b and b ∼ c, say
〈a〉 ∩ 〈b〉 = 〈br〉 and 〈b〉 ∩ 〈c〉 = 〈bs〉, then 〈brs〉 ⊆ 〈a〉 ∩ 〈b〉 ∩ 〈c〉. Since b is of
infinite order this implies that 〈a〉 ∩ 〈c〉 6= {1}, that is a ∼ c.

Suppose c ∼ d and cr ∈ 〈d〉. We will show that either cd ∼ d or cd = 1. If c
commutes with d then

(cd)r = crdr ∈ 〈d〉

so cd ∼ d or cd = 1, since H is torsion free. If c does not commute with d
then [cd, d] 6= 1 and Lemma 1 implies that cd ∼ d.
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Now take some non-commuting elements a, b ∈ I. Let [a] be the equiva-
lence class of a and let K = [a] ∪ {1}. It is obvious that an inverse of an
element in K is in K. It then follows from last paragraph that K is a sub-
group of H .

We now show that K = H . Since [a, b] 6= 1 we have by Lemma 1 that
a ∼ b. Suppose c ∈ H \ K then we have that c commutes with a by Lemma
1 (a ∈ K ⇒ 〈a〉 ∩ 〈c〉 = {1}). It follows that a does not commute with
bc. Then it follows from Lemma 1 that bc ∼ a so bc ∈ K. It follows that
c = b−1 · bc ∈ K which is a contradiction.

Therefore H = K and has therefore the claimed property. 2

Step 5. Let N =
⋂

a∈H\{1} 〈a〉 then N 6= {1}.

Proof Let b ∈ H \ {1} and consider H/〈b〉. Since 〈a〉 ∩ 〈b〉 6= {1} for
all a ∈ H \ {1} we have that H/〈b〉 is a torsion CIP group. By Proposition
1 it is then a Dedekind group. Let a, c ∈ H since H/〈b〉 is a Dedekind group
we have

ac ≡ ar (mod 〈b〉)

for some r and thus [a, [a, c]] ≡ [a, ar−1] ≡ 1 (mod 〈b〉).

By last paragraph [a, [a, c]] ∈ 〈b〉 for all b ∈ H \ {1}. It follows that
[a, [a, c]] ∈ N . So H/N is an 2-Engel group. It then follows from Step 3
that N 6= {1}. 2

Step 6. For every element a ∈ N we have that H = CH(a)N .

Proof We have

H =
∏

b∈H

〈b〉 =
∏

b∈H

〈b〉 ∩ 〈ba〉 =
∏

b∈H

〈b〉 ∩ 〈ba〉.

Suppose that 〈b〉 ∩ 〈ba〉 = 〈bna(b)〉. We first show that bna(b) commutes with
a for all b ∈ H . Suppose bna(b) = bra. By Lemma 2 there is an m ∈ N such
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that bma = bm. Then (if b 6= 1)

bmna(b) = brma = bmr

which implies that r = na(b). Let A = 〈bna(b) : b ∈ H〉. We have proved that
every element of A commutes with a and that A = H .

Since N is a minimal normal subgroup of H and H/N is a Dedekind group,
we have A = AN . Hence H = A = AN .

Theorem 1 If G is a CIP group that is not a Dedekind group then G has

factor N with the following properties:

1. N is torsion free.

2. If a, b ∈ N \ {1} then 〈a〉 ∩ 〈b〉 6= {1}.

3. N is simple.

Proof Since N is a non-trivial subgroup of H we have that 1 and 2 follow
form steps 2 and 4. Let us prove 3.

Let a ∈ N \ {1}. By Step 6 we have that H = CH(a)N . Then since N
is a minimal normal subgroup we have N = aH . Therefore

N = aH = aCH(a)N = aN .

Since this is true for all a ∈ N \ {1} we have that N is simple. 2

3 Simple subgroups of groups with the inter-

section property

From now on suppose G is a group satisfying property 2 in Theorem 1. If
such a group is finitely generated and torsion free it can’t have a simple
subgroup. If G = 〈a1, . . . , am〉 then

⋂
〈ai〉 would be an abelian normal sub-

group. Because of the intersection property 2 this would imply that every
simple subgroup would be contained in this abelian normal subgroup which
is absurd. It is therefore clear that if G is torsion free and contains a simple
subgroup then G must be infinitely generated.
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Proposition 3 If {Hi : i ∈ I} is a family of simple subgroups of G. Then

the join of them
∨

i∈I Hi is also a simple subgroup.

Proof Let H =
∨

i∈I Hi. Suppose R is a non-trivial normal subgroup of H .
Then Hi ∩ R is a non-trivial normal subgroup of Hi for all i ∈ I. Therefore
Hi ≤ R for all i ∈ I and thus H = R. 2

Proposition 4 If G has a simple subgroup then G has a unique maximal

simple subgroup S(G). Furthermore, S(G) is the unique minimal normal

subgroup of G.

Proof Let L be a simple subgroup of G and R be a normal subgroup. Since
L ∩ R is a non-trivial normal subgroup of L we have that L ≤ R.

By assumption there exists a simple subgroup. Let S(G) be its normal clo-
sure. By Proposition 3 we have that S(G) is simple. By the last paragraph
we have that S(G) is contained in every normal subgroup so it is the minimal
normal subgroup. It also follows from the last paragraph that S(G) contains
all simple subgroups (since it is normal) and thus it is the unique maximal
simple subgroup. 2
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tention to CIP groups. The Author would also like to thank Prof. A. Yu.
Ol’shanskii and Dr. Peter Neumann for interesting conversations.

References

[1] S. I. Adian, On some torsion-free groups, Izv. Akad. Nauk SSSR Ser.

Mat. 35 (1971), 459-468.

[2] S. I. Adian, The Burnside Problem and Identities in Groups (transl. J.
Lennox and J. Wiegold), Ergebnisse der Mathematik und ihrer Gren-
zgebiete, 95 Berlin, Springer-Verlag (1979).

[3] R. Baer, Situation der Untergruppen und Struktur der Gruppe, S. B.
Heidelberg Akad. Mat. Nat. Klasse 2 (1933), 12-17.

8



[4] R. Dedekind, Ueber Gruppen, deren Sämmtliche Theiler Normaltheiler
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