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1 Introduction

We will be using Heineken’s notation in [10] and will denote the commutator
of two group elements a and b, a−1b−1ab, by a ◦ b.

A group G is an Engel group if for each ordered pair (x, y) of elements
in G there is a positive integer n(x, y) such that

x ◦ (· · · (x ◦ (x
︸ ︷︷ ︸

n(x,y)

◦y))) = 1. (1)

We will be using bracketing from right. But since

(((y ◦ x) ◦ x) · · ·) ◦ x
︸ ︷︷ ︸

m

= (x−1 ◦ (· · · (x−1 ◦ (x−1

︸ ︷︷ ︸

m

◦y))))xm

it does not matter whether we use bracketing from right or from left in the
definition.

The origin of Engel groups lies in the theory of Lie algebras. In fact they are
a group theoretic analog of Engel Lie algebras. It is therefore hardly surpris-
ing that many results in the theory of Engel Lie algebras can be translated
into theorems on Engel groups. As an example, one of the basic classical
results for Engel Lie algebras is Engel’s Theorem. It states that every finite
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dimensional Engel Lie algebra over a field is nilpotent. In 1936 Zorn [19]
proved a corresponding theorem for Engel groups.

Zorn’s Theorem. A finite Engel group is nilpotent.

So for finite groups the Engel condition is equivalent to nilpotency, but it
is much weaker in general. It is clear from the definition that every locally
nilpotent group is an Engel group. But the converse does not hold in gen-
eral since Golod[3] has constructed finitely generated Engel groups that are
not nilpotent. For some special classes of groups we do have that the Engel
condition is equivalent to local nilpotency. Gruenberg[5] showed that this is
true for soluble groups and in [2] Baer shows that this also holds for groups
with the maximal condition.

Now suppose n = n(x, y) in (1) can be chosen independently of x and y.
We then say that G is an n-Engel group. Now turn back for a moment to
Engel Lie algebras. We have the following two results of E. I. Zel’manov.

Theorem Z1.[15] Every n-Engel Lie algebra over a field k with char k = 0
is nilpotent.

Theorem Z2.[17,18] An n-Engel Lie algebra over an arbitrary field is lo-
cally nilpotent.

Now consider the corresponding statements for Engel groups.

Q1. Is every torsion free n-Engel group nilpotent?

Q2. Is every n-Engel group locally nilpotent?

The answer to both of these questions is known to be positive for n ≤ 3
but the questions remain open for n ≥ 4. This is of course obvious for n = 1,
since 1-Engel groups are exactly the abelian groups. In 1942 Levi[12] solved
the problem for n = 2. In fact he proved that a group G is a 2-Engel group
if and only if the normal closure xG of an arbitrary element x is abelian.
Furthermore we have that every 2-Engel group is nilpotent of class at most
3. For 3-Engel groups the problem is much harder. Heineken[10] gave a



4-Engel groups 3

positive answer for both questions in 1961. He proved that every 3-Engel
group G is nilpotent of class at most 4 if G has no elements of order 2 or
5. There are 3-Engel 2-groups and 5-groups that are not nilpotent. In fact
there is a 3-Engel 5-group that is not soluble [1] but N. Gupta[6] has shown
that 3-Engel 2-groups are soluble. In 1972 L. Kappe and W. Kappe[11] gave
a characterization of 3-Engel groups which is analogous to Levi’s theorem on
2-Engel groups. They showed that the following are equivalent:

(1) G is a 3-Engel group,

(2) xG is a 2-Engel group for all x ∈ G,

(3) For all x ∈ G we have that xG is nilpotent of class at most 2.

It follows from property 3 that a 3-Engel group with r generators has nilpo-
tency class at most 2r. We do not have a corresponding characterization for
4-Engel groups. N. Gupta and F. Levin[7] have constructed a 4-Engel group
with an element x such that the nilpotency class of xG is greater than 3. In
[1] it is shown that for all n ≥ 2 there is a r-generator 3-Engel group which
is nilpotent of class at least 2r − 1. Then in [8] Newman and Gupta show
that 2r − 1 is the correct upper bound when n ≥ 2. In that paper they also
get some further information about the structure of 3-Engel groups.

In this paper we will be looking at 4-Engel groups. Our main results are
the following.

Theorem 1 Let G be a 4-Engel group. The torsion elements form a sub-
group τ(G) and τ(G)/Z(τ(G)) is a direct product of p-groups.

Remark. Notice that it does not follow that 4-Engel torsion groups are
locally nilpotent since there are infinite p-groups which are not locally nilpo-
tent. But this theorem implies that 4-Engel groups are locally nilpotent if
and only if torsion free 4-Engel groups are locally nilpotent and for each
prime p we have that 4-Engel p-groups are locally finite.

Theorem 2 Let G be a 4-Engel group and let rad(G) be the locally nilpotent
radical of G. If G is a 2-group or 3-group then it is locally finite. If p is a
prime and p is not 2 or 3 then G/rad(G) has exponent dividing p.

Remark. So the question whether 4-Engel torsion groups are locally nilpo-
tent reduces to the ”Burnside problem for 4-Engel groups”: for what primes
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p are all 4-Engel groups of exponent p locally finite.

If we assume that G is locally nilpotent then we can use results on 4-Engel
Lie algebras to get the following theorem.

Theorem 3 Let G be a locally nilpotent 4-Engel group. If G is a p-group
where p 6= 2, 3, 5 then G is nilpotent of class at most 7. If G is a 5-group
then every r-generator subgroup has class at most 6r.

2 A reduction theorem

Let G be a 4-Engel group. We have

1 = a ◦ (a ◦ (a ◦ (a ◦ b)))

= a ◦ [(a ◦ (a ◦ b))−a · (a ◦ (a ◦ b))]

= (a ◦ (a ◦ b))−a · (a ◦ (a ◦ b))a2

· (a ◦ (a ◦ b))−a · (a ◦ (a ◦ b))

= (a ◦ b)−a(a ◦ b)a2

(a ◦ b)−a3

(a ◦ b)a2

(a ◦ b)−a(a ◦ b)a2

(a ◦ b)−a(a ◦ b)

which implies that

(a ◦ (a ◦ b))a2

=(a ◦ (a ◦ b))a · (a ◦ (a ◦ b))−1 · (a ◦ (a ◦ b))a (2)

(a ◦ b)a3

=(a ◦ b)a2

(a ◦ b)−a(a ◦ b)a2

(a ◦ b)−a(a ◦ b)(a ◦ b)−a(a ◦ b)a2

. (3)

Also

1 = (((b ◦ a) ◦ a) ◦ a) ◦ a

= [((a ◦ b)(a ◦ b)−a)] ◦ a] ◦ a

= [(a ◦ b)a(a ◦ b)−1(a ◦ b)a(a ◦ b)−a2

] ◦ a

= (a ◦ b)a2

(a ◦ b)−a(a ◦ b)(a ◦ b)−a(a ◦ b)a2

(a ◦ b)−a(a ◦ b)a2

(a ◦ b)−a3

and therefore

(a ◦ b)a3

= (a ◦ b)a2

(a ◦ b)−a(a ◦ b)(a ◦ b)−a(a ◦ b)a2

(a ◦ b)−a(a ◦ b)a2

. (4)

Note that (((b ◦ a) ◦ a) ◦ a) ◦ a = (a−1 ◦ (a−1 ◦ (a−1 ◦ (a−1 ◦ b))))a4
. So G

satisfies the left normed Engel identity if and only if it satisfies the right
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normed Engel identity.

From (3) and (4) we have

(a ◦ b)a2

(a ◦ b)−a(a ◦ b) = (a ◦ b)(a ◦ b)−a(a ◦ b)a2

. (5)

But this is equivalent to (easily checked)

(a ◦ (a ◦ b))a · (a ◦ (a ◦ b)) = (a ◦ (a ◦ b))(a ◦ (a ◦ b))a

which can also be written

(a ◦ ab)a · (a ◦ ab) = (a ◦ ab) · (a ◦ ab)a. (6)

If we replace a by ab and b by b−1, we have

(a ◦ ab)ab

· (a ◦ ab) = (a ◦ ab) · (a ◦ ab)ab

. (7)

So we have proved

Lemma 1 For all a, b ∈ G we have that a ◦ ab commutes with (a ◦ ab)a and
(a ◦ ab)ab

.

From (2) and (6) we have

(a ◦ ab)a2

= (a ◦ ab)2a−1, (a ◦ ab)a2b

= (a ◦ ab)2ab−1. (8)

This also implies that

(a ◦ ab)a−1

= (a ◦ ab)−a+2, (a ◦ ab)a−b

= (a ◦ ab)−ab+2. (9)

Lemma 2 〈a, ab〉′ is generated by (a◦ab), (a◦ab)a, (a◦ab)ab

and (a◦ab)aab

.

Proof Since 〈a, ab〉′ is the normal closure of (a ◦ ab) in 〈a, ab〉, it is sufficient
to show that the group generated by (a◦ab), (a◦ab)a, (a◦ab)ab

and (a◦ab)aab

is normal in 〈a, ab〉. But this follows form (8), (9) and the following relations.

(a ◦ ab)aa−b

= (a ◦ a−b)−1(a ◦ ab)a−ba(a ◦ a−b)

= (a ◦ ab)a−b

(a ◦ ab)−aba(a ◦ ab)2a(a ◦ ab)−a−b
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= (a ◦ ab)a−b

(a ◦ ab)(a ◦ ab)−aab

(a ◦ ab)−1(a ◦ ab)2a(a ◦ ab)−a−b

,

(a ◦ ab)aba = (a ◦ ab)(a ◦ ab)aab

(a ◦ ab)−1,

(a ◦ ab)aba−1

= (a−1 ◦ ab)(a ◦ ab)a−1ab

(a−1 ◦ ab)−1

= (a ◦ ab)−a−1

(a ◦ ab)−aab

(a ◦ ab)2ab

(a ◦ ab)a−1

,

(a ◦ ab)aaba = (a ◦ ab)(a ◦ ab)a2ab

(a ◦ ab)−1

= (a ◦ ab)(a ◦ ab)2aab

(a ◦ ab)−ab

(a ◦ ab)−1,

(a ◦ ab)aaba−1

= (a−1 ◦ ab)(a ◦ ab)ab

(a−1 ◦ ab)−1

= (a ◦ ab)−a−1

(a ◦ ab)ab

(a ◦ ab)a−1

,

(a ◦ ab)aabab

= (a ◦ a2b)−1(a ◦ ab)a2ba(a ◦ a2b)

= (a ◦ ab)−ab−1(a ◦ ab)2aba(a ◦ ab)−a(a ◦ ab)1+ab

= (a ◦ ab)−ab

(a ◦ ab)2aab

(a ◦ ab)−1(a ◦ ab)−a(a ◦ ab)1+ab

. 2

Now (a ◦ ab)〈a〉 is an abelian group generated by (a ◦ ab) and (a ◦ ab)a and
then

an ◦ (am ◦ (ar ◦ (a ◦ b))) = an ◦ (am ◦ [(a ◦ (a ◦ b))(ar−1+···+a+1)])

= (a ◦ ab)(−am+1)(−an+1)(ar−1+···+1).

But (−am + 1)(−an + 1) is divisible by (−a + 1)2 in Z〈a〉 and since (a ◦
ab)(−a+1)2 = a ◦ (a ◦ (a ◦ (a ◦ b))) = 1 we have

Lemma 3 an ◦ (am ◦ (ar ◦ (a ◦ b))) = 1 for all n, m, r ∈N.

We have using (8)

(a3 ◦ ab) = (a ◦ ab)a2+a+1 = (a ◦ ab)3a.
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Similarly (a ◦ a3b) = (a ◦ ab)3ab

and thus

(a3 ◦ ab) = (a ◦ ab)3a, (a ◦ a3b) = (a ◦ ab)3ab

. (10)

Lemma 4 For all a, b ∈ G we have that (a ◦ ab)aab

commutes with (a ◦ ab)a

and (a ◦ ab)ab

.

Proof By Lemma 1 we have that (a◦ab)a commutes with (a◦ab). Therefore
(a ◦ ab)aab

commutes with (a ◦ ab)ab

. Similarly (a ◦ ab)a commutes with (a ◦
ab)aba. But

(a ◦ ab)aba = (a ◦ ab)aab(ab◦a) = (a ◦ ab) · (a ◦ ab)aab

· (a ◦ ab)−1

and since (a ◦ ab)a commutes with (a ◦ ab) it commutes with (a ◦ ab)aab

. 2

In the following calculations, one must be careful with notation. As usually
ug1+g2 is a shorthand notation for ug1 · ug2. This means that u(g1+g2)(h1+h2) =
u(g1+g2)h1 · u(g1+g2)h2 which does not have to be equal to ug1(h1+h2) · ug2(h1+h2).
We also have that u(g1+g2)(−h) = ((ug1 · ug2)−1)h which is equal to u−g2h−g1h.
This does not have to be same as u−g1h−g2h.

Suppose that a has a finite order not divisible by 2. Then 〈a〉 is gener-
ated by a2. Using Lemma 3 with a replaced by a2 and also Lemmas 1 and 4
and the identities (8) and (9) we have

1 = a ◦ (a ◦ (a ◦ (a2 ◦ b)))

= a ◦ (a ◦ (a ◦ a2b))

= (a ◦ ab)(1+ab)(−a+1)(−a+1)

= (a ◦ ab)(−aba−a+1+ab)(−a+1)

= (a ◦ ab)(1−aab−1−a+1+ab)(−a+1)

= (a ◦ ab)(1−a−aab+ab)(−a+1)

= (a ◦ ab)−aba+aaba+a2−a+1−a−aab+ab

= (a ◦ ab)(1−aab−1)+(1+a2ab−1)+a2−2a+1−aab+ab

= (a ◦ ab)1−aab+(2a−1)ab−1−aab+ab

= (a ◦ ab)1+aab−ab−1−aab+ab

= (a ◦ ab)1+aab−1−aab

.
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So
(a ◦ ab) · (a ◦ ab)aab

= (a ◦ ab)aab

· (a ◦ ab)

and it is clear that (a ◦ ab) lies in the centre of 〈a, ab〉′ . Next suppose that
a has finite order not divisible by 3. In this case 〈a〉 is generated by a3. We
now apply Lemma 3 again and go through similar calculations using Lemmas
1 and 4 and identities (8) and (9). We have

1 = a ◦ (a ◦ (a ◦ (a3 ◦ b)))

= a ◦ (a ◦ (a ◦ a3b))

= (a ◦ ab)(3ab)(−a+1)(−a+1) (using (10))

= (a ◦ ab)(−3aba+3ab)(−a+1)

= (a ◦ ab)(1−3aab−1+3ab)(−a+1)

= (a ◦ ab)−3aba+a+3aaba−a+1−3aab−1+3ab

= (a ◦ ab)(1−3aab−1)+a+(1+3a2ab−1)−a+1−3aab−1+3ab

= (a ◦ ab)1−3aab+a+(6a−3)ab−a−3aab−1+3ab

= (a ◦ ab)1+a−3ab−a−1+3ab

= (a ◦ ab)a−3ab−a+3ab

.

So (a ◦ ab)a commutes with (a ◦ ab)3ab

. If we conjugate by a we get that
(a ◦ ab)2a−1 commutes with (a ◦ ab)3aba. But since (a ◦ ab)2a commutes with
(a ◦ ab)3aba it follows that (a ◦ ab) commutes with (a ◦ ab)3aba = (a ◦ ab) · (a ◦
ab)3aab

· (a ◦ ab)−1. Hence (a ◦ ab) commutes with (a ◦ ab)3aab

. It is easy to see
that it follows from this that (a◦ab) commutes with all elements in 〈a3, a3b〉′.
But 〈a3, a3b〉′ = 〈a, ab〉′. We can now easily prove the following lemma.

Lemma 5 If a is of finite order, either not divisible by 2 or not divisible by
3, then 〈a, ab〉 is metabelian. Furthermore we have that 〈a, ab〉 is nilpotent of
class at most 4.

Proof We have seen that (a ◦ ab) is in the centre of 〈a, ab〉′. But the centre
is characteristic in 〈a, ab〉′ which is normal in 〈a, ab〉. Therefore the centre
is normal in 〈a, ab〉. But since 〈a, ab〉′ is the normal closure of (a ◦ ab) in
〈a, ab〉 we have that it is abelian. Therefore 〈a, ab〉 is metabelian. Now
(a ◦ ab)(−a+1)2 = (a ◦ ab)(−ab+1)2 = 1. It follows that

x1 ◦ (x2 ◦ (x3 ◦ (a ◦ ab))) = 1
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when x1, x2, x3 ∈ {a, ab}. So 〈a, ab〉 is nilpotent of class at most 4. 2

Lemma 6 Let p and q be different prime numbers. If a is a p-element and
that b is a q-element in an 4-Engel group then a and b commute.

Proof We have
a−1ab = (a ◦ b) = b−ab.

From Lemma 5 we have that 〈a, ab〉 and 〈b, ba〉 are both nilpotent. Therefore
(a◦b) is both a p-element and a q-element which forces it to be the identity. 2

We can now strengthen Lemma 5 so that it includes all elements of finite
order.

Proposition 1 If a is of finite order then 〈a, ab〉 is metabelian and nilpotent
of class at most 4.

Proof Suppose
a =

∏

p

ap

is the decomposition of a into a product of p-elements. By Lemma 6 the
groups 〈ap, a

b
p〉 commute with each other. Then

〈a, ab〉 ⊆
∏

p

〈ap, a
b
p〉.

And 〈a, ab〉′ ⊆
∏

p〈ap, a
b
p〉

′ which is abelian by Lemma 5. Hence 〈a, ab〉 is
metabelian. That 〈a, ab〉 is nilpotent of class 4 follows as in the proof of
Lemma 5. 2

Lemma 7 Let a be an element of an 4-Engel group G which has order q.
The exponent of 〈a, ab〉 divides q2 if q is an odd number and it divides 2q2 if
q is an even number.

Proof From the 4-Engel identity we have

1 = aq ◦ (a ◦ ab) = [a ◦ (a ◦ ab)]q = (a ◦ ab)−qa+q. (11)

Let first assume that q is an odd number. From Proposition 1 we have that
〈a, ab〉 is metabelian and by Lemma 2 〈a, ab〉′ is generated by (a ◦ ab), (a ◦
ab)a, (a ◦ ab)ab

and (a ◦ ab)aab

. To show that 〈a, ab〉 has exponent q2 it is
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therefore sufficient to show that (a ◦ ab)q = 1. Then, using the fact that
(a ◦ ab)a2

= (a ◦ ab)2a−1, we have

1 = aq ◦ ab

= (a ◦ ab)aq−1+aq−2+···+a+1

= (a ◦ ab)(q−1)a−(q−2)+(q−2)a−(q−3)+···+2a−1+a+1

= (a ◦ ab)
q(q−1)

2
a−q( q−1

2
−1)

= (a ◦ ab)q (by (11) since q is odd.)

Now suppose q is an even number. By going through the same calculations
we get

1 = a2q ◦ ab

= (a ◦ ab)
2q(2q−1)

2
a−2q( 2q−1

2
−1)

= (a ◦ ab)q(2q−1)a−q(2q−3)

= (a ◦ ab)2q (by (11).)

It follows that in this case we have that the exponent divides 2q2. 2

Remark. From Proposition 1 we have that 〈a, ab〉 has nilpotency class 4. If
q is a power of p, where p 6= 2, 3, then it is well known that 〈a, ab〉 is a regular
p-group since the class is less than p. The exponent of a regular group is the
maximum order of the generators. It follows that in this case we have the
stronger result that the exponent is q.

Proposition 2 If for some prime p we have that a1, a2, . . . , ar are p-elements
in a 4-Engel group G then 〈a1, a2, . . . , ar〉/Z(〈a1, a2, . . . , ar〉) is a p-group of
finite exponent.

Proof Notice that we are not assuming that 〈a1, · · · , ar〉 is a p-group. In
Section 3 we will turn our attention to p-groups.

We prove the following stronger assertion. If a is a p-element then there
is an integer s such that gs commutes with a for all g in G.

Suppose a has order q = pi. Now g ◦ a ∈ 〈a, ag〉. By Lemma 7 we have
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that (g ◦ a)q3
= 1. Using Lemma 7 again we have (g ◦ (g ◦ a))q9

= 1. Let
n = q10 = p10i. We have

gn ◦ (g ◦ a) = (g ◦ ga)gn−1+gn−2+···+1

= (g ◦ ga)
n(n−1)

2
g−n(n−1

2
−1)

= (g ◦ (g ◦ a))q9(
q(n−1)

2
g−

q(n−3)
2

)

= 1.

So gn commutes with (g ◦ a).Now (gn ◦ a)q3
= 1 by Lemma 7. Then

gq13

◦ a = gq3n ◦ a

= (g ◦ a)gq3n−1+gq3n−2+···+g(q3−1)n

· (g ◦ a)g(q3−1)n−1+···+g(q3−2)n

...

· (g ◦ a)gn−1+···+1

= [(g ◦ a)gn−1+···+1]q
3

(since (g ◦ a)gn

= (g ◦ a))

= (gn ◦ a)q3

= 1.

So gq13
commutes with a for all g in G. We have thus shown that for

each element a in G there exists some power sa of p such that a com-
mutes with gsa for all g in G. Now let s = max{sa1 , sa2, . . . , sar

}. Then
〈a1, a2, . . . , ar〉/Z(〈a1, a2, . . . , ar〉) is of exponent s. 2

Lemma 8 If a and b are p-elements in an 4-Engel group then ab is of finite
order.

Proof Let us first consider the case when p = 2. Suppose a2i

= 1. We then
have

(ab)2i

= a−2i

(ab)2i

= ba2i
−1

ba2i
−2

· · · bab.

Since 〈u, ux〉 is nilpotent for all u, x ∈ 〈a, b〉 when u is of finite order, we
have that uxu is a p-element whenever u is a p-element. Therefore bab is a
2-element and then also ba3

ba2
bab = (bab)a2

(bab). By induction we get that

ba2i
−1

ba2i
−2

· · · bab = (ab)2i
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is a 2-element and hence ab is a 2 element.

Now assume p is an odd number. Suppose api

= bpi

= 1. It follows from last
proposition that there is an integer s ≥ i such that (ab)ps

commutes with a
and b. We then have

(ab)ps

= a−ps

(ab)ps

= baps
−1

baps
−2

· · · bab.

Since 2 6≡ 0 (mod p) we have that 2 is in the group of units modulo ps. So
there is a positive integer m such that 2m ≡ 1 (mod ps). (m = (p − 1)ps−1

for example). Suppose 2m = psr + 1. By the argument above we get that

c := ba2m
−1

ba2m
−2

· · · bab = b(baps
−1

· · · bab)r = b(ab)psr

is a p-element. Suppose cpl

= 1 where l ≥ i. Since (ab)psr commutes with b,
we get

1 = [b(ab)psr]p
l

= (ab)ps+lr
2

Theorem 1 Let G be an 4-Engel group. The torsion elements form a group
τ(G) and τ(G)/Z(τ(G)) is a direct product of p-groups.

Proof Suppose ap and bp are two p-elements in G. By Lemma 8 we have
that apbp is of finite order. It can then be written in the form

apbp = (
∏

q 6=p

cq)cp,

where for each prime q we have that cq is a q-element of G. Suppose q is some
prime number different from p then by Lemma 6 we have that cq commutes
with all r-elements when r is a prime different from q. We want to show that
it commutes also with all q-elements. So suppose d is a q-element. It then
commutes with all elements of the right hand side except possibly cq. But
d commutes with apbp and therefore it must also commute with cq. Hence
cq commutes with all elements of finite order. This is true for all q 6= p and
therefore

apbp = cpdp (12)

where dp commutes with all elements of finite order and is of finite order
itself. Now let a and b be two elements of finite order. Suppose a =

∏

p ap
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and b =
∏

p bp are their decomposition into a product of p-elements. From
Lemma 6 and (12) we then have

ab =
∏

p

apbp = (
∏

p

cp)d.

Where each cp is a p element and d is a torsion element that commutes with
all torsion elements. By Lemma 6 the factors commute pairwise and hence ab
is of finite order. So the torsion elements form a group τ(G). By (12) it fol-
lows that product of p-elements in τ(G)/Z(τ(G)) is a p-element and it follows
from this and Lemma 6 that τ(G)/Z(τ(G)) is a direct product of p-groups. 2

3 4-Engel p-groups

In this section we will reduce our problem of finding out whether 4-Engel p-
groups are locally nilpotent to the class of 4-Engel groups of exponent p and
we will show that 4-Engel 2-groups and 4-Engel 3-groups are locally nilpotent.

We remind the reader of the fact that every group G has a maximal nor-
mal locally nilpotent subgroup called the locally nilpotent radical. We will
denote it by rad(G). It contains all the normal locally nilpotent subgroups
of G.

Lemma 9 Let G be an 4-Engel group. If a ∈ G has order 2i where i ≥ 3
then

a2i−1

◦ (a2i−1

◦ b) = 1

for all b ∈ G.

Proof From the Engel-4 identity we have that (a ◦ ab)(a−1)2 = 1. It follows
that

(a ◦ ab)(am−1)2 = 1

for all m ∈ N since (a − 1)2|(am − 1)2 in Z〈a〉. (We are repeatedly using the
fact that 〈a, ab〉 is metabelian). It follows that

(a ◦ ab)1+a2m

= (a ◦ ab)1+(2am−1) = (a ◦ ab)2am

(13)
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for all m ∈ N. Let m = 2i−3. Since a8m = 1, we have

1 = a8m ◦ ab

= (a4m ◦ ab)a4m+1

= (a4m ◦ ab)2a2m

(by(13)).

This implies that (a4m ◦ ab)2 = 1. But then

a4m ◦ (a4m ◦ b) = a4m ◦ a4mb

= (a4m ◦ a2mb)1+a2mb

= (a4m ◦ a2mb)2amb

(by (13))

= (a4m ◦ ab)2amb(1+ab+···+a(2m−1)b)

= 1. 2

Lemma 10 Let G be a 4-Engel group and let p be an odd prime number. If
a ∈ G has order pi where i ≥ 2 then

api−1

◦ (api−1

◦ b) = 1

for all b ∈ G

Proof Let m = pi−1. We have that

am ◦ (am ◦ b) = am ◦ amb

= (a ◦ ab)(am−1+···+1)(a(m−1)b+···+1)

= (a ◦ ab)(
m(m−1)

2
a−m(m−1

2
−1))(

m(m−1)
2

ab−m(m−1
2

−1)).

From the proof of Lemma 7 we have that (a ◦ ab)pm = 1. Since pm divides
m2 it follows from the calculations above that am ◦ (am ◦ b) = 1. 2

Proposition 3 Let G be a 4-Engel group. If a ∈ G is a 2-element then
a4 ∈ rad(G). If a ∈ G is a p-element, where p is an odd prime number, then
ap ∈ rad(G).

Proof Let p be an odd prime number and let a be a p-element. We prove
by induction on the order of a that ap ∈ rad(G). This is obvious when a has
order p. Now suppose this is true when a has order pi−1 where i ≥ 2. Let



4-Engel groups 15

a ∈ G be an element of order pi. By the induction hypothesis ap2
∈ rad(G).

It then follows from Lemma 10 that ap ◦(ap◦b) = 1 modulo rad(G). This im-
plies that the normal closure of ap is abelian modulo rad(G) and thus locally
soluble. By a theorem of Gruenberg [5] it follows that the normal closure of
ap is locally nilpotent and therefore that ap ∈ rad(G).

By using Lemma 9 one proves similarly that a4 ∈ rad(G) whenever a is
a 2-element. 2

Let G be a p-group. It follows from Proposition 3 that G/rad(G) has expo-
nent dividing p if p is an odd prime number and exponent dividing 4 if p = 2.
Since groups of exponent 4 [13] and groups of exponent 3 are known to be
locally finite we have as an immediate corollary.

Theorem 2 Let G be a 4-Engel group and let rad(G) be the locally nilpotent
radical of G. If G is a 2-group or a 3-group then it is locally finite. If p is a
prime and p is not 2 or 3 then G/rad(G) has exponent dividing p.

Remark It follows that for and odd prime p we have that local finiteness
of 4-Engel groups of exponent p implies local finiteness of 4-Engel p-groups.
It also follows from Proposition 2 and Proposition 3 that 4-Engel groups
generated by 2-elements or generated by 3-elements are locally nilpotent. It
follows that a product of 3-elements (2-elements) is a 3-elements (2-element)
in every 4-Engel group.

4 Locally nilpotent 4-Engel groups

In the introduction we mentioned the connection between Engel groups and
Engel Lie algebras. In this last section we want to take that discussion a
bit further. We want to see what knowledge of 4-Engel Lie algebras tells us
about 4-Engel groups.

Let us first see how we can associate to every group a Lie ring. Let G
be a group with lower central series

γ1 ≥ γ2 ≥ · · · ≥ γi ≥ · · ·
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and let Li = γi/γi+1. Because Li is abelian we have a Z-module

L = L1 ⊕ L2 ⊕ · · · ⊕ Li ⊕ · · · .

We write the group operation in Li additively: xγi+1 + yγi+1 := xyγi+1. We
define a multiplication on L as follows: if a = xγi+1 ∈ Li and b = yγj+1 ∈ Lj

then let
ab = (x ◦ y)γi+j+1 ∈ Li+j,

and extend this product linearly to all of L. It is not difficult to show that
L with this multiplication, is a Lie ring. Fur thermore if G is nilpotent then
L is also nilpotent with same nilpotency class.

Now let G be an 4-Engel group. Then the associated Lie ring satisfies the
following two identities (see [16]):

(1)
∑

σ∈Sym(4)

(((xxσ(1))xσ(2))xσ(3))xσ(4) = 0,

(2) (((xy)y)y)y = 0 if y is a product of generators.

By the generators in (2) we mean the elements aγ2 with a ∈ G. Now sup-
pose L is a Lie algebra over a field with characteristic not equal to 2 or 3
that satisfies these two identities. It is not difficult to see that (1) is now
equivalent to the 4-Engel identity: (((xy)y)y)y = 0 for all x, y ∈ L. Now it
can be shown that every 4-Engel Lie algebra over a field with characteristic
not equal to 2, 3 or 5, is nilpotent of class at most 7 (see [4] and [14]).

So suppose that G is a locally nilpotent 4-Engel p-group, where p is a prime
not equal to 2, 3 or 5. Let H be any subgroup with 8 generators. Then H is
a finite p-group. Suppose it has exponent pi.Let L be the associated Lie ring
of H . Then L/pL is a Lie algebra over the field Zp and is therefore nilpotent
of class at most 7. This implies that L8 = 0. It follows that the commutator
of arbitrary 8 elements in G is 1 and hence G is nilpotent of class at most 7.
We have thus shown that every locally finite 4-Engel p-group is nilpotent of
class at most 7 if p is not equal to 2, 3 or 5. Every 4-Engel Lie algebra over a
field of characteristic 5 with r generators is nilpotent of class at most 6r (see
[9]). It follows by a same kind of argument as above, that every nilpotent
4-Engel 5-group with r generators has nilpotency class at most 6r. Let us
now summarize what we have shown.
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Theorem 3 Let G be a locally nilpotent 4-Engel group. If G is a p-group
where p 6= 2, 3, 5 then G is nilpotent of class at most 7. If G is 5 group then
every r generator subgroup has class at most 6r.

By Zorn’s Theorem we have the following corollary.

Corollary 1 If G is a finite 4-Engel group with no elements of order 2, 3
or 5 then G is nilpotent of class at most 7.
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