
Engel-5 Lie algebras

Gunnar Traustason

March 1, 2011

1 Introduction

A Lie algebra L is called an Engel Lie algebra if for each ordered pair (x, y)
there is an integer n(x, y) such that

(((y x)x) · · ·)x
︸ ︷︷ ︸

n(x,y)

= 0. (1)

One of the basic classical results for Engel Lie algebras is Engel’s Theorem.
It states that every finite dimensional Engel Lie algebra over a field is nilpo-
tent. So for finite dimensional Lie algebras the Engel condition is equivalent
to nilpotency. This is however not true in general.

Now suppose n = n(x, y) in (1) can be chosen independently of x and y.
We then say that L is an Engel-n Lie algebra. A different way of stating this
is to say that ad(x)n = 0 for all x ∈ L. Here ad(x) is the multiplication from
right. We have the following two results of E. I. Zel’manov.

Theorem Z1[10] Every Engel-n Lie algebra over a field k with char k = 0 is
nilpotent.

Theorem Z2[11,12] An Engel-n Lie algebra over an arbitrary field is lo-
cally nilpotent.

The natural question that now arises is what can be said about the nilpo-
tency classes. How does the nilpotency class depend on n and the number
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of generators r? In [9] E. I. Zel’manov and M. Vaughan-Lee give upper
bounds. Before we state their results we introduce some notation. Define a
function T : N × N → N by induction in the following way: T (m, 1) = m,
T (m, s + 1) = mT (m,s). Let L be an Engel-n Lie algebra generated by r
elements. It follows from the work of Zel’manov and Vaughan-Lee that L is
nilpotent of class at most T (r, nnn

). When the characteristic of the field is
greater than n they get smaller bounds. So if 25 ≤ n < p then L is nilpotent
of class at most T (r, 2n) and when 26 > n < p we have that L is nilpotent of
class at most T (r, 3n). The authors nevertheless believe that these bounds
are too high and make the conjecture that the class can always be bounded
by a function which is polynomial in r.

There is still not much evidence that this conjecture is true. But there
are some supporting facts. From Theorem Z1 it follows that for each n there
is a constant n0 such that every Engel-n Lie algebra over a field k with
char k > n0 or char k = 0 is nilpotent. Here the nilpotency class does not
depend on r, so we have a constant upper bound. This means that for each
n the conjecture is true for almost all characteristics. We also have some
detailed information for small values of n. For n ≤ 3 the conjecture is known
to be true. It is well known that Lie algebras satisfying the Engel-2 identity
are nilpotent of class at most 3. In [5] it is shown that Engel-3 Lie algebras
with char k 6= 2, 5 are nilpotent of class at most 4 and that when the charac-
teristic is 5 we have that the class is at most 2r. In [6] it is shown that the
class is at most 2(r + 1)6 when char k = 2. For n = 4 the conjecture is also
known to be true in most cases. For characteristics not equal to one of 2, 3
or 5 we have that the class c is at most 7 [1, 5]. For char k = 3 we have that
c ≤ 3r [5] and c ≤ 6r when char k = 5 [2]. In [6] a polynomial upper bound
is also given for c when char k = 2 and |k| 6= 2. Before we turn to Engel-5
Lie algebras we also mention that Vaughan-Lee [8] has recently shown that
Engel-6 Lie algebras over field with char k = 7 have nilpotency class at most
51r8.

In this article we will be looking at Engel-5 Lie algebras. It is not diffi-
cult to show that if L is an Engel-p Lie algebra over a field of characteristic
p, then abp−1 is central in L for all a, b ∈ L. It follows that the class of an r-
generator Engel-5 Lie algebra over a field of characteristic 5 is at most 6r+1.
But it seems unlikely that one has a linear upper bound for characteristic 2
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and 3 since in that case it is known that the ideal generated by an element
need not be nilpotent. In this article we will get linear upper bounds for the
class c when char k > 5. Our main theorem is the following.

Theorem 1 Let L be an Engel-5 Lie algebra with r generators. If char k 6=
2, 3, 5, 7 then the nilpotency class c is at most 59r. If char k = 7 then c ≤ 80r.

Finally it should be mentioned that Engel Lie algebras played an important
role in the solution of the “restricted Burnside problem”. For a detailed
discussion of the Burnside problem we refer to [4, 7].

2 An outline of the approach

Let F be a free Lie algebra freely generated by z, z1, z2, . . . over a field k
where char k > 5. We let

L = F/J

where J is the ideal in F generated by {uv5| u, v ∈ F}. That is L is a
relatively free Engel-5 Lie algebra over k freely generated by y = z + J, y1 =
z1 + J, y2 = z2 + J, . . . . Since char k > 5 we have that

J = 〈{
∑

σ

uvσ(1) · · · vσ(5)| u, v1, . . . , v5 ∈ F}〉.

Therefore J is a multigraded ideal and thus L is a multigraded Lie algebra.

Now let I1 = Id〈{yiyj | i, j ∈ N}〉 and L1 = L/I1. Then L1 is generated
by x = y + I1, a1 = y1 + I1, a2 = y2 + I1, . . . and the a’s commute in L1.
We want to study the nilpotency of Iy < L but it follows from the following
proposition, which is due to G. Higman [3], that it is sufficient to consider
the ideal Ix < L1.

Proposition 1 If Ic
x = {0} in L1 then Ic

y = {0} in L.

Proof We assume that Ic
x = {0} in L1 and prove by induction on m that

every product of multiweight (c, 1, 1, · · · , 1
︸ ︷︷ ︸

m

) in y, y1, y2, . . . , ym is

zero in L. (*)
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From property (*) it follows that in every Engel-5 Lie algebra L̃ we have
that all products of multiweight (c, 1, 1, · · · , 1

︸ ︷︷ ︸

m

) in u, u1, . . . , um are zero for

arbitrary u, u1, . . . , um ∈ L̃.

Basis of induction: m = 1. Let L(c,1) be the subspace of L consisting of ele-
ments of multiweight (c, 1) in y, y1.Now L(c,1) ∩ I1 = {0} (L is multigraded).
But since Ic

x = {0} in L1 we have that L(c,1) ≤ I1 and thus L(c,1) = {0}.

Induction step: Suppose property (*) is true for some m = r ≥ 1 we prove
it is true for m = r + 1. Let u be some product of multiweight (c, 1, 1, · · · , 1

︸ ︷︷ ︸

r+1

)

in y, y1, . . . , yr+1. Since Ic
x = {0} in L1 we have that u ∈ I1. Since I1 is

multigraded we have that u is a linear combination of elements of the form

(yiyj)v1 · · · vr+c−1

where v1, . . . , vr+c−1 is some permutation of y, . . . , y
︸ ︷︷ ︸

c

, y1, . . . , yi−1, yi+1, . . . , yj−1,

yj+1, . . . , yr+1. But such a product is a product of multiweight (c, 1, 1, · · · , 1
︸ ︷︷ ︸

r

)

in y, u1, u2, · · · , ur, where u1 = yiyj and {u2, . . . , ur} = {yl| l 6∈ {i, j} }, and
is therefore zero by the induction hypothesis. 2

We will therefore be working in L1 for the rest of the section. Let A =
{a1, a2, . . .} and B = A ∪ {xaiajaras|ai, aj , ar, as ∈ A}. We have that L1 is
generated by x and A. Now we want to study the nilpotency of Ix in L1. We
shall now reduce this problem in a few steps as follows.

Step 1. We let I2 = Id〈{xaiajakal|i, j, k, l ∈ N}〉 and L2 = L1/I2. In Section
3 we shall show that (xaiajak)(xarasatal) = 0 for all i, j, k, r, s, t, l ∈ N. This
implies the following.

Proposition 2 If every product in L1 with d elements of A lies in I2 then

every product with 4d elements of A is zero. If u1, u2, u3, u4 ∈ B and one of

the ui’s is in B \ A then xu1u2u3u4 = 0.

Proof Let L̃ be any Engel-5 Lie algebra generated by u, b1, b2, . . . ,where the
b’s commute. Then L̃ is a homomorphic image of L1 under the map which
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takes x to u and each ai to bi. It follows that (ubibjbp)(ubrbsbtbl) = 0 in L̃
for all i, j, p, r, s, t, l ∈ N.

Since (xaiajaras)al = 0 by the Engel identity and

(xaiajaras)(xatalamap) = xaiajar(xatalamap)as

= 0,

we have that the elements in B commute. We have therefore

(xb1b2b3)(xb4b5b6b7) = 0 (∗)

for all b1, b2, · · · , b7 ∈ B. So we have proved the second assumption in the
proposition.

Suppose u is a product in L1 with t ≥ d elements from A. Then u ∈ I2

and u is therefore a linear combination of elements of the form

xaiajarasu1u2 · · ·um

where each ul is either x or lies in A. Since I2 is multigraded we can assume
that each summand has the same multiweight as u.

Then assume u is a product with t ≥ d elements from B. Then it fol-
lows from the fact above that u is a linear combination of elements of the
form

xb1b2b3b4u1 · · ·um

where each ui is either x or in B. But since (xc1c2c3)(xc4c5c6c7) = 0 for all
c1, c2, . . . , c7 ∈ B it follows that xb1b2b3b4 = 0 unless b1, b2, b3, b4 all lie in
A. So we can assume that in each summand b1, b2, b3, b4 ∈ A. But then the
summand is a product with t− 3 elements of B, xb1b2b3b4 and the b’s among
u1, u2, . . . , um.

Now let u be a product in L1 including 4d elements from A. By using the ar-
gument above repeatedly, we see that we can write u as a linear combination
of products with 4d− 3d = d elements of B. But then for all the summands
we must have that the d elements from B are all of the form xaiajaras.
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Now we apply the argument once more to each of the summands and we
see that u is a linear combination of products of the form

xb1b2b3b4u1 · · ·um

where b1, b2, b3, b4 are all of the form xaiajaras. But then each summand is
zero by remark (*) above. Hence u is zero. 2

We have thus reduced the problem to working in L2. Now let C = A ∪
{xaiajar|ai, ajar ∈ A}.

Step 2. We let I3 = Id〈{xaiajar| i, j, r ∈ N}〉. Then I2 ≤ I3 ≤ L1. In
Section 3 we shall prove that (xaiaj)(xarasat) ∈ I2. This implies the follow-
ing.

Proposition 3 If every product with d elements of A lies in I3 then every

product with 3d elements of A lies in I2. If u1, u2, u3 ∈ C and one of the ui’s

is in C \ A then xu1u2u3 ∈ I2.

Proof We have that every product of the form xaiajar commutes with all
the a’s modulo I2 and we also have that two such elements commute together
modulo I2. The rest of the proof is similar to the proof of Proposition 2. 2

This implies that we have reduced the problem to working in L3 = L1/I3.
Define a sequence of sets {Ai} by induction as follows,

A1 = A, Ai+1 = Ai ∪ {xb1b2| b1, b2 ∈ Ai}.

Then we let A∞ =
⋃

Ai.

Step 3. We let I4 = Id〈{xaiaj | i, j ∈ N}〉. Then I2 ≤ I3 ≤ I4 ≤ L1. In Sec-
tion 4 we shall prove that all products of weight 9 involving x, x, x, x, ai, aj, ar, as, at

are in I3. We shall also see that every product of weight 6 involving x, x, ai, aj, ar, as

is in I3. This implies the following.

Proposition 4 If every product with d elements of A lies in I4 then every

product with 4d elements of A lies in I3. If an element u ∈ A∞ includes

either 5 elements from A or 4 occurrences of x then u ∈ I3.
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Proof We have that every product of the form xaiaj commutes with all the
a’s modulo I3 and we also have that two such elements commute together
modulo I3. The difference between this situation and steps 1 and 2 is that
we do not have (xai)(xajar) ∈ I3. We therefore have to change the argument
slightly.

We first show that the elements in A∞ commute modulo I3 and that xb1b2b3 ∈
I3 for all b1, b2, b3 ∈ A∞. We prove by induction on n the following hypothe-
sis:

If b1, b2, b3 ∈ An then (1) b1b2 ∈ I3 and (2) xb1b2b3 ∈ I3.

This is obviously true for n = 1. To prove the induction step it is clearly
sufficient to show that if B is a subset of A∞ and if (1) and (2) are satisfied
for all b1, b2, b3 ∈ B then (1) and (2) are satisfied for b2, b3 ∈ B and b1 = xb4b5

with b4, b5 ∈ B. But then

b1b2 = xb4b5b2 ∈ I3 (by induction)

and
xb1b2b3 = xb2b3(xb4b5)

modulo I3. And since (xa1a2)(xa3a4) ∈ I3 we have that

xb2b3(xb4b5) ∈ Id〈bibj , xbibjbk| 2 ≤ i, j, k ≤ 5〉 ≤ I3

by induction. We have therefore proved the hypothesis.

It follows from this that for all b1, b2, . . . , b5 ∈ A∞ we have that every
product of weight 6 involving x, x, b1, b2, b3, b4 and of weight 9 involving
x, x, x, x, b1, b2, b3, b4, b5 is in I3.

We next prove that if u ∈ A∞ includes at least 5 elements from A then
it must be in I3. So suppose that u is in A∞ and that u contains at least 5
elements from A. Then we have that there are two possibilities for the form
of u. We have that

u = x(x(xb1b2)b3)b4

or
u = x(xb1b2)(xb3b4),
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where b1, b2, b3, b4 ∈ A∞ and one of them is of the form xc1c2 with c1, c2 ∈ A∞.
But then u is a product including 4 occurrences of x and 5 elements from
A∞ and is therefore in I3. It now follows easily that the second assumption
in the proposition holds.

Now if we have a product u including e ≥ d elements b1, b2, . . . , be ∈ A∞,
then u can be written as a linear combination of elements of the form

xbibju1u2 · · ·ur,

where u1, u2, . . . , ur are each either x or bl for l ∈ {1, 2, . . . , e} \ {i, j}. But
then each summand is a product including e − 1 elements from A∞.

Now let u be a product including 4d elements from A. By using the ar-
gument above repeatedly, we get a linear combination of products each with
d − 1 elements from A∞. But 4(d − 1) < 4d so one of these elements must
contain at least 5 elements from A. As we showed above, any element of A∞

containing at least 5 elements from A is in I3, and so u ∈ I3. 2

In the next 3 sections we shall show that the assumptions we have made
above are true.

3 Reduction steps 1 and 2

In this section we shall assume that char k ≥ 7 or char k = 0. Since L1 is an
Engel-5 Lie-algebra and char k > 5 then linearization of the Engel identity
gives us that

0 = uc4v + uc3vc + uc2vc2 + ucvc3 + uvc4

for all u, v, c ∈ L1. Then also

0 = −vc4u − vc3uc − vc2uc2 − vcuc3 − vuc4

= u(vc4) + u(vc3)c + u(vc2)c2 + u(vc)c3 + uvc4

= uc4v − 5uc3vc + 10uc2vc2 − 10ucvc3 + 5uvc4.

We will call this latter identity the skew-Engel identity.

We will first prove the following proposition.
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Proposition 5 Ifa, b ∈ A then (xb3)(xa4) = 0 in L1.

Then linearization gives us that

(xarasat)(xaiajalam) = 0

in L1. This was the assumption we made in reduction step 1 in last section.

Proof of Proposition 5 The Engel identity and the skew-Engel identity
give that

0 = xa4x + xa3xa + xa2xa2 + xaxa3

and
0 = xa4x − 5xa3xa + 10xa2xa2 − 10xaxa3.

If we now postmultiply by b three times, we get

0 = xa4xb3 + xa3xab3

and
0 = xa4xb3 − 5xa3xab3.

It follows that xa4xb3 = 0 and hence (xa4)(xb3) = 0. (This uses the fact that
xarxasb3 = 0 if s ≥ 2. That is clearly true since L1 is an Engel-5 algebra.)
2

Recall from last section that I2 = Id〈{xaiajakal|i, j, k, l ∈ N}〉. From now
on we will be calculating modulo I2 so u = v will mean u = v modulo I2.

Proposition 6 If a, b ∈ A then every product of x, x, a, a, a, b, b is zero.

It follows that (xb2)(xa3) = 0. In particular linearization gives

(xaiaj)(xarasal) ∈ I2

for all i, j, r, s, t ∈ N. But this was the assumption we made in reduction step
2 in Section 1.

Proof of Proposition 6 We first show that every product of x, x, a, a, a, a, b
is zero. From the Engel and skew-Engel identity we have

0 = xbxa4 + xbaxa3 + xba2xa2
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and
0 = xbxa4 − 2xbaxa3 + 2xba2xa2.

But we also have

0 = xb(xa4) = xbxa4 − 4xbaxa3 + 6xba2xa2.

Solving these equation together gives xbxa4 = xbaxa3 = xba2xa2 = 0 . In
particular we have xaxa4 = xa2xa3 = xa3xa2 = 0. It follows that

−4xaxa3b = xbxa4, −3xa2xa2b = 2xabxa3, 2xa3xab = −3xa2bxa2

so
xaxa3b = xa2xa2b = xa3xab = 0.

It is now clear that all products of x, x, a, a, a, a, b are zero.

We have seen that xbxa4 = 0. Linearization gives that xbxa1a2a3a4 = 0,
for all b, a1, a2, a3, a4 ∈ A. Linearization of xabxa3 = 0 and xa2xa2b = 0
gives

xb2xa3 = −3xabxa2b, xa2xab2 = −xabxa2b.

Then similarly since xa3xab = xa2bxa2 = 0 we have

xa3xb2 = −3xa2bxab, xab2xa2 = −xa2bxab.

Therefore all products of x, x, a, a, a, b, b are in the linear span of xabxa2b and
xa2bxab. From the Jacobi identity we have

0 = (xa3)(xb)b + (xb)b(xa3) + b(xa3)(xb)

= −3xabxa2b

and then from the Engel identity

0 = axa(xa)b2 + 2axb(xa)ab + axb2(xa)a + 2axab(xa)b

= −2xa2bxab.

So we have proved the proposition. 2
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4 Reduction step 3

Recall that I3 = Id〈{xaiajar|i, j, r ∈ N}〉. We also had defined A∞ as follows,

A1 = A, Ai+1 = Ai ∪ {xb1b2|b1, b2 ∈ Ai}

and A∞ =
⋃

Ai.

In this section u = v will mean that u = v modulo I3. We will prove
the following two propositions.

Proposition 7 Every product of x, x, a, b, c, d is zero if a, b, c, d ∈ A∞.

Proposition 8 Every product of x, x, x, x, a, b, c, d, e is zero if a, b, c, d, e ∈
A.

This is what was needed to go through the reduction step 3 in Section 2.

Proof of Proposition 7. We first prove that every product of x, x, a, a, a, b
is zero if a, b ∈ A∞. Using the Engel and Jacobi identities we have

0 = bx2a3 + bxaxa2 + bxa2xa + bxa3x

= −xbaxa2 − xbxa3

and

0 = xb(xa3)

= xbxa3 − 3xbaxa2.

Solving these two equations together gives xbaxa2 = 0 and xbxa3 = 0. In
particular we have xa2xa2 = xaxa3 = 0 and linearization gives xa2xab =
xbaxa2 = 0 and xaxa2b = −1/3 · xbxa3 = 0. It is therefore clear that all
products of x, x, a, a, a, b are zero.

Let us now turn to the general case. Since xbxa3 = 0 we have that lin-
earization gives that xbxacd = 0. Also linearizations of xabxa2 = 0 and
xa2xab = 0 give

xb2xa2 = −2xabxab, xa2xb2 = −2xabxab.
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It follows that all products of x, x, a, a, b, b are multiples of xabxab. But

0 = xab(xab) = xabxab.

We have therefore showed that all products of x, x, a, a, b, b are zero.

Linearization of xa2xb2 = 0 gives then xabxcd = 0 for all a, b, c, d ∈ A∞.
2

Now we turn to the proof of Proposition 8. In the following argument we
need to assume that char k 6= 7, 17. Using a computer program the nilpotent
quotient algorithm [see 2] was applied for these exceptional characteristics
and it was verified that Proposition 8 also holds in these cases. In the rest
of the section we will therefore assume that char k 6= 7, 17.

Lemma 1 If a ∈ A then every product of x, x, x, x, a, a, a, a is zero.

Proof First of all
0 = xa(xa) = xaxa − xa2x. (2)

It follows that xaxaxa = xa2x2a and xaxa2x = xa2xax. It is then clear that
every product of x, x, x, a, a, a is in the linear span of xa2x2a, xa2xax and
xax2a2. From the Jacobi identity we have using (2)

0 = (xa2)(xa)x + (xa)x(xa2) + x(xa2)(xa)

= 3xa2xax + xax2a2 − 3xa2x2a (3)

and from the Engel-identity

0 = xax2a2 + xaxaxa + xaxa2x + xa2x2a + xa2xax

= 2xa2xax + xax2a2 + 2xa2x2a. (4)

From (2)-(4) it follows that

xa2xax = xaxa2x = 5xa2x2a

xax2a2 = −12xa2x2a

xaxaxa = xa2x2a. (5)
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Every product of x, x, x, x, a, a lies in the span of xa2x3, xax2ax and xax3a.
From the Engel identity we have

0 = −ax4a − ax3ax − ax2ax2 − axax3

= xax3a + xax2ax + 2xaxax2

and we also have

0 = (ax)x(ax2)

= −xaxax2 + 2xax2ax − xax3a.

It follows that

xa2x3 = xaxax2 = −3xax2ax

xax3a = 5xax2ax. (6)

We can now easily complete the prove of the lemma. By Proposition 8 every
product of x, x, a, a, a, a is zero. We can therefore assume that a product of
x, x, x, x, a, a, a, a ends in xa, ax or aa. By (5) and (6) it is then in the linear
span of

U1 = xa2x2axa, U2 = xa2x2a2x, U3 = xax2axa2.

Using (5) and (6) we have

0 = xa2x(xa2x)

= 2U1 − 10U2 + 3U3

and using the Engel identity

0 = xa2x3a2 + xa2x2axa + xa2x2a2x

+xa2xa2x2 + xa2xaxax + xa2xax2a

= 6U1 + 6U2 − 3U3.

It follows that U2 = 2U1 and U3 = 6U1. From the skew-Engel identity we
have

0 = −10ya2yay3 + 10ya2y2ay2 − 5ya2y3ay + ya2y4a

for all y. If we substitute x + a for y we get

0 = −4xa2x3a2 + 11xa2x2axa + 5xa2x2a2x − 9xa2xax2a − 15xa2xaxax

= −34U1 − 70U2 + 12U3 = −102U1 = −6 · 17U1.

So U1 = 0 since char k 6= 17. 2
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Lemma 2 If a, b ∈ A then every product of x, x, x, x, a, b is in the linear

span of xaxbx2 and xabx3. In particular

6xax2bx = 9xaxbx2 − 11xabx3;

6xax3b = −15xaxbx2 + 5xabx3;

xbxax2 = −xaxbx2 + 2xabx3;

6xbx2ax = −9xaxbx2 + 7xabx3;

6xbx3a = 15xaxbx2 − 25xabx3.

Proof From the Engel and skew-Engel identity we have

0 = axbx3 + ax2bx2 + ax3bx + ax4b

and
0 = −10axbx3 + 10ax2bx2 − 5ax3bx + ax4b.

Solving these together gives the first two identities in the lemma. The rest
is easy and is left to the reader. 2

Lemma 3 Every product of x, x, x, a, b, b is in the linear span of xabxbx,

xaxb2x and xaxbxb. In particular

5xabx2b = −11xabxbx + 9xaxb2x + 15xaxbxb;

5xax2b2 = 6xabxbx − 14xaxb2x − 20xaxbxb;

xb2xax = 2xabxbx − xaxb2x;

xbxabx = 2xabxbx − xaxb2x;

5xb2x2a = 26xabxbx − 19xaxb2x − 30xaxbxb;

5xbxaxb = −22xabxbx + 18xaxb2x + 25xaxbxb;

5xbxbxa = 26xabxbx − 19xaxb2x − 30xaxbxb;

5xbx2ab = −27xabxbx + 13xaxb2x + 10xaxbxb.

Proof From the Engel identity we have

0 = axbxbx + axbx2b + ax2b2x + ax2bxb + ax3b2.

Then from the skew-Engel identity we have

0 = −10ayby3 + 10ay2by2 − 5ay3by + ay4b
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for all y, which implies that

0 = −15axbxbx − 9axbx2b + 5ax2b2x + 11ax2bxb − 4ax3b2.

Solving these two equations together gives the first two identities. The rest
follows easily. 2

Lemma 4 If a, b ∈ A then every product of x, x, x, x, a, b, b, b is zero.

Proof We first show that every such product ending in x is zero. Let
V1 = xabxbxbx, V2 = xaxb2xbx and V3 = xaxbxb2x. Now every product
of x, x, a, b, b, b is zero by Proposition 7. It is then clear by Lemma 3 that
all products ending in x are in the linear span of V1, V2 and V3. Now from
Lemma 1 we have 5xa2x2a2x = 0 and linearization gives

5xabx2b2x = −5xb2x2abx.

Using Lemma 3 we then get −11V1 + 9V2 + 15V3 = −26V1 + 19V2 + 30V3

which implies that
0 = 3V1 − 2V2 − 3V3.

Since 5xax2a3x = 0 we get by similar reasoning

0 = 15V1 − 5V2 − 2V3.

If we solve these equation together we have 5V2 = −13V3 and 15V1 = −11V3.
Therefore we only have to show that V3 = 0. But

0 = 5xax(xb3)x

= 6V1 + V2 − 35V3.

If we multiply this by 5 we get 0 = −2 · 3 · 5 · 7 · V3. So V3 = 0 since
char k 6∈ {2, 3, 5, 7}.

Let W = xabx3b2. From Lemma 6 we have xax3a3 = 0 and it follows that

6xax3b3 + 18xbx3ab2 = 0.

We now use Lemma 2 and get

0 = 30xaxbx2b2 − 70W (7)
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From previous work we have that all products ending in x are zero and that
all products are in the linear span of W , U1, U2 and U3 where

U1 = xabxbx2b, U2 = xaxb2x2b, U3 = xaxbxbxb, W = xabx3b2.

Now from Lemma 3 ((xab) commutes with b) we have

5x(xab)x2b2 = 6x(xab)bxbx − 14x(xab)xb2x − 20x(xab)xbxb

which implies that 5xabx3b2 = −20xabx2bxb and then Lemma 3 gives

5W = 44U1 − 36U2 − 60U3. (8)

From the Engel-identity we then have

0 = 5xabxx2bb + 5xabxxbxb + 5xabxbx2b

which with help of Lemma 3 gives

5W = 6U1 − 9U2 − 15U3. (9)

Then we also have

0 = 30xax2(xb3)

= −300W + 108U1 − 252U2 − 360U3

which gives
50W = 18U1 − 42U2 − 60U3. (10)

Now solve equations (8)-(10) together and we have 3U2 = 17U1 and 9U3 =
−23U1. We then only have to show that U1 = 0. Now use the Engel identity.
We leave the routine calculations to the reader

0 = 30[ax(xb2)x2b + ax2(xb2)xb + 2ax3(xb2)b + axbx2(xb2) + ax2bx(xb2)]

= 400W − 180U1 + 300U2 + 660U3

= −4 · 25 · 7 · U1.

and U1 = 0 since char k 6∈ {2, 5, 7}. 2

Lemma 5 If a, b, c, d ∈ A and then every product of x, x, x, x, a, b, c, d, with

last two elements from A, is zero.
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Proof From Lemmas 2 and 4 we have

0 = 6xax3bcd = −15xaxbx2cd + 5xabx3cd

and
0 = 6xbx3acd = 15xaxbx2cd − 25xabx3cd.

Therefore xaxbx2cd = xabx3cd = 0. 2

Let a, b, c ∈ A and let

V1 = xabxbxcx, V2 = xaxb2xcx, V3 = xaxbxbcx,
U1 = xabxbxxc, U2 = xaxb2xxc, U3 = xaxbxbxc.

It follows from previous lemmas that all products ending in xc or cx are in
the linear span of these products.

Lemma 6 We have U2 = 4U1, U3 = −U1, V2 = 4V1 and 2V3 = −5V1

Proof From Lemma 4 we have

(xa)(xb2)xcx = −xb2(xa)xcx = 2xab(xb)xcx

and therefore
xaxb2xcx − 2xabxbxcx = 2xabxbxcx

which implies that V2 = 4V1. Similarly we get U2 = 4U1. Then from Lemmas
3 and 4 we have

0 = 5xax2b2cx

= 6V1 − 14V2 − 20V3

= −50V1 − 20V3

which implies that 2V3 = −5V1. Finally from the Jacoby identity and Lem-
mas 3 and 5 we have

0 = 10 · [(ax2)(bx2)bc + (bx2)b(ax2)c + b(ax2)(bx2)c]

= 10[(bx2)b(ax2)c − (ax2)b(bx2)c]

= −140U1 − 140U3. 2
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Lemma 7 If a, b ∈ A then all products of x, x, x, x, a, a, b, b are zero.

Proof We let U ′

i and V ′

i be defined as Ui and Vi with c replaced by a. It
follows from last lemma that it is sufficient to show that the products U ′

1 and
V ′

1 are zero. From the Engel identity and Lemmas 3 and 5 we have

0 = 5xb2x2axa + 5xb2x2a2x + 5xb2xax2a + 5xb2xaxax

= 15V ′

1 − 30U ′

1 (11)

and from the skew-Engel identity (see proof of Lemma 3) (11) and previous
lemmas we have

0 = 5 · [11xb2ax4 + 5xb2x2a2x − 9xb2xax2a − 15xb2xaxax]

= 420U ′

1

and thus U ′

1 = 0 since char k 6∈ {2, 3, 5, 7}. Hence also V ′

1 = 2U ′

1 = 0. 2

Lemma 8 If a, b, c ∈ A then all products of x, x, x, x, a, b, b, c are zero.

Proof From Lemma 5 we have that all products with last two elements from
A are zero. From Lemma 3 we have

5xabx2bcx = −11V1 + 9V2 + 15V3.

Lemma 7 therefore implies that

0 = −22V1 + 18V2 + 30V3 = −25V1

so all products ending in cx are zero. By symmetry all products ending in ax
are also zero. By Lemma 7 we have xacxbxbx = 0 and xbxacxbx = 0. Also
2xabxcxbx = −xb2xcxax = 0, where the first identity comes form Lemma
4. Similarly 2xaxbcxbx = −xaxb2xcx = 0. Since all products of x, x, a, b, b, c
are zero we have that all products ending in x are 0.

Now from the Engel-identity we have

0 = ax(xb2)x2c + ax2(xb2)xc + ax3(xb2)c

+axcx2(cxb2) + ax2cx(xb2) + ax3c(xb2). (12)
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Then we have from the skew-Engel identity

0 = −10au(xb2)u3 + 10au2(xb2)u2 − 5au3(xb2)u + au4(xb2).

for all u ∈ L1. That implies that

0 = −10ax(xb2)x2c + 10ax2(xb2)xc − 5ax3(xb2)c

+axcx2(xb2) + ax2cx(xb2) + ax3c(xb2). (13)

Now (12) and (13) together give

0 = 5 · (11ax(xb2)x2c − 9ax2(xb2)xc + 6ax3(xb2)c)

= 128U1 − 52U2 − 150U3

= 70U1

so U1 = 0 since char k 6∈ {2, 5, 7}. All products ending in xa are also zero by
symmetry. The only products ending in xb that are not obviously zero are
xaxbxcxb and xaxcxbxb. But

0 = −(xb2)(xaxcx) = xaxcx(xb2) = −2xaxcxbxb = 2xaxbxcxb + 2xaxbxbxc.

So we have proved that every product of x, x, x, x, a, b, b, c is zero for all
a, b ∈ A. 2

Proof of Proposition 8 It follows from last lemma that if we interchange
two of a, b, c, d in a product of x, x, x, x, a, b, c, d then the sign changes. This
implies that if two of a, b, c, d occur in a row in such a product, then it must be
zero. Therefore every product of x, x, x, x, a, b, c, d is a multiple of xaxbxcxd.
But from the Jacobi identity we have

0 = (xaxb)xcxd + xc(xaxb)xd + c(xaxb)xxd

= xaxbxcxd + xc(xax)bxd

= xaxbxcxd + 2xcxaxbxd

= 3xaxbxcxd.

To complete the proof it is sufficient to show that for all a, b, c, d, e ∈ A we
have that every product of x, x, x, a, b, c, d, e is zero.
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By Proposition 7 we have that every product with two occurrences of x
and four elements of A∞ is zero. Therefore we have

xa2xcxd2 = xa2xc(xd2) = 0 (14)

for all a, c, d ∈ A and then

0 = xa2x(xc3)

= xa2x2c3 − 3xa2xcxc2

= xa2x2c3 (by (14)).

From this we have
xabxcxde = xabx2cde = 0

so every product starting in xab is zero. Then

xaxbcxd2 = xa(xbc)xd2 = 0

and therefore
0 = xaxb(xc3) = xaxbxc3.

Therefore xaxbcxde = xaxbxcde = 0. 2

5 The Proof

Assume in the following that char k > 7 or char k = 0. We shall consider the
case char k = 7 in the end of the section. Before we prove the main theorem,
we need to carry out reduction step 4 by proving the following proposition.
In the proof of this proposition u = v will mean that u = v modulo I4

Proposition 9 If U is a product in L which includes either 5 occurrences

of x or 3 elements from A, then U = 0.

Lemma 9 If a, b, c ∈ A then every product of x, x, x, a, b, c is zero.

Proof We first show that every product of x, x, x, a, b, b is zero. We can
assume that the product starts in xa. The next letter must be x. Because

0 = xa(xb2) = xaxb2
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all such products are in the span of xax2b2 and xaxbxb. From the Engel and
Jacobi identities we have

0 = (xax)(xb)b + (xb)b(xax) + b(xax)(xb)

= xax2b2 − 2xaxbxb

and
0 = xax2b2 + xaxbxb.

This implies that xax2b2 = xaxbxb = 0 and we have thus proved that every
product of x, x, x, a, b, b is zero.

Now consider a product of x, x, x, a, b, c. It follows from the previous work
that if we interchange two of a, b, c the sign changes. If we have two of a, b, c
in a row, we therefore get a zero. Therefore every product of x, x, x, a, b, c is
a multiple of xaxbxc. But from the Jacobi identity we have

0 = (xaxb)xc + xc(xaxb) + c(xaxb)x

= xaxbxc + xcxaxb + xcxaxb

= 3xaxbxc.

2

Lemma 10 If a, b, c ∈ A then every product of x, x, x, x, a, b, c is zero.

Proof The proof follows similar pattern as the proof of last lemma . We first
show that every product of x, x, x, x, a, a, b is 0. By Lemma 9 they clearly lie
in the span of

U1 = bx2ax2a, U2 = bx3axa, U3 = bx4a2.

From the Engel identity we have

0 = bx2ax2a + bx3axa + bx4a2

and we also have
0 = bx3(xa2) = bx4a2 − 2bx3axa.
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This implies that U3 = 2U2 and U1 = −3U2. Now we use the Engel identity
again. We have

0 = 2(xa)x3ab + (xa)x2axb + (xa)x2bxa + (xa)xax2b + (xa)xbx2a

= 2b(ax4)a + b(ax3ax) + b(ax3)xa + b(ax2)x2a

= 19U1 − 12U2 + 3U3

= −7 · 32U2.

Since char k 6∈ {3, 7} we have U2 = 0 and we have thus shown that every
product of x, x, x, x, a, a, b is zero.

Now consider a product of x, x, x, x, a, b, c. By the preceeding work it fol-
lows that if we interchange two of a, b or c then the sign changes. By the
same argument as was used in last lemma, we have that the products are in
the linear span of U1 = ax2bx2c and U2 = ax3bxc. (Note that the product
can not end in an x by last lemma). From the Jacobi and Engel identities
we then have

0 = (ax2)(bx2)c + (bx2)c(ax2) + c(ax2)(bx2)

= 3U1 − 2U2

and

0 = ax(xc)x2b + ax2(xc)xb + ax3(xc)b + ax2bx(xc) + ax3b(xc)

= U1 + U2.

It follows that U1 = U2 = 0. 2

Lemma 11 If a, b, c ∈ A then every product of x, x, x, x, x, a, b, c is zero.

Proof As in previous two lemmas we first prove that every product of
x, x, x, x, x, a, a, b is zero. From Lemma 10 it follows that they are in the
span of

U1 = bx2ax3a, U2 = bx3ax2a, U3 = bx4axa.

We have
0 = bx4(xa2) = −2bx4axa = U3.
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Then the Engel and skew-Engel identities give us

0 = (bx2ax3 + bx3ax2)a

= U1 + U2

and

0 = (10bx2ax3 − 5bx3ax2 + bx4ax)a

= 5(2U1 − U2).

It then follows that U1 = U2 = U3 = 0 and every product of x, x, x, x, x, a, a, b
is zero.

Now consider a product of x, x, x, x, x, a, b, c. It now follows that if we inter-
change two of a, b or c then the sign changes. Then the product is in the
linear span of

U1 = ax2bx3c, U2 = ax3bx2c, U3 = ax4bxc

and as above we have from the Engel and skew-Engel identity

U1 + U2 + U3 = 0

and
10U1 − 5U2 + U3 = 0.

It follows that 2U2 = 3U1 and 2U3 = −5U1. From the Jacobi identity we
have

0 = (ax3)(bx2)c + (bx2)c(ax3) + c(ax3)(bx2)

= −U1 + 2U2 − 2U3

= 7U1. 2

Proof of Proposition 9 We first prove that all products including a, b, c ∈
A are zero. We will use induction on the number of occurrences of x in
the product. This holds obviously when this number is 0 or 1. Because
ax2bc = ax(xbc) = 0, this is also true when the number of x’s is 2. Lemmas
9, 10 and 11 show that this is also true if the number of occurrences of x is
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3, 4 or 5. So suppose the number of x’s, say i + 6, is greater than 5 and the
statement holds if the number is less than i + 6. Let

U1 = ax2bxix4c, U2 = ax3bx3xic, U3 = ax4bx2xic.

As before we get from the Engel identity and skew-Engel identity that 2U2 =
3U1 and 2U3 = −5U1. But from the Engel identity we have also

0 = ax2bxicx4 + ax2bxixcx3 + · · ·+ ax2bxix4c

= ax2bxix4c.

So U1 = 0 and the induction statement holds.

Next we prove that all products with 5 occurrences of x are zero. So suppose
we have a product with 5 occurrences of x and r elements from A. If r is
1 then the product is clearly zero by the Engel identity. If r ≥ 3 then we
have just proved that the product is zero. So we can assume that we have
a product of x, x, x, x, x, a, b and a, b ∈ A. From the Engel and skew-Engel
identity we have

0 = ax2bx3 + ax3bx2 + ax4bx

and
0 = 10ax2bx3 − 5ax3bx2 + ax4bx.

Which implies that 2ax3bx2 = 3ax2bx3 and 2ax4bx = −5ax2bx3. Then

0 = a(bx5)

= 5(2ax2bx3 − 2ax3bx2 + ax4bx)

= 5/2 · (−7)ax2bx3.

Since char k 6= 7 we therefore have that all these products are zero and the
proposition is therefore proved. 2

Next we see what information about the nilpotency class of Ix we can deduce
from this. We have seen that every product which includes either 5 occur-
rences of x or 3 elements of A lies in I4. By Proposition 4 we have that every
product that includes 12 elements of A lies in I3. But we also have that every
product which has 13 occurrences of x lies in I3. Let us see why this is true.

24



Recall the definition of A∞ from the proof of Proposition 4. If we have a prod-
uct u including e ≥ 5 occurrences of x and t elements from A∞ b1, b2, . . . , bt.
Then u can be written as a linear combination of elements of the form

xbibju1u2 · · ·ue+t−3

where u1, u2, . . . , ue+t−3 is some permutation of x, . . . , x
︸ ︷︷ ︸

e−1

, b1, . . . , bi−1, bi+1, . . . ,

bj−1, bj+1, . . . , bt−2. But then each summand is a product including e− 1 oc-
currences of x and t − 1 elements form A∞. Namely xbibj and t − 2 of the
elements of A∞ which we started with. Now let u be a product with 13 oc-
currences of x and at most 11 elements of A. By using the argument above
repeatedly we see that u can be written as a linear combination of products
each including 4 x’s and at most 2 elements from A∞. But since 9 x’s are
involved in these two elements, one of them must include 5 occurrences of x
and therefore lie in I3 by Propostition 4. Hence u ∈ I3.

So every product with either 13 x’s or 12 elements from A is in I3. By
Proposition 3 it follows that every product including 36 elements of A is in
I2. But we also have that every product including

13 + [35/3] = 24

occurrences of x is in I2. The reason for this is as follows.

Recall that C = A∪{xaiajar| ai, aj, ar ∈ A}. We have seen that the elements
in C commute modulo I2. If u is a product including e ≥ 13 occurrences
of x and t elements of C, c1, c2, . . . , ct, then u can be written as a linear
combination of elements of the form

xcicjcru1u2 · · ·ue+t−4

where u1, u2, . . . , ue+t−4 is some permutation of x, . . . , x
︸ ︷︷ ︸

e−1

, c1, . . . , ci−1, ci+1, . . . ,

cj−1, cj+1, . . . , ct−3. But then each summand is a product including e− 1 oc-
currences of x and t− 2 elements from C. Now let u then be a product with
13 + [35/3] = 24 occurrences of x and at most 35 elements of A. Using the
above argument repeatedly we see that u can be written as a linear combi-
nation of products each involving 13 x’s and at most 13 elements of C, with
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11 of the elements of C having the form xaiajar. One further application of
the above argument shows that u ∈ I2.

So every product including either 24 x’s or 36 elements of A is in I2. By
Proposition 2 we have that every product with 4 · 36 = 144 elements of A
is 0. But by a similar argument as above we also have that every product
including

24 + [143/4] = 59

occurrences of x is 0. Hence I59
x = {0} in L1 if char k 6= 2, 3, 5, 7.

Using a computer program, the nilpotent quotient algorithm was applied
for the case when char k = 7 and it was observed that every product with
either 4 elements of A or 7 x’s is in I4. It follows from similar argument as for
the other characteristics that every product with either 16 elements of A or
7+11 = 18 x’s is in I3. (At most 11 x’s can be involved in elements of A∞. If
we would have three of the form (xab)(xc)(xd) and one of the form (xab)(xc)
then all the 15 elements of A would have been used.) Then it follows from
Proposition 3 that every product including 3 · 16 = 48 elements of A or

18 + [47/3] = 33

x’s. Then finally we have form Proposition 2 that every product which
includes either 48 · 4 = 192 elements of A or

33 + [191/4] = 80

x’s is zero. Hence I80
x = {0} if char k = 7. Applying Proposition 1 we then

have.

Theorem 1 Let L be an Engel-5 Lie algebra with r generators. If char k 6=
2, 3, 5, 7 then the nilpotency class c is at most 59r. If char k = 7 then c ≤ 80r

From Theorem Z1 it follows that there exist some number n0 such that
every Engel-5 Lie algebra is nilpotent if the underlying field has characteristic
greater than n0. Applying some representation theory of the symmetric group
one can use the theorem above to get some information about the global
nilpotency. One can find this method in a more general form than is needed
here in the proof of Theorem Z1 ( see [4] for an accessible description).
Unfortunately it would take too much space for us to go into this here. We
therefore only state the corollary.
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Corollary 1 If L is an Engel-5 Lie algebra over a field k with char k >
195113 or char k = 0 then it is nilpotent of class not more than 975563.
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