
A note on supersoluble Fitting classes

Gunnar Traustason

March 1, 2011

Abstract

In this paper we give an elementary construction of a non-nilpotent
supersoluble Fitting class in which every group is an extension of a
p-group, where p is an arbitrary prime greater than or equal to 5, by
a 2-group.
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1 Introduction

A class F of groups is a Fitting class if it has the following two properties:

1. If G ∈ F and H � G then H ∈ F.

2. If H, K ∈ F, H, K � G and G = HK then G ∈ F.

It is not difficult to see that Fitting classes are closed with respect to forming
subnormal products. For a given group G we will denote by F(G), the Fit-
ting class generated by G. That is, the smallest Fitting class that contains
G. It is easy to determine F(G) in the case when G is either nilpotent or
simple, but in other cases the problem seems to be quite difficult. While
Fitting classes of nilpotent groups are fully understood the same is not true
for metanilpotent groups and even the problem of determining F(S3) still
remains unsolved. In recent years there has been much work in this area (see
[1], [2]-[6] for example).
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In this paper we will give an elementary construction of a supersoluble Fit-
ting class F(G). Since supersoluble groups are metanilpotent our example is
therefore an example of a metanilpotent Fitting class. Notice however that
the class of all supersoluble groups is not a Fitting class. Because of this and
since we want to be able to compute the class F(G) explicitly, we have to be
careful about the choice of the generating group G.

In [6] Menth constructed a family of examples of supersoluble groups in
which every group is an extension of a p-group by a 3-group where p is a
prime different from 3. His construction can be generalized to include exam-
ples of supersoluble Fitting classes in which every group is an extension of
a p-group by a q-group for other odd primes q. This leaves out however the
case when q = 2. In this note we will deal with this exceptional case. For
each prime p greater than or equal to 5, we will construct an example of a
supersoluble Fitting class, in which every group is an extension of a p-group
by a 2-group. Like in Menth’s examples our construction can be described
in terms of a more general pattern, the Fitting classes of Dark type (see [2]).

2 The Fitting class

Let p be a prime number such that p ≥ 5. We define groups T and E as
follows

T = 〈a, b, c : ap = bp = cp = [a, b, b] = [b, a, a] = [b, c, c] = [c, b, b] =

[a, c, c] = [c, a, a] = 1, [w1, . . . , w5] = 1 when w1, . . . , w5 ∈ {a, b, c}〉;

E = 〈T, x : x2 = 1, ax = a−1, bx = b−1, cx = c−1〉.

It is clear that E is supersoluble with Z(E) = Z(T ) = γ4(T ). Since the
nilpotency class of T is less than p, we also have that T has exponent p.
Furthermore we have that the order of T is p11. We want to determine
the Fitting class genertated by E. We will first determine all the p-perfect
groups. Before we descripe the class of all the p-perfect groups, we will derive
some helpful properties of the group T .

Definition 1 We say that {u, v, w} ⊆ T is a good set of generators, if u, v, w
generate T and every commutator of length 3 in u, v, w with an element
repeated is the identity..
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Lemma 1 (a) If u, v ∈ T and [u, v] ∈ γ3(T ), then u and v are dependent
modulo γ2(T ).

(b) Suppose that {u, v, w} is a good set of generators for T . Then {〈u〉T ′, 〈v〉T ′,
〈w〉T ′} = {〈a〉T ′, 〈b〉T ′, 〈c〉T ′}.

Proof (a) Suppose uT ′ = aibjckT ′ and vT ′ = arbsctT ′. Modulo γ3(T ), we
have

1 = [u, v] = [a, b]is−jr[b, c]jt−ks[c, a]kr−it.

Since γ2(T )/γ3(T ) is a vectorspace with basis [a, b]γ3(T ), [b, c]γ3(T ) and
[c, a]γ3(T ), we must have that either (r, s, t) = (0, 0, 0) or (i, j, k) is a multiple
of (r, s, t).

(b) Suppose uT ′ = aibjckT ′, vT ′ = arbsctT ′ and wT ′ = aαbβcγT ′. We show
that each of the triples (i, j, k), (r, s, t), (α, β, γ) has two entries that are zero.
We do this by showing that rs = st = tr = ij = jk = ki = αβ = βγ =
γα = 0. Suppose one of these were nonzero. Without loss of generality, we
can assume that rs 6= 0. We will show that this leads to the contradiction
that u,v and w are dependent modulo T ′. We calculate modulo γ4(T ). Using
[c, a, b] = [a, b, c]−1[b, c, a]−1 we get that

1 = [u, v, v] = [a, b, c]2ist−jrt−krs[b, c, a]jtr+its−2ksr.

Since [a, b, c] and [b, c, a] are independent modulo γ4(T ), it follows that

ist = jrt = krs.

If t 6= 0 we get i/r = j/s = k/t and u is a power of v modulo T ′. So we
can assume that t = 0. We then have k = 0 and {u, v} ⊆ 〈a, b〉T ′. Similarly
{w, v} ⊆ 〈a, b〉T ′ and therefore u, v, w are dependent modulo T ′. 2

Lemma 2 Suppose A ≤ Aut(T ) is a 2-group such that each y ∈ A either
inverts or centralizes T/T ′. Then there is a good set of generators {a′, b′, c′}
for T such that each y ∈ A either inverts or centralizes (a′, b′, c′).

Proof We let S = {(au, bv, cw) : u, v, w ∈ T ′ and {au, bv, cw} is a good set of
generators for T}. We first show that the order of S is a power of p. Suppose
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(au, bv, cw) ∈ S and that modulo γ3(T )

au = a[a, b]r1 [b, c]s1 [c, a]t1 ;

bv = b[b, c]s2 [c, a]t2 [a, b]r2 ;

cw = c[c, a]t3 [a, b]r3 [b, c]s3 .

We have
1 = [au, bv, bv] = [b, c, a, b]−2t1−2s2[a, b, c, a]t2 .

By symmetry we have t1 + s2 = t2 = r2 + t3 = r3 = s3 + r1 = s1 = 0 and
S ⊆ {(a[a, b]r[c, a]−sα, b[b, c]s[a, b]−tβ, c[c, a]t[b, c]−rγ) : α, β, γ ∈ γ3(T ) and
r, s, t ∈Zp}.

But it is easy to check that the latter set is contained in S and therefore
|S| is a power of p. We let S̃ = { {x, x−1} : x ∈ S}. A acts on S̃ and since
A is a 2-group, every A orbit has an order which is a power of 2. Since |S̃|
is odd, one orbit must have one element only. 2

Lemma 3 Suppose s ∈ Aut(T ) is a 2-element such that as ∈ bnT ′, bs ∈ amT ′

and cs ∈ cǫT ′ where mn = 1( mod p) and ǫ ∈ {−1, 1}. Then there is a good
set of generators {a1, b1, c1} for T such that (a1, b1, c1)

s = (bn
1 , a

m
1 , cǫ

1).

Proof We let S = {(au, bv, cw) : u, v, w ∈ T ′ and {au, bv, cw} is a good set of
generators for T}. In the proof of Lemma 2 we saw that |S| is a power of
p. For each (a1, b1, c1) ∈ S we define an element α(a1, b1, c1) = (bn

1 , a
m
1 , cǫ

1).
We let S̃ = { {x, α(x)} : x ∈ S}. We have that s acts on S̃ and since s is
a 2-element, every s-orbit has order which is a power of 2. Since |S̃| is odd,
one orbit must have one element only. 2

Definition 2 We define a class F0 of finite groups as follows. G ∈ F0 if it
is an extension of a p-group X by a 2-group Y and

(i) X is a central product of groups T1, . . . , Tm isomorphic to T and Ti�G
for i = 1, . . . , m;

(ii) for all i ∈ {1, . . . , m} we have Y/CY (Ti/T
′
i )

∼=Z2 and the generator
acts on Ti/T

′
i as the inverse automorphism.

We will see later that F0 is the subclass of all the p-perfect groups in F(E).
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Lemma 4 Let G = XY ∈ F0 and C = CY (X).
(a) G is p-perfect; (b) G is supersoluble; (c) Fit(G) = X×C and G/Fit(G) ∼=
Y/C is an elementary abelian 2-group.

Proof (a) By definition of F0, we can find yi ∈ Y which inverts Ti/T
′
i . By

Lemma 2 we can find generators ai, bi and ci for Ti such that (ayi

i , byi

i , cyi

i ) =
(a−1

i , b−1
i , c−1

i ). Then ai = y−1
i · yiai, bi = y−1

i · yibi and ci = y−1
i · yici, so

〈Ti, yi〉 is generated by 2-elements. For each i we can find such yi and G is
therefore generated by 2-elements.

(b) Each y ∈ Y either inverts or centralizes Ti/T
′
i , T ′

i/γ3(Ti), γ3(Ti)/Z(Ti)
and Z(Ti) for i = 1, . . . , m.

(c) Everything is clear except that Y/C is an elementary abelian 2-group.
Since Y/CY (Ti/T

′
i ) is of order 2, we have that y2 centralizes Ti/T

′
i for all

i ∈ {1, . . . , m}. It follows from Lemma 2 that y2 centralizes T1 · · ·Tm = X.
2

We want to prove that F0 is closed with respect to forming normal prod-
ucts. The following lemma will be useful.

Lemma 5 Suppose G = XY ∈ F0 and that X can be written in two ways as
a central product X = T1 · · ·Tm = U1 · · ·Ul, where the Ti and Uj satisfy the
conditions of the definition for F0. Then m = l and one can reindex the Uj

such that Ui = Ti for i = 1, . . . , m.

Proof We have that X/Z(X) = T1Z(X)/Z(X) × · · · × TmZ(X)/Z(X) =
U1Z(X)/Z(X)× · · ·×UlZ(X)/Z(X). By considering orders we clearly have
m = l. Furthermore, since T/Z(T ) is indecomposible, we have from the
Krull-Remak-Schmidt theorem, that we can reindex the Uj such that

X/Z(X) = T1Z(X)/Z(X) × · · · × Ti−1Z(X)/Z(X) × UiZ(X)/Z(X)×

Ti+1Z(X)/Z(X) × · · · × TmZ(X)/Z(X)

for all i ∈ {1, . . . , m}. Since [Ui, Tj ] ≤ Z(X) for j 6= i, we can for every i
find xi, yi, zi ∈ T ′

iZ2(X) such that Ti = 〈ai, bi, ci〉 and Ui = 〈aixi, biyi, cizi〉.
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We will show that xi, yi, zi ∈ T ′
iZ(X). Suppose

a1x1 = a1[a2, b2, c2]
r2 [b2, c2, a2]

s2α1 a2x2 = a2[a1, b1, c1]
r1 [b1, c1, a1]

s1α2

b1y1 = b1[a2, b2, c2]
t2 [b2, c2, a2]

u2β1 b2y2 = b2[a1, b1, c1]
t1 [b1, c1, a1]

u1β2

c1z1 = c1[a2, b2, c2]
v2 [b2, c2, a2]

w2γ1 c2z2 = c2[a1, b1, c1]
v1 [b1, c1, a1]

w1γ2

where αi, βi, γi ∈ T ′
i

∏
j≥3 γ3(Ti). The commutivity of the generators of U1

with those of U2 gives

[a2, b2, c2, a2]
r2−2s2 = [a1, b1, c1, a1]

r1−2s1;
[b2, c2, a2, b2]

r2+s2 = [a1, b1, c1, a1]
t1−2u1;

[c2, a2, b2, c2]
−2r2+s2 = [a1, b1, c1, a1]

v1−2w1 ;
[a2, b2, c2, a2]

t2−2u2 = [b1, c1, a1, b1]
r1+s1;

[b2, c2, a2, b2]
t2+u2 = [b1, c1, a1, b1]

t1+u1;
[c2, a2, b2, c2]

−2t2+u2 = [b1, c1, a1, b1]
v1+w1;

[a2, b2, c2, a2]
v2−2w2 = [c1, a1, b1, c1]

−2r1+s1;
[b2, c2, a2, b2]

v2+w2 = [c1, a1, b1, c1]
−2t1+u1 ;

[c2, a2, b2, c2]
−2v2+w2 = [c1, a1, b1, c1]

−2v1+w1 .

Now (r2−2s2)+(r2 +s2)+(−2r2 +s2) = 0. If not both r2 and s2 are 0, then
two of r2−2s2, r2+s2 and −2r2+s2 must be nonzero. This would imply that
two of [a2, b2, c2, a2], [b2, c2, a2, b2] and [c2, a2, b2, c2] would be in 〈[a1, b1, c1, a1]〉
and thus dependent which is a contradiction. Therefore r2 = s2 = 0. By
symmetry r1 = s1 = t1 = u1 = v1 = w1 = r2 = s2 = t2 = u2 = v2 = w2 = 0.
Applying this argument two every pair of indices, we see that xi, yi, zi ∈
T ′

iZ(X) for all i ∈ {1, . . . , m}. Notice that it follows that U ′
i = T ′

i . Let
Ki be a complement of Z(Ti) in Z(X) for i = 1, . . . , m. We then have
aixi = aiαiki for some αi ∈ T ′

i and ki ∈ Ki. By definition of F0 there is an
element s ∈ Y which inverts Ti/T

′
i . Then s must also invert Ui/U

′
i (since it

does not centralize it). It is also clear that s centralizes Z(X) = γ4(X). Now
we calculate modulo T ′

i = U ′
i .

a−1

i ki = as
ik

s
i = (aixi)

s = x−1

i a−1

i = a−1

i k−1

i

and k2
i ∈ T ′

i ∩ Ki = {1}. Thus aixi = aiαi ∈ Ti. Similarly biyi, cizi ∈ Ti and
Ui = Ti. 2

Proposition 1 F0 ⊆ F(E)
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Proof Since 2 divides the order of E we have that F(E) must contain all
2-groups. Suppose now that G = XY ∈ F0 with X 6= 1. Then G is generated
by the subnormal subgroups 〈X, s〉, s ∈ Y . It is thus sufficient to show that
〈X, s〉 ∈ F(E) for all s ∈ Y . Now 〈X, s〉 is a normal subgroup of 〈X, σ〉×〈s〉,
where σ is the automorphism on X induced by s. It is therefore enough to
show that 〈X, σ〉 is in F(E). Let σi be the automorphism on X = T1 · · ·Tm,
which acts on Ti like σ but centralizes Tj for j 6= i. Then σ = σ1 · · ·σm and
〈X, σ〉 is a normal subgroup of the normal product 〈X, σ1〉 · · · 〈X, σm〉. Each
〈X, σi〉 is a normal product T1 · · ·Ti−1〈Ti, σi〉Ti+1 · · ·Tm and we have only left
to show that 〈Ti, σi〉 ∈ F(E). If σi centralizes Ti, this is clear. If not, then σi

inverts Ti/T
′
i and by Lemma 2 we have that 〈Ti, σi〉 is isomorphic to E. 2

Proposition 2 Let G1 = X1Y1 and G2 = X2Y2 be in F0 and suppose that
G1G2 is a normal product of G1 and G2. Then G1G2 ∈ F0.

Proof If both X1 and X2 are trivial this is clear. Suppose then that X1 6= 1
but X2 = 1. Let S = Y1G2, then S is a Sylow 2-subgroup of G1G2. We also
have X1 = Op(G1G2). Suppose X1 is a central product of T1, . . . , Tm, where
T1, . . . , Tm are described as in Definition 2. For each i ∈ {1, . . . , m} we have
[Ti, G2] = 1 and thus Ti � G1G2. We also get

S/CS(Ti/T
′
i ) = Y1G2/CY1

(Ti/T
′
i )G2

∼= Y1/Y1 ∩ CY1
(Ti/T

′
i )G2

= Y1/CY1
(Ti/T

′
i )

∼= Z2

and since X1Y1 ∈ F0, there is an element in Y1 which acts on Ti/T
′
i as the

inverse automorphism. It follows that G1G2 ∈ F0.

So we can assume that X1 = T1 · · ·Tm and X2 = U1 · · ·Ul with m and l
nonzero. Let s be a 2-element of G2. We have that s induces an auto-
morphism σ on X1. We also have that s2 centralizes X2 and since s2 is
a 2-element and (2, p) = 1 we get [X1, 〈s

2〉] = [X1, 〈s
2〉, 〈s2〉] (s2 fixes ev-

ery coset of [X1, 〈s
2〉] in X1 and every coset of [X1, 〈s

2〉, 〈s2〉] in [X1, 〈s
2〉]).

Therefore [X1, 〈s
2〉] ≤ [X2, 〈s

2〉] = 1 and σ2 = 1. The following lemma will
be useful for the completion of the proof.

Lemma 6

(a) [Ti, X2] ≤ T ′
i and [Uj , X1] ≤ U ′

j for 1 ≤ i ≤ m and 1 ≤ j ≤ l.
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(b) [γi(X1), γj(X2)] ≤ γi+j(X1) ∩ γi+j(X2) for all integers i, j ≥ 1.
(c) Ti, Uj � G1G2 for 1 ≤ i ≤ m and 1 ≤ j ≤ l.

Proof of Lemma 6 We first show that Ti � X1X2. Suppose this is not
the case. Then there is u ∈ X2 such that T u

i 6= Ti. By Lemma 5 we
have that u permutes the set {T1, . . . , Tm} by conjugation and we have that
Ti, T

u
i , . . . , T u4

i commute elementwise. Let a, b and c be good generators for
Ti. Now [[a, u], [b, u], [c, u], u, u] ∈ γ5(X2) = {1}. Thus we have

[a, b, c]u
3−3u2+3u−1 = [[a, b, c], u, u, u]

= [[a, u], [b, u], [c, u], u, u]

= 1

and since p > 3 this implies that [a, b, c, a] = 1 which is a contradiction.
Therefore we must have Ti � X1X2.

We now prove (a). By symmetry it is sufficient to show that [Ti, X2] ≤ T ′
i .

Let u ∈ X2. We have seen that T u
i ≤ Ti. By lemma 1 we have that u

permutes the set {〈a〉T ′
i , 〈b〉T

′
i , 〈c〉T

′
i}. But since p does not divide |Sym(3)|,

we have that u fixes this set. If au = ar modulo T ′
i then a = aup

= arp

= ar

and so u centralizes Ti/T
′
i and we have proved (a). It follows from (a) that

[X1, X2] ≤ X ′
1 and therefore it follows by induction on i (using the three sub-

groups Lemma) that [γi(X1), X2] ≤ γi+1(X1). Then on has by induction on j
that [γi(X1), γj(X2)] ≤ γi+j(X1). By symmetry [γj(X2), γi(X1)] ≤ γi+j(X2)
and so (b) is true. We have now only left to prove (c). Suppose Ti is not
normal in G1G2. By (a) there is a 2-element s ∈ G2 such that T s

i 6= Ti.
By lemma 5 we have that [Ti, T

s
i ] = 1. Let a, b and c be good generators

for Ti. Now aa−s ∈ X2 and b ∈ X1 and therefore it follows from (b) that
[a, b] = [aa−s, b] ∈ [X1, X2] ≤ γ2(X2). Then [[a, b], s] ∈ γ3(X2), since it is
inverted by s. It follows that

[a, b, c, a]−1 = [[a, b], s], c, a] ∈ [γ3(X2), X1, X1] ≤ γ5(X2).

Where in the last inclusion we are using (b). So we have the contradiction
that [a, b, c, a] = 1 which finishes the proof of the Lemma.

Continuation of the proof of Proposition 2 Let s be a 2-element of
G2 and a, b and c be good generators for Ti. We will prove that Ti/T

′
i is
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either inverted or centralized by s. From Lemma 6 we have that the set
{as, bs, cs} is also a good set of generators for Ti. It follows from Lemma 1(b)
that

as, bs, cs ∈ 〈a〉T ′
i ∪ 〈b〉T ′

i ∪ 〈c〉T ′
i .

We first show that as ∈ 〈a〉T ′
i , bs ∈ 〈b〉T ′

i and cs ∈ 〈c〉T ′
i . If that is not

the case, then one of 〈a〉T ′
i , 〈b〉T

′
i and 〈c〉T ′

i is fixed by s but the other two
interchanged. Without loss of generality we can suppose that the first two
are interchanged and the last fixed. By Lemma 3 we can (by taking a new
set of good generators) find integers m and n which satisfy mn = 1(mod p)
such that

as = bn, bs = am and cs = cǫ,

where ǫ ∈ {−1, 1} We then have [a, b] = [b−na, b] = [a−sa, b] ∈ [X2, X1] ≤
γ2(X2) by Lemma 6. But [a, b]s = [bn, am] = [b, a]mn = [a, b]−1 and so [a, b]
must be in γ3(X2) (since all elements in γ2(X2) are fixed by s modulo γ3(X2)).
But then [a, b, c, a] ∈ γ5(X2) by Lemma 6. That is [a, b, c, a] = 1 which is a
contradiction. We therefore have that 〈a〉T ′

i , 〈b〉T
′
i and 〈c〉T ′

i are all fixed by
s. We can then (by Lemma 2) choose the good generators a, b and c such
that each generator is either fixed or inverted by s. We want to show that
either all are fixed or all inverted. Suppose this is not the case and without
loss of generality we can assume that as = a−1 and bs = b. But then we
have that a−2 = a−1as = [a, s] ∈ [X1, X2] and thus we have by Lemma 6 that
a ∈ γ2(X2) and as before we get the contradiction that [a, b, c, a] = 1. We
have thus shown that Ti/T

′
i is either inverted or fixed by s. Similarly one has

that for every 2-element s in G1 either Uj/U
′
j is centralized or inverted by s.

Suppose we have reindexed the Uj such that Ui/U
′
i is centralized by G1

when 1 ≤ i ≤ k but that Ui/U
′
i inverted by some 2-element of G1 when

k + 1 ≤ i ≤ l. By Lemma 2 we have, that when k + 1 ≤ i ≤ l, some
2-element in G1 inverts some three generators of Ui. Then Uk+1 · · ·Ul ≤ X1

and
X1X2 = T1 · · ·TmU1 · · ·Uk.

Since G1 is generated by 2-elements it also follows from Lemma 2 that
U1, . . . Uk are centralized by G1 and it is thus clear that the product above is
a central product. In Lemma 6 we proved that each of the factors is normal
in G1G2. Now let Y be a Sylow 2-subgroup of G1G2. We let Y1 = Y ∩ G1
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and Y2 = Y ∩G2, so Yi is a Sylow 2-subgroup of Gi. We have seen, that each
element in Y2 inverts or centralizes each Ti/T

′
i . Since G1 ∈ F0, we have that

this is true for all elements in Y and that furthermore Y/CY (Ti/T
′
i )

∼= Z2.
Same is true for each qoutient Uj/U

′
j , j = 1, . . . , k. It is therefore clear that

G1G2 ∈ F0 and the proof of Proposition 2 is completed. 2

Proposition 3 Let G = XY ∈ F0 and N � G. Then N = Op(N)Op(N)
with Op(N) ∈ F0.

Proof Let k be such that (after reindexing) for i = 1, 2, . . . , k there is some
2-element y ∈ N that inverts Ti/T

′
i but that every 2-element in N centralizes

Ti/T
′
i when k + 1 ≤ i ≤ m. By Lemma 2 we have that T1, T2, . . . Tk have

generators that are inverted by some 2-element from N and Tk+1, . . . , Tm are
centralized by all 2-elements in N . Let X1 = T1 · · ·Tk and M = Tk+1 · · ·Tm.
Then X1 ≤ N and M is centralized by all 2-elements in N . We now consider
two cases.

Case 1.k = 0. Then each 2-element of N centralizes X and N is nilpotent.
We now have that N = Op(N)Op(N) and Op(N) = Syl2(N) is in F0.

Case 2. k ≥ 1. We have Op(N) = X ∩ N = X1(M ∩ N). Let R = N ∩ Y .
Then R is a Sylow 2-subgroup of N . Let G1 = X1R. Because [M ∩N, R] = 1
we have that G1 � N . Also M ∩ N � N and N is a normal product of G1

and X1(M ∩ N). Then for 1 ≤ i ≤ k we have

R/CR(Ti/T
′
i ) = R/CY (Ti/T

′
i ) ∩ R

∼= RCY (Ti/T
′
i )/CY (Ti/T

′
i )

≤ Y/CY (Ti/T
′
i ).

So G1 ∈ F0 if R/CR(Ti/T
′
i ) is non-trivial. But if every element of R cen-

tralizes Ti/T
′
i then, since X centralizes Ti/T

′
i , every 2-element of N would

centralize Ti/T
′
i which is a contradiction. So G1 ∈ F0 and since N/G1 is

isomorphic to a quotient of M ∩ N we have that G1 = Op(N). 2

Definition 3 We define a class F of finite groups as follows. G ∈ F if
G = Op(G)Op(G) and Op(G) ∈ F0.
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Theorem 1 F is the Fitting class generated by E and F is a supersoluble
class.

Proof Let G ∈ F. By Lemma 4 we have that Op(G) is supersoluble. G is
then a normal product of a nilpotent group and a supersoluble group, and
is therefore supersoluble. We then have only left to show that F is a Fitting
class since E ∈ F0 and F ≤ F(E).

We first prove that F is closed with respect to forming normal products. Let
G1, G2 ∈ F and G1G2 be a normal product of those groups. Now G1G2 =
Op(G1)O

p(G1) · Op(G2)O
p(G2) = Op(G1G2)O

p(G1G2) where Op(G1G2) =
Op(G1)O

p(G2) is in F0 by Proposition 2.

Now we show that F is closed with respect to taking normal subgroups.
Let G ∈ F and N � G. Then Op(N) ≤ Op(G) ∩ N . Since H := Op(G) ∩ N
is a normal subgroup of the F0-group Op(G), we have by Proposition 3 that
it is a normal product Op(H)Op(H) with Op(H) ∈ F0. All 2-elements of N
lie in H and thus Op(H) = Op(N). Since Op(N) is a Sylow p-subgroup of N
we have that N = Op(N)Op(N). 2
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