A note on supersoluble Fitting classes

Gunnar Traustason

March 1, 2011

Abstract

In this paper we give an elementary construction of a non-nilpotent supersoluble Fitting class in which every group is an extension of a p-group, where p is an arbitrary prime greater than or equal to 5 , by a 2 -group.

1991 Mathematics Subject Classification (Amer. Math. Soc.): 20D10.

1 Introduction

A class \mathfrak{F} of groups is a Fitting class if it has the following two properties:

1. If $G \in \mathfrak{F}$ and $H \unlhd G$ then $H \in \mathfrak{F}$.
2. If $H, K \in \mathfrak{F}, H, K \unlhd G$ and $G=H K$ then $G \in \mathfrak{F}$.

It is not difficult to see that Fitting classes are closed with respect to forming subnormal products. For a given group G we will denote by $\mathfrak{F}(G)$, the Fitting class generated by G. That is, the smallest Fitting class that contains G. It is easy to determine $\mathfrak{F}(G)$ in the case when G is either nilpotent or simple, but in other cases the problem seems to be quite difficult. While Fitting classes of nilpotent groups are fully understood the same is not true for metanilpotent groups and even the problem of determining $\mathfrak{F}\left(S_{3}\right)$ still remains unsolved. In recent years there has been much work in this area (see [1], [2]-[6] for example).

In this paper we will give an elementary construction of a supersoluble Fitting class $\mathfrak{F}(G)$. Since supersoluble groups are metanilpotent our example is therefore an example of a metanilpotent Fitting class. Notice however that the class of all supersoluble groups is not a Fitting class. Because of this and since we want to be able to compute the class $\mathfrak{F}(G)$ explicitly, we have to be careful about the choice of the generating group G.

In [6] Menth constructed a family of examples of supersoluble groups in which every group is an extension of a p-group by a 3 -group where p is a prime different from 3. His construction can be generalized to include examples of supersoluble Fitting classes in which every group is an extension of a p-group by a q-group for other odd primes q. This leaves out however the case when $q=2$. In this note we will deal with this exceptional case. For each prime p greater than or equal to 5 , we will construct an example of a supersoluble Fitting class, in which every group is an extension of a p-group by a 2-group. Like in Menth's examples our construction can be described in terms of a more general pattern, the Fitting classes of Dark type (see [2]).

2 The Fitting class

Let p be a prime number such that $p \geq 5$. We define groups T and E as follows

$$
\begin{gathered}
T=\left\langle a, b, c: a^{p}=b^{p}=c^{p}=[a, b, b]=[b, a, a]=[b, c, c]=[c, b, b]=\right. \\
\left.[a, c, c]=[c, a, a]=1,\left[w_{1}, \ldots, w_{5}\right]=1 \text { when } w_{1}, \ldots, w_{5} \in\{a, b, c\}\right\rangle ; \\
E=\left\langle T, x: x^{2}=1, a^{x}=a^{-1}, b^{x}=b^{-1}, c^{x}=c^{-1}\right\rangle .
\end{gathered}
$$

It is clear that E is supersoluble with $Z(E)=Z(T)=\gamma_{4}(T)$. Since the nilpotency class of T is less than p, we also have that T has exponent p. Furthermore we have that the order of T is p^{11}. We want to determine the Fitting class genertated by E. We will first determine all the p-perfect groups. Before we descripe the class of all the p-perfect groups, we will derive some helpful properties of the group T.

Definition 1 We say that $\{u, v, w\} \subseteq T$ is a good set of generators, if u, v, w generate T and every commutator of length 3 in u, v, w with an element repeated is the identity..

Lemma 1 (a) If $u, v \in T$ and $[u, v] \in \gamma_{3}(T)$, then u and v are dependent modulo $\gamma_{2}(T)$.
(b) Suppose that $\{u, v, w\}$ is a good set of generators for T. Then $\left\{\langle u\rangle T^{\prime},\langle v\rangle T^{\prime}\right.$, $\left.\langle w\rangle T^{\prime}\right\}=\left\{\langle a\rangle T^{\prime},\langle b\rangle T^{\prime},\langle c\rangle T^{\prime}\right\}$.

Proof (a) Suppose $u T^{\prime}=a^{i} b^{j} c^{k} T^{\prime}$ and $v T^{\prime}=a^{r} b^{s} c^{t} T^{\prime}$. Modulo $\gamma_{3}(T)$, we have

$$
1=[u, v]=[a, b]^{i s-j r}[b, c]^{j t-k s}[c, a]^{k r-i t} .
$$

Since $\gamma_{2}(T) / \gamma_{3}(T)$ is a vectorspace with basis $[a, b] \gamma_{3}(T),[b, c] \gamma_{3}(T)$ and $[c, a] \gamma_{3}(T)$, we must have that either $(r, s, t)=(0,0,0)$ or (i, j, k) is a multiple of (r, s, t).
(b) Suppose $u T^{\prime}=a^{i} b^{j} c^{k} T^{\prime}, v T^{\prime}=a^{r} b^{s} c^{t} T^{\prime}$ and $w T^{\prime}=a^{\alpha} b^{\beta} c^{\gamma} T^{\prime}$. We show that each of the triples $(i, j, k),(r, s, t),(\alpha, \beta, \gamma)$ has two entries that are zero. We do this by showing that $r s=s t=t r=i j=j k=k i=\alpha \beta=\beta \gamma=$ $\gamma \alpha=0$. Suppose one of these were nonzero. Without loss of generality, we can assume that $r s \neq 0$. We will show that this leads to the contradiction that u, v and w are dependent modulo T^{\prime}. We calculate modulo $\gamma_{4}(T)$. Using $[c, a, b]=[a, b, c]^{-1}[b, c, a]^{-1}$ we get that

$$
1=[u, v, v]=[a, b, c]^{2 i s t-j r t-k r s}[b, c, a]^{j t r+i t s-2 k s r} .
$$

Since $[a, b, c]$ and $[b, c, a]$ are independent modulo $\gamma_{4}(T)$, it follows that

$$
i s t=j r t=k r s .
$$

If $t \neq 0$ we get $i / r=j / s=k / t$ and u is a power of v modulo T^{\prime}. So we can assume that $t=0$. We then have $k=0$ and $\{u, v\} \subseteq\langle a, b\rangle T^{\prime}$. Similarly $\{w, v\} \subseteq\langle a, b\rangle T^{\prime}$ and therefore u, v, w are dependent modulo T^{\prime}.

Lemma 2 Suppose $A \leq \operatorname{Aut}(T)$ is a 2-group such that each $y \in A$ either inverts or centralizes T / T^{\prime}. Then there is a good set of generators $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ for T such that each $y \in A$ either inverts or centralizes $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$.

Proof We let $S=\left\{(a u, b v, c w): u, v, w \in T^{\prime}\right.$ and $\{a u, b v, c w\}$ is a good set of generators for $T\}$. We first show that the order of S is a power of p. Suppose
$(a u, b v, c w) \in S$ and that modulo $\gamma_{3}(T)$

$$
\begin{aligned}
a u & =a[a, b]^{r_{1}}[b, c]^{s_{1}}[c, a]^{t_{1}} ; \\
b v & =b[b, c]^{s_{2}}[c, a]^{t_{2}}[a, b]^{r_{2}} ; \\
c w & =c[c, a]^{t_{3}}[a, b]^{r_{3}}[b, c]^{s_{3}} .
\end{aligned}
$$

We have

$$
1=[a u, b v, b v]=[b, c, a, b]^{-2 t_{1}-2 s_{2}}[a, b, c, a]^{t_{2}} .
$$

By symmetry we have $t_{1}+s_{2}=t_{2}=r_{2}+t_{3}=r_{3}=s_{3}+r_{1}=s_{1}=0$ and $S \subseteq\left\{\left(a[a, b]^{r}[c, a]^{-s} \alpha, b[b, c]^{s}[a, b]^{-t} \beta, c[c, a]^{t}[b, c]^{-r} \gamma\right): \alpha, \beta, \gamma \in \gamma_{3}(T)\right.$ and $\left.r, s, t \in \mathbb{Z}_{p}\right\}$.

But it is easy to check that the latter set is contained in S and therefore $|S|$ is a power of p. We let $\tilde{S}=\left\{\left\{x, x^{-1}\right\}: x \in S\right\}$. A acts on \tilde{S} and since A is a 2 -group, every A orbit has an order which is a power of 2 . Since $|\tilde{S}|$ is odd, one orbit must have one element only.

Lemma 3 Suppose $s \in \operatorname{Aut}(T)$ is a 2-element such that $a^{s} \in b^{n} T^{\prime}, b^{s} \in a^{m} T^{\prime}$ and $c^{s} \in c^{\epsilon} T^{\prime}$ where $m n=1(\bmod p)$ and $\epsilon \in\{-1,1\}$. Then there is a good set of generators $\left\{a_{1}, b_{1}, c_{1}\right\}$ for T such that $\left(a_{1}, b_{1}, c_{1}\right)^{s}=\left(b_{1}^{n}, a_{1}^{m}, c_{1}^{\epsilon}\right)$.

Proof We let $S=\left\{(a u, b v, c w): u, v, w \in T^{\prime}\right.$ and $\{a u, b v, c w\}$ is a good set of generators for $T\}$. In the proof of Lemma 2 we saw that $|S|$ is a power of p. For each $\left(a_{1}, b_{1}, c_{1}\right) \in S$ we define an element $\alpha\left(a_{1}, b_{1}, c_{1}\right)=\left(b_{1}^{n}, a_{1}^{m}, c_{1}^{\epsilon}\right)$. We let $\tilde{S}=\{\{x, \alpha(x)\}: x \in S\}$. We have that s acts on S and since s is a 2 -element, every s-orbit has order which is a power of 2 . Since $|\tilde{S}|$ is odd, one orbit must have one element only.

Definition 2 We define a class \mathfrak{F}_{0} of finite groups as follows. $G \in \mathfrak{F}_{0}$ if it is an extension of a p-group X by a 2-group Y and
(i) X is a central product of groups T_{1}, \ldots, T_{m} isomorphic to T and $T_{i} \unlhd G$ for $i=1, \ldots, m$;
(ii) for all $i \in\{1, \ldots, m\}$ we have $Y / C_{Y}\left(T_{i} / T_{i}^{\prime}\right) \cong \mathbb{Z}_{2}$ and the generator acts on T_{i} / T_{i}^{\prime} as the inverse automorphism.

We will see later that \mathfrak{F}_{0} is the subclass of all the p-perfect groups in $\mathfrak{F}(E)$.

Lemma 4 Let $G=X Y \in \mathfrak{F}_{0}$ and $C=C_{Y}(X)$.
(a) G is p-perfect; (b) G is supersoluble; (c) Fit $(G)=X \times C$ and $G / \operatorname{Fit}(G) \cong$ Y / C is an elementary abelian 2-group.

Proof (a) By definition of \mathfrak{F}_{0}, we can find $y_{i} \in Y$ which inverts T_{i} / T_{i}^{\prime}. By Lemma 2 we can find generators a_{i}, b_{i} and c_{i} for T_{i} such that $\left(a_{i}^{y_{i}}, b_{i}^{y_{i}}, c_{i}^{y_{i}}\right)=$ $\left(a_{i}^{-1}, b_{i}^{-1}, c_{i}^{-1}\right)$. Then $a_{i}=y_{i}^{-1} \cdot y_{i} a_{i}, b_{i}=y_{i}^{-1} \cdot y_{i} b_{i}$ and $c_{i}=y_{i}^{-1} \cdot y_{i} c_{i}$, so $\left\langle T_{i}, y_{i}\right\rangle$ is generated by 2-elements. For each i we can find such y_{i} and G is therefore generated by 2 -elements.
(b) Each $y \in Y$ either inverts or centralizes $T_{i} / T_{i}^{\prime}, T_{i}^{\prime} / \gamma_{3}\left(T_{i}\right), \gamma_{3}\left(T_{i}\right) / Z\left(T_{i}\right)$ and $Z\left(T_{i}\right)$ for $i=1, \ldots, m$.
(c) Everything is clear except that Y / C is an elementary abelian 2-group. Since $Y / C_{Y}\left(T_{i} / T_{i}^{\prime}\right)$ is of order 2 , we have that y^{2} centralizes T_{i} / T_{i}^{\prime} for all $i \in\{1, \ldots, m\}$. It follows from Lemma 2 that y^{2} centralizes $T_{1} \cdots T_{m}=X$.

We want to prove that \mathfrak{F}_{0} is closed with respect to forming normal products. The following lemma will be useful.

Lemma 5 Suppose $G=X Y \in \mathfrak{F}_{0}$ and that X can be written in two ways as a central product $X=T_{1} \cdots T_{m}=U_{1} \cdots U_{l}$, where the T_{i} and U_{j} satisfy the conditions of the definition for \mathfrak{F}_{0}. Then $m=l$ and one can reindex the U_{j} such that $U_{i}=T_{i}$ for $i=1, \ldots, m$.

Proof We have that $X / Z(X)=T_{1} Z(X) / Z(X) \times \cdots \times T_{m} Z(X) / Z(X)=$ $U_{1} Z(X) / Z(X) \times \cdots \times U_{l} Z(X) / Z(X)$. By considering orders we clearly have $m=l$. Furthermore, since $T / Z(T)$ is indecomposible, we have from the Krull-Remak-Schmidt theorem, that we can reindex the U_{j} such that

$$
\begin{aligned}
X / Z(X)= & T_{1} Z(X) / Z(X) \times \cdots \times T_{i-1} Z(X) / Z(X) \times U_{i} Z(X) / Z(X) \times \\
& T_{i+1} Z(X) / Z(X) \times \cdots \times T_{m} Z(X) / Z(X)
\end{aligned}
$$

for all $i \in\{1, \ldots, m\}$. Since $\left[U_{i}, T_{j}\right] \leq Z(X)$ for $j \neq i$, we can for every i find $x_{i}, y_{i}, z_{i} \in T_{i}^{\prime} Z_{2}(X)$ such that $T_{i}=\left\langle a_{i}, b_{i}, c_{i}\right\rangle$ and $U_{i}=\left\langle a_{i} x_{i}, b_{i} y_{i}, c_{i} z_{i}\right\rangle$.

We will show that $x_{i}, y_{i}, z_{i} \in T_{i}^{\prime} Z(X)$. Suppose

$$
\begin{array}{ll}
a_{1} x_{1} \\
\left.b_{1} y_{1}=a_{1}\left[a_{2}, b_{2}, c_{2} c_{2}\right]^{r_{2}}\left[a_{2}, b_{2}, c_{2}\right]_{2}, c_{2}\left[b_{2}, a_{2}\right]_{2}, c_{2}, a_{2}\right]^{s_{2}} \alpha_{1} & a_{2} x_{2} \\
\left.b_{2} y_{2}=a_{2}\left[a_{1}, b_{1}, c_{1} a_{1}, b_{1}, r_{1} c_{1}\right]_{1}\left[b_{1}, c_{1}, a_{1}\right]_{1}, c_{1}, a_{1}\right]^{s_{1}} \alpha_{2} \\
c_{2} \\
c_{1} z_{1}=c_{1}\left[a_{2}, b_{2}, c_{2}\right]^{v_{2}}\left[b_{2}, c_{2}, a_{2}\right]^{w_{2}} \gamma_{1} & c_{2} z_{2}=c_{2}\left[a_{1}, b_{1}, c_{1}\right]^{v_{1}}\left[b_{1}, c_{1}, a_{1}\right]^{w_{1}} \gamma_{2}
\end{array}
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i} \in T_{i}^{\prime} \prod_{j \geq 3} \gamma_{3}\left(T_{i}\right)$. The commutivity of the generators of U_{1} with those of U_{2} gives

$$
\begin{array}{ll}
{\left[a_{2}, b_{2}, c_{2}, a_{2}\right]^{r_{2}-2 s_{2}}} & =\left[a_{1}, b_{1}, c_{1}, a_{1}\right]^{r_{1}-2 s_{1}} ; \\
{\left[b_{2}, c_{2}, a_{2}, b_{2}\right]^{r_{2}+s_{2}}} & =\left[a_{1}, b_{1}, c_{1}, a_{1}\right]^{t_{1}-2 u_{1}} ; \\
{\left[c_{2}, a_{2}, b_{2}, c_{2}\right]^{-2 r_{2}+s_{2}}} & =\left[a_{1}, b_{1}, c_{1}, a_{1}\right]^{v_{1}-2 w_{1}} ; \\
{\left[a_{2}, b_{2}, c_{2}, a_{2}\right]^{t_{2}-2 u_{2}}} & =\left[b_{1}, c_{1}, a_{1}, b_{1}\right]^{1+s_{1}} ; \\
{\left[b_{2}, c_{2}, a_{2}, b_{2}\right]_{2}^{t_{2} u_{2}}} & =\left[b_{1}, c_{1}, a_{1}, b_{1}\right]^{t_{1}+u_{1}} ; \\
{\left[c_{2}, a_{2}, b_{2}, c_{2}\right]^{-2 t_{2}+u_{2}}} & =\left[b_{1}, c_{1}, a_{1}, b_{1}\right]^{v_{1}+w_{1}} ; \\
{\left[a_{2}, b_{2}, c_{2}, a_{2}\right]^{v_{2}-2 w_{2}}} & =\left[c_{1}, a_{1}, b_{1}, c_{1}\right]^{-2 r_{1}+s_{1}} ;
\end{array}
$$

Now $\left(r_{2}-2 s_{2}\right)+\left(r_{2}+s_{2}\right)+\left(-2 r_{2}+s_{2}\right)=0$. If not both r_{2} and s_{2} are 0 , then two of $r_{2}-2 s_{2}, r_{2}+s_{2}$ and $-2 r_{2}+s_{2}$ must be nonzero. This would imply that two of $\left[a_{2}, b_{2}, c_{2}, a_{2}\right],\left[b_{2}, c_{2}, a_{2}, b_{2}\right]$ and $\left[c_{2}, a_{2}, b_{2}, c_{2}\right]$ would be in $\left\langle\left[a_{1}, b_{1}, c_{1}, a_{1}\right]\right\rangle$ and thus dependent which is a contradiction. Therefore $r_{2}=s_{2}=0$. By symmetry $r_{1}=s_{1}=t_{1}=u_{1}=v_{1}=w_{1}=r_{2}=s_{2}=t_{2}=u_{2}=v_{2}=w_{2}=0$. Applying this argument two every pair of indices, we see that $x_{i}, y_{i}, z_{i} \in$ $T_{i}^{\prime} Z(X)$ for all $i \in\{1, \ldots, m\}$. Notice that it follows that $U_{i}^{\prime}=T_{i}^{\prime}$. Let K_{i} be a complement of $Z\left(T_{i}\right)$ in $Z(X)$ for $i=1, \ldots, m$. We then have $a_{i} x_{i}=a_{i} \alpha_{i} k_{i}$ for some $\alpha_{i} \in T_{i}^{\prime}$ and $k_{i} \in K_{i}$. By definition of \mathfrak{F}_{0} there is an element $s \in Y$ which inverts T_{i} / T_{i}^{\prime}. Then s must also invert U_{i} / U_{i}^{\prime} (since it does not centralize it). It is also clear that s centralizes $Z(X)=\gamma_{4}(X)$. Now we calculate modulo $T_{i}^{\prime}=U_{i}^{\prime}$.

$$
a_{i}^{-1} k_{i}=a_{i}^{s} k_{i}^{s}=\left(a_{i} x_{i}\right)^{s}=x_{i}^{-1} a_{i}^{-1}=a_{i}^{-1} k_{i}^{-1}
$$

and $k_{i}^{2} \in T_{i}^{\prime} \cap K_{i}=\{1\}$. Thus $a_{i} x_{i}=a_{i} \alpha_{i} \in T_{i}$. Similarly $b_{i} y_{i}, c_{i} z_{i} \in T_{i}$ and $U_{i}=T_{i}$.

Proposition $1 \mathfrak{F}_{0} \subseteq \mathfrak{F}(E)$

Proof Since 2 divides the order of E we have that $\mathfrak{F}(E)$ must contain all 2 -groups. Suppose now that $G=X Y \in \mathfrak{F}_{0}$ with $X \neq 1$. Then G is generated by the subnormal subgroups $\langle X, s\rangle, s \in Y$. It is thus sufficient to show that $\langle X, s\rangle \in \mathfrak{F}(E)$ for all $s \in Y$. Now $\langle X, s\rangle$ is a normal subgroup of $\langle X, \sigma\rangle \times\langle s\rangle$, where σ is the automorphism on X induced by s. It is therefore enough to show that $\langle X, \sigma\rangle$ is in $\mathfrak{F}(E)$. Let σ_{i} be the automorphism on $X=T_{1} \cdots T_{m}$, which acts on T_{i} like σ but centralizes T_{j} for $j \neq i$. Then $\sigma=\sigma_{1} \cdots \sigma_{m}$ and $\langle X, \sigma\rangle$ is a normal subgroup of the normal product $\left\langle X, \sigma_{1}\right\rangle \cdots\left\langle X, \sigma_{m}\right\rangle$. Each $\left\langle X, \sigma_{i}\right\rangle$ is a normal product $T_{1} \cdots T_{i-1}\left\langle T_{i}, \sigma_{i}\right\rangle T_{i+1} \cdots T_{m}$ and we have only left to show that $\left\langle T_{i}, \sigma_{i}\right\rangle \in \mathfrak{F}(E)$. If σ_{i} centralizes T_{i}, this is clear. If not, then σ_{i} inverts T_{i} / T_{i}^{\prime} and by Lemma 2 we have that $\left\langle T_{i}, \sigma_{i}\right\rangle$ is isomorphic to E.

Proposition 2 Let $G_{1}=X_{1} Y_{1}$ and $G_{2}=X_{2} Y_{2}$ be in \mathfrak{F}_{0} and suppose that $G_{1} G_{2}$ is a normal product of G_{1} and G_{2}. Then $G_{1} G_{2} \in \mathfrak{F}_{0}$.
Proof If both X_{1} and X_{2} are trivial this is clear. Suppose then that $X_{1} \neq 1$ but $X_{2}=1$. Let $S=Y_{1} G_{2}$, then S is a Sylow 2-subgroup of $G_{1} G_{2}$. We also have $X_{1}=O_{p}\left(G_{1} G_{2}\right)$. Suppose X_{1} is a central product of T_{1}, \ldots, T_{m}, where T_{1}, \ldots, T_{m} are described as in Definition 2. For each $i \in\{1, \ldots, m\}$ we have [$\left.T_{i}, G_{2}\right]=1$ and thus $T_{i} \unlhd G_{1} G_{2}$. We also get

$$
\begin{aligned}
S / C_{S}\left(T_{i} / T_{i}^{\prime}\right) & =Y_{1} G_{2} / C_{Y_{1}}\left(T_{i} / T_{i}^{\prime}\right) G_{2} \\
& \cong Y_{1} / Y_{1} \cap C_{Y_{1}}\left(T_{i} / T_{i}^{\prime}\right) G_{2} \\
& =Y_{1} / C_{Y_{1}}\left(T_{i} / T_{i}^{\prime}\right) \\
& \cong \mathbb{Z}_{2}
\end{aligned}
$$

and since $X_{1} Y_{1} \in \mathfrak{F}_{0}$, there is an element in Y_{1} which acts on T_{i} / T_{i}^{\prime} as the inverse automorphism. It follows that $G_{1} G_{2} \in \mathfrak{F}_{0}$.

So we can assume that $X_{1}=T_{1} \cdots T_{m}$ and $X_{2}=U_{1} \cdots U_{l}$ with m and l nonzero. Let s be a 2 -element of G_{2}. We have that s induces an automorphism σ on X_{1}. We also have that s^{2} centralizes X_{2} and since s^{2} is a 2 -element and $(2, p)=1$ we get $\left[X_{1},\left\langle s^{2}\right\rangle\right]=\left[X_{1},\left\langle s^{2}\right\rangle,\left\langle s^{2}\right\rangle\right]$ (s^{2} fixes every coset of $\left[X_{1},\left\langle s^{2}\right\rangle\right]$ in X_{1} and every coset of $\left[X_{1},\left\langle s^{2}\right\rangle,\left\langle s^{2}\right\rangle\right]$ in $\left[X_{1},\left\langle s^{2}\right\rangle\right]$). Therefore $\left[X_{1},\left\langle s^{2}\right\rangle\right] \leq\left[X_{2},\left\langle s^{2}\right\rangle\right]=1$ and $\sigma^{2}=1$. The following lemma will be useful for the completion of the proof.

Lemma 6
(a) $\left[T_{i}, X_{2}\right] \leq T_{i}^{\prime}$ and $\left[U_{j}, X_{1}\right] \leq U_{j}^{\prime}$ for $1 \leq i \leq m$ and $1 \leq j \leq l$.
(b) $\left[\gamma_{i}\left(X_{1}\right), \gamma_{j}\left(X_{2}\right)\right] \leq \gamma_{i+j}\left(X_{1}\right) \cap \gamma_{i+j}\left(X_{2}\right)$ for all integers $i, j \geq 1$.
(c) $T_{i}, U_{j} \unlhd G_{1} G_{2}$ for $1 \leq i \leq m$ and $1 \leq j \leq l$.

Proof of Lemma 6 We first show that $T_{i} \unlhd X_{1} X_{2}$. Suppose this is not the case. Then there is $u \in X_{2}$ such that $T_{i}^{u} \neq T_{i}$. By Lemma 5 we have that u permutes the set $\left\{T_{1}, \ldots, T_{m}\right\}$ by conjugation and we have that $T_{i}, T_{i}^{u}, \ldots, T_{i}^{u^{4}}$ commute elementwise. Let a, b and c be good generators for T_{i}. Now $[[a, u],[b, u],[c, u], u, u] \in \gamma_{5}\left(X_{2}\right)=\{1\}$. Thus we have

$$
\begin{aligned}
{[a, b, c]^{3}-3 u^{2}+3 u-1 } & =[[a, b, c], u, u, u] \\
& =[[a, u],[b, u],[c, u], u, u] \\
& =1
\end{aligned}
$$

and since $p>3$ this implies that $[a, b, c, a]=1$ which is a contradiction. Therefore we must have $T_{i} \unlhd X_{1} X_{2}$.

We now prove (a). By symmetry it is sufficient to show that $\left[T_{i}, X_{2}\right] \leq T_{i}^{\prime}$. Let $u \in X_{2}$. We have seen that $T_{i}^{u} \leq T_{i}$. By lemma 1 we have that u permutes the set $\left\{\langle a\rangle T_{i}^{\prime},\langle b\rangle T_{i}^{\prime},\langle c\rangle T_{i}^{\prime}\right\}$. But since p does not divide $|\operatorname{Sym}(3)|$, we have that u fixes this set. If $a^{u}=a^{r}$ modulo T_{i}^{\prime} then $a=a^{u^{p}}=a^{r^{p}}=a^{r}$ and so u centralizes T_{i} / T_{i}^{\prime} and we have proved (a). It follows from (a) that $\left[X_{1}, X_{2}\right] \leq X_{1}^{\prime}$ and therefore it follows by induction on i (using the three subgroups Lemma) that $\left[\gamma_{i}\left(X_{1}\right), X_{2}\right] \leq \gamma_{i+1}\left(X_{1}\right)$. Then on has by induction on j that $\left[\gamma_{i}\left(X_{1}\right), \gamma_{j}\left(X_{2}\right)\right] \leq \gamma_{i+j}\left(X_{1}\right)$. By symmetry $\left[\gamma_{j}\left(X_{2}\right), \gamma_{i}\left(X_{1}\right)\right] \leq \gamma_{i+j}\left(X_{2}\right)$ and so (b) is true. We have now only left to prove (c). Suppose T_{i} is not normal in $G_{1} G_{2}$. By (a) there is a 2 -element $s \in G_{2}$ such that $T_{i}^{s} \neq T_{i}$. By lemma 5 we have that $\left[T_{i}, T_{i}^{s}\right]=1$. Let a, b and c be good generators for T_{i}. Now $a a^{-s} \in X_{2}$ and $b \in X_{1}$ and therefore it follows from (b) that $[a, b]=\left[a a^{-s}, b\right] \in\left[X_{1}, X_{2}\right] \leq \gamma_{2}\left(X_{2}\right)$. Then $[[a, b], s] \in \gamma_{3}\left(X_{2}\right)$, since it is inverted by s. It follows that

$$
\left.[a, b, c, a]^{-1}=[[a, b], s], c, a\right] \in\left[\gamma_{3}\left(X_{2}\right), X_{1}, X_{1}\right] \leq \gamma_{5}\left(X_{2}\right) .
$$

Where in the last inclusion we are using (b). So we have the contradiction that $[a, b, c, a]=1$ which finishes the proof of the Lemma.

Continuation of the proof of Proposition 2 Let s be a 2 -element of G_{2} and a, b and c be good generators for T_{i}. We will prove that T_{i} / T_{i}^{\prime} is
either inverted or centralized by s. From Lemma 6 we have that the set $\left\{a^{s}, b^{s}, c^{s}\right\}$ is also a good set of generators for T_{i}. It follows from Lemma 1(b) that

$$
a^{s}, b^{s}, c^{s} \in\langle a\rangle T_{i}^{\prime} \cup\langle b\rangle T_{i}^{\prime} \cup\langle c\rangle T_{i}^{\prime} .
$$

We first show that $a^{s} \in\langle a\rangle T_{i}^{\prime}, b^{s} \in\langle b\rangle T_{i}^{\prime}$ and $c^{s} \in\langle c\rangle T_{i}^{\prime}$. If that is not the case, then one of $\langle a\rangle T_{i}^{\prime},\langle b\rangle T_{i}^{\prime}$ and $\langle c\rangle T_{i}^{\prime}$ is fixed by s but the other two interchanged. Without loss of generality we can suppose that the first two are interchanged and the last fixed. By Lemma 3 we can (by taking a new set of good generators) find integers m and n which satisfy $m n=1(\bmod p)$ such that

$$
a^{s}=b^{n}, b^{s}=a^{m} \text { and } c^{s}=c^{\epsilon},
$$

where $\epsilon \in\{-1,1\}$ We then have $[a, b]=\left[b^{-n} a, b\right]=\left[a^{-s} a, b\right] \in\left[X_{2}, X_{1}\right] \leq$ $\gamma_{2}\left(X_{2}\right)$ by Lemma 6. But $[a, b]^{s}=\left[b^{n}, a^{m}\right]=[b, a]^{m n}=[a, b]^{-1}$ and so $[a, b]$ must be in $\gamma_{3}\left(X_{2}\right)$ (since all elements in $\gamma_{2}\left(X_{2}\right)$ are fixed by s modulo $\gamma_{3}\left(X_{2}\right)$). But then $[a, b, c, a] \in \gamma_{5}\left(X_{2}\right)$ by Lemma 6 . That is $[a, b, c, a]=1$ which is a contradiction. We therefore have that $\langle a\rangle T_{i}^{\prime},\langle b\rangle T_{i}^{\prime}$ and $\langle c\rangle T_{i}^{\prime}$ are all fixed by s. We can then (by Lemma 2) choose the good generators a, b and c such that each generator is either fixed or inverted by s. We want to show that either all are fixed or all inverted. Suppose this is not the case and without loss of generality we can assume that $a^{s}=a^{-1}$ and $b^{s}=b$. But then we have that $a^{-2}=a^{-1} a^{s}=[a, s] \in\left[X_{1}, X_{2}\right]$ and thus we have by Lemma 6 that $a \in \gamma_{2}\left(X_{2}\right)$ and as before we get the contradiction that $[a, b, c, a]=1$. We have thus shown that T_{i} / T_{i}^{\prime} is either inverted or fixed by s. Similarly one has that for every 2-element s in G_{1} either U_{j} / U_{j}^{\prime} is centralized or inverted by s.

Suppose we have reindexed the U_{j} such that U_{i} / U_{i}^{\prime} is centralized by G_{1} when $1 \leq i \leq k$ but that U_{i} / U_{i}^{\prime} inverted by some 2-element of G_{1} when $k+1 \leq i \leq l$. By Lemma 2 we have, that when $k+1 \leq i \leq l$, some 2-element in G_{1} inverts some three generators of U_{i}. Then $U_{k+1} \cdots U_{l} \leq X_{1}$ and

$$
X_{1} X_{2}=T_{1} \cdots T_{m} U_{1} \cdots U_{k} .
$$

Since G_{1} is generated by 2-elements it also follows from Lemma 2 that $U_{1}, \ldots U_{k}$ are centralized by G_{1} and it is thus clear that the product above is a central product. In Lemma 6 we proved that each of the factors is normal in $G_{1} G_{2}$. Now let Y be a Sylow 2-subgroup of $G_{1} G_{2}$. We let $Y_{1}=Y \cap G_{1}$
and $Y_{2}=Y \cap G_{2}$, so Y_{i} is a Sylow 2-subgroup of G_{i}. We have seen, that each element in Y_{2} inverts or centralizes each T_{i} / T_{i}^{\prime}. Since $G_{1} \in \mathfrak{F}_{0}$, we have that this is true for all elements in Y and that furthermore $Y / C_{Y}\left(T_{i} / T_{i}^{\prime}\right) \cong \mathbb{Z}_{2}$. Same is true for each qoutient $U_{j} / U_{j}^{\prime}, j=1, \ldots, k$. It is therefore clear that $G_{1} G_{2} \in \mathfrak{F}_{0}$ and the proof of Proposition 2 is completed.

Proposition 3 Let $G=X Y \in \mathfrak{F}_{0}$ and $N \unlhd G$. Then $N=O_{p}(N) O^{p}(N)$ with $O^{p}(N) \in \mathfrak{F}_{0}$.

Proof Let k be such that (after reindexing) for $i=1,2, \ldots, k$ there is some 2-element $y \in N$ that inverts T_{i} / T_{i}^{\prime} but that every 2-element in N centralizes T_{i} / T_{i}^{\prime} when $k+1 \leq i \leq m$. By Lemma 2 we have that $T_{1}, T_{2}, \ldots T_{k}$ have generators that are inverted by some 2 -element from N and T_{k+1}, \ldots, T_{m} are centralized by all 2 -elements in N. Let $X_{1}=T_{1} \cdots T_{k}$ and $M=T_{k+1} \cdots T_{m}$. Then $X_{1} \leq N$ and M is centralized by all 2-elements in N. We now consider two cases.

Case 1. $k=0$. Then each 2-element of N centralizes X and N is nilpotent. We now have that $N=O_{p}(N) O^{p}(N)$ and $O^{p}(N)=\operatorname{Syl}_{2}(N)$ is in \mathfrak{F}_{0}.

Case 2. $k \geq 1$. We have $O_{p}(N)=X \cap N=X_{1}(M \cap N)$. Let $R=N \cap Y$. Then R is a Sylow 2-subgroup of N. Let $G_{1}=X_{1} R$. Because $[M \cap N, R]=1$ we have that $G_{1} \unlhd N$. Also $M \cap N \unlhd N$ and N is a normal product of G_{1} and $X_{1}(M \cap N)$. Then for $1 \leq i \leq k$ we have

$$
\begin{aligned}
R / C_{R}\left(T_{i} / T_{i}^{\prime}\right) & =R / C_{Y}\left(T_{i} / T_{i}^{\prime}\right) \cap R \\
& \cong R C_{Y}\left(T_{i} / T_{i}^{\prime}\right) / C_{Y}\left(T_{i} / T_{i}^{\prime}\right) \\
& \leq Y / C_{Y}\left(T_{i} / T_{i}^{\prime}\right) .
\end{aligned}
$$

So $G_{1} \in \mathfrak{F}_{0}$ if $R / C_{R}\left(T_{i} / T_{i}^{\prime}\right)$ is non-trivial. But if every element of R centralizes T_{i} / T_{i}^{\prime} then, since X centralizes T_{i} / T_{i}^{\prime}, every 2 -element of N would centralize T_{i} / T_{i}^{\prime} which is a contradiction. So $G_{1} \in \mathfrak{F}_{0}$ and since N / G_{1} is isomorphic to a quotient of $M \cap N$ we have that $G_{1}=O^{p}(N)$.

Definition 3 We define a class \mathfrak{F} of finite groups as follows. $G \in \mathfrak{F}$ if $G=O_{p}(G) O^{p}(G)$ and $O^{p}(G) \in \mathfrak{F}_{0}$.

Theorem $1 \mathfrak{F}$ is the Fitting class generated by E and \mathfrak{F} is a supersoluble class.

Proof Let $G \in \mathfrak{F}$. By Lemma 4 we have that $O^{p}(G)$ is supersoluble. G is then a normal product of a nilpotent group and a supersoluble group, and is therefore supersoluble. We then have only left to show that \mathfrak{F} is a Fitting class since $E \in \mathfrak{F}_{0}$ and $\mathfrak{F} \leq \mathfrak{F}(E)$.

We first prove that \mathfrak{F} is closed with respect to forming normal products. Let $G_{1}, G_{2} \in \mathfrak{F}$ and $G_{1} G_{2}$ be a normal product of those groups. Now $G_{1} G_{2}=$ $O_{p}\left(G_{1}\right) O^{p}\left(G_{1}\right) \cdot O_{p}\left(G_{2}\right) O^{p}\left(G_{2}\right)=O_{p}\left(G_{1} G_{2}\right) O^{p}\left(G_{1} G_{2}\right)$ where $O^{p}\left(G_{1} G_{2}\right)=$ $O^{p}\left(G_{1}\right) O^{p}\left(G_{2}\right)$ is in \mathfrak{F}_{0} by Proposition 2.

Now we show that \mathfrak{F} is closed with respect to taking normal subgroups. Let $G \in \mathfrak{F}$ and $N \unlhd G$. Then $O^{p}(N) \leq O^{p}(G) \cap N$. Since $H:=O^{p}(G) \cap N$ is a normal subgroup of the \mathfrak{F}_{0}-group $O^{p}(G)$, we have by Proposition 3 that it is a normal product $O^{p}(H) O_{p}(H)$ with $O^{p}(H) \in \mathfrak{F}_{0}$. All 2-elements of N lie in H and thus $O^{p}(H)=O^{p}(N)$. Since $O_{p}(N)$ is a Sylow p-subgroup of N we have that $N=O_{p}(N) O^{p}(N)$.

Acknowledgement

Most of this work was done while the author visitied the University in Würzburg. The author is especially grateful to Professor Hermann Heineken for his help and encouragement and to the Icelandic Science Council for their support.

References

[1] R. A. Bryce. The Fitting class generated by a finite soluble group, Ann. Mat. Pura Appl. (4) 159 (1991), 151-169.
[2] K. Doerk and T. Hawkes. Finite soluble groups (de Gruyter 1992)
[3] T. Hawkes. On metanilpotent Fitting classes, J. Algebra 63 (1980), 459483.
[4] H. Heineken. Fitting classes of certain metanilpotent groups, Glasgow Math. J. 36 (1994) 185-195.
[5] B. McCann. Examples of minimal Fitting classes of finite groups, Arch. Math. 49 (1987), 179-186.
[6] M. Menth. A family of Fitting classes of supersoluble groups, Math. Proc. Phil. Soc. 118 (1995), 49-57.

Christ Church
Oxford OX1 1DP
England

