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1 Introduction

A Lie algebra L is called an Engel Lie algebra if for each ordered pair (x, y)
there is an integer n(x, y) such that

(((y x)x) · · ·)x
︸ ︷︷ ︸

n(x,y)

= 0. (1)

One of the basic classical results for Engel Lie algebras is Engel’s Theorem. It
states that every finite dimensional Engel Lie algebra over a field is nilpotent.
So for finite dimensional Lie algebras the Engel condition is equivalent to
nilpotency. This is however not true in general and there exist Engel Lie
algebras that are not locally nilpotent [4]. Now suppose n = n(x, y) in (1)
can be chosen independently of x and y. We then say that L is a n-Engel
Lie algebra. The subject of this article is a theorem due to Zel’manov [17]
which states that, for every positive integer n, every n-Engel Lie algebra over
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a field of characteristic zero is nilpotent. Zel’manov’s non-constructive proof
depends on a result of Kostrikin [8,9] that there always exists a non-trivial
abelian ideal in a n-Engel Lie algebra over a field that is of characteristic
p > n or 0. From this result it is natural to define inductively the following
sequence of ideals:

I0 = {0}, Ii+1/Ii = sum of all abelian ideals in L/Ii.

Zel’manov shows that the nilpotency of L/Ij+1 implies that L/Ij is nilpotent.
Kostrikin’s proof was written in non-constructive way and it is not clear that
the sequence of ideals above has to reach L. Zel’manov’s proof in fact uses
transfinite induction. However, as was demonstrated by Adian and Razborov
[1], Kostrikin’s proof is essentially constructive. In their paper, Adian and
Razborov rewrite Kostrikin’s arguments in a constructive way and show that
the sequence (Ij) reaches L eventually and obtain an upper bound for the
length of the sequence depending only on n.

Our aim in this article is to give an upper bound for the nilpotency class
of n-Engel Lie algebras. In order to do so it turns out to be useful to replace
the sequence of ideals above by a certain sequence of verbal ideals. Let L
be a n-Engel Lie algebra over a field of characteristic zero. The following
construction of a sequence of words is implicit in Kostrikin’s work. He con-
structs a sequence of words f1, . . . , fs such that, for each i, every value of
fi+1 in L/v(f1, . . . , fi) generates an abelian ideal, where v(f1, . . . , fi) is the
verbal ideal generated by f1, . . . , fi. We will call such a sequence a good
sequence. According to Kostrikin’s notation, this means that the values of
fi+1 are sandwiches of infinite thickness in L/v(f1, . . . , fi). If we let J0 = {0}
and Ji = v(f1, . . . , fi) for 1 ≤ i ≤ s then the sequence J0, J1, . . . , Js has
the property that Ji+1/Ji is a sum of abelian ideals in L/Ji. From having
looked into the paper of Adian and Razborov it seems clear to the author
that the bound they obtain for the length of their sequence of ideals is in fact
a bound for the length of sequence of verbal ideals as described above. For
later arguments we need furthermore that the words in the good sequence
are homogenous in each variable. This is not the case with all the words con-
structed in Kostrikin’s work although this can be overcome without too much
difficulty. In [11] the author used Kostrikin’s work, with few improvements
in order to reduce the bounds, to obtain such a sequence. Since Kostrikin’s
proof is very long and since bounds are implicit in the work of Kostrikin and
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are in fact for the most part apparent in the paper of Adian and Razborov,
we have decided to omit the proof here. So we only state the result. Before
we do so we introduce some notation. Define a function T : N × N → N by
induction in the following way: T (m, 1) = m, T (m, s + 1) = mT (m,s).

Theorem 1 Let k be a field with characteristic p where p is either 0 or a

prime number greater than or equal to [n + n/2]. There is a good sequence

f1 = z1z
n
2 , f2, . . . , fs of multihomogenous words in the free Lie algebra on

z1, z2, . . . over k, where s ≤ 256 · 1046 · n40 · 3[(n−5)/2], such that every Lie

algebra satisfying the identities f1 = f2 = . . . = fs = 0 is nilpotent of class at

most 7. Furthermore every word fi is homogenous of degree at most T (n, 3).

We will use Theorem 1 and Zel’manov’s arguments to give a constructive
proof of Zel’manov’s Theorem and obtain a bound for the nilpotency class
of n-Engel Lie algebras over a field of characteristic zero. In the next section
we will prove the following.

Theorem 2 Suppose n ≥ 5 and that L is an n-Engel Lie algebra over a field

k with characterist either 0 or greater than T (n, l), where l = 1024 · 1046 ·
n40 · 3[(n−5)/2]. Then L is nilpotent of class at most T (n, l).

When the underlying field has “small” characteristic the n-Engel Lie alge-
bra does not have to be nilpotent. In [2] the authors construct a 3-Engel
Lie algebra over a field of characteristic 5 that is non-solvable. This result
was later generalized by Razmyslov [10], who proved that for each prime
p ≥ 5, there exists a non-solvable Lie algebra of characteristic p satisfying
the (p − 2)-Engel identity. However, it follows from Zel’manov’s solution to
the Restricted Burnside Problem [18,19] that an n-Engel Lie algebra over an
arbitrary field is locally nilpotent. In [16], Vaughan-Lee and Zel’manov give
upper bounds for the nilpotency class in terms of the number of generators
r. It follows from their work that an n-Engel Lie algebra with r generators
is nilpotent of class at most T (r, nnn

). When the characteristic of the field is
greater than n they get smaller bounds. So if 25 ≤ n < p then L is nilpotent
of class at most T (r, 2n) and when 26 > n < p we have that L is nilpotent of
class at most T (r, 3n).

We have more detailed information for small values of n. It is well known
that Lie algebras satisfying the 2-Engel identity are nilpotent of class at most
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3. In [12] it is shown that 3-Engel Lie algebras with char k 6= 2, 5 are nilpo-
tent of class at most 4 and that when the characteristic is 5 we have that
the class is at most 2r. In [13] it is shown that the class is at most 2(r + 1)6

when char k = 2. We also have some close information about 4-Engel Lie
algebras. For characteristics not equal to one of 2, 3 or 5 we have that the
class c is at most 7 [5,12]. For char k = 3 we have that c ≤ 3r [12] and c ≤ 6r
when char k = 5 [6]. In [13] a polynomial upper bound is also given for c
when char k = 2 and |k| 6= 2. In the case of 5-Engel Lie algebras calculations
are becoming much more difficult and we do not have as good results as for
4-Engel Lie algebras. However, for most characteristics we do have a linear
upper bound for the nilpotency class in terms of the number of generators.
In [14] it is shown that the nilpotency class is at most 59r when the charac-
teristic does not divide 2 · 3 · 5 · 7· and that the nilpotency class is at most
80r if the characteristic is 7. Vaughan-Lee [15], has also shown that 6-Engel
Lie algebras with r generators over a field with characteristic 7 are nilpotent
of class at most 51r8.

2 The Proof

In this section we prove Theorem 2. We start with a well known lemma.

Lemma 1 Let L be an n-Engel Lie algebra over a field k where char k > n.

Suppose I is a subset of L and N a subalgebra. Then, if t ≥ n

IN · · ·N
︸ ︷︷ ︸

t

≤
∑

r1,...,rn−1≥0

r1+···+rn−1=t

IN r1 · · ·N rn−1 .

In particular if I and J are ideals of L then

IJ · · ·J
︸ ︷︷ ︸

(n−1)(m−1)+1

≤ IJm.

Proof Consider the subspace

U = IN2 N · · ·N
︸ ︷︷ ︸

t−2

+INN2 N · · ·N
︸ ︷︷ ︸

t−3

+ · · ·+ I N · · ·N
︸ ︷︷ ︸

t−2

N2

=
∑

r1,...,rt−1
r1+···+rt−1=t

IN r1 · · ·N rt−1 .

4



If b ∈ I and a1, . . . , at ∈ N then ba1 · · ·ai−1(aiai+1)ai+2 · · ·at ∈ U for all
i ∈ {1, · · · , t − 1}. Therefore modulo U

ba1 · · ·at = 1/n!
∑

σ∈Sym(n)

baσ(1)aσ(2) · · ·aσ(n)an+1 · · ·at = 0,

so IN · · ·N
︸ ︷︷ ︸

t

≤ U . Using this same trick again we can show that each sum-

mand of U lies in
∑

r1,...,rt−2
r1+···+rt−2=t

IN r1 · · ·N rt−2 .

Continuing like this we finally get the required inequality. 2

Now let k be a field of characteristic either 0 or a prime number p > n+[n/2]
and let F be the free Lie algebra over k freely generated by z1, z2, . . .. By
Theorem 1 there is a good sequence f1 = z1z

n
2 , f2, . . . , fs of multihomogenous

words in F such that

(1) every Lie algebra over k satisfying the identities f1 = · · · = fs = 0
is nilpotent of class at most 7;

(2) fi is homogeneous of degree at most T (n, 3) for i = 1, 2, . . . , s.

In this section we will prove that (1) and (2) imply that if L is an n-Engel
Lie algebra over a field k, and if char k is either 0 or a prime number greater
than T (n, 4(s−1)+2) then L is nilpotent of class at most T (n, 4(s−1)+2).
First we establish a preliminary lemma used by Zel’manov.

Lemma 2 Let L be an n-Engel Lie algebra over a field k where char k > n.

Let L be Z2-graded, so that

L = L0 ⊕  L1

with LiLj ≤ Li+j for i, j ∈Z2. If the subalgebra L0 is nilpotent of class m > 2
then L is nilpotent of class at most nnm − 1.

Proof With I = L and N = L0, Lemma 1 tells us that ad(L0)
(n−1)m+1 = {0}.

Then we have

L(1) = L0L0 + L1L1 + L1L0 ≤ L0 + L1L0,
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and by induction

L(r) ≤ L0 + L1 L0 · · ·L0
︸ ︷︷ ︸

r

r = 1, 2, . . . .

Therefore L((n−1)m+1) ≤ L0. Since L0 is nilpotent of class m, it is solvable of
derived length at most m − 1 and so L is solvable of derived length at most
nm. By Higgins’ Theorem [7] this implies that L is nilpotent of class at most

nnm − 1

n − 1
< nnm.

2

Let f(x) be a word in F that is homogenous in some variable x. Suppose it
has weight l in x. Now let x1, . . . , xl be some variables not occurring in f and
replace x by x1 + · · · + xl. The resulting word f(x1 + · · · + xl) can be writ-
ten uniquely as a sum of multihomogenous terms. The term of multiweight
(1 , . . . ,

︸ ︷︷ ︸

l

1) in x1, . . . , xl is called the linearization of f in x. Now suppose f is

a multihomogenous word in some variables x1, . . . , xs. We define a sequence
g1, g2, . . . , gs inductively as follows. We let g1 be the linearization of f in
x1 and for each 2 ≤ i ≤ s, we let gi be the linearization of gi−1 in xi. The
multilinear word g = gs is called a full linearization of f .

Now suppose that k is a field with char k > T (n, 4(s − 1) + 2) and that
f1, f2, . . . fs is a sequence of words satisfying (1) and (2) above. We prove
by induction that a Lie algebra over k which satisfies the identity f1 = 0 is
nilpotent of class at most T (n, 4(s − 1) + 2).

We use reverse induction on i and assume that if L is a Lie algebra over
k satisfying the identities f1 = 0, f2 = 0, . . . , fi = 0, where 1 < i ≤ s, then
L is nilpotent of class at most T (n, 4(s − i) + 2). We want to prove that if
L is a Lie algebra over k satisfying the identities f1 = 0, f2 = 0, . . . , fi−1 = 0
then L is nilpotent of class at most T (n, 4(s − (i − 1)) + 2).

For each j = 1, 2, . . . , s we let gj be a full linearization of fj . Since char k is
greater than the degree of fj, the identity fj = 0 is equivalent to the identity
gj = 0. Also, since fj has degree not more than T (n, 3), it is not difficult to
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see that every value of gj is a linear combination of at most 2T (n,3) −1 values
of fj. Since every value of fj in L/v(f1, . . . , fj−1) generates an abelian ideal
we have that this implies

(3) if L is a Lie algebra over k which satisfies the identities f1 = 0, f2 = 0,
. . . , fj−1 = 0 for some 1 < j ≤ s, then every value of gj in L generates an
ideal which is nilpotent of class at most 2T (n,3) − 1.

Let V be the variety of Lie algebras over k determined by the identities
f1 = 0, f2 = 0, . . . , fi−1 = 0, and let A be the free Lie algebra of the
variety V freely generated by x1, x2, . . . . Note that since the identities
f1 = 0, f2 = 0, . . . , fi−1 = 0 are equivalent to multilinear identities, the
Lie algebra A is multigraded. Let

m = T (n, 4(s − i) + 2), M = nnm and K = ((M − 1)! · 2T (n,3))2M

.

Also let gi = g = g(z1, z2, . . . , ze). Note that M = nnm > nm ≥ T (n, 3). If
we can show that (AM )K = {0} then it follows from Lemma 1, when I = AM

and J = A, that the nilpotency class of A is not more than M +((n−1)(M−
1) + 1)(K − 1). But

M + ((n − 1)(M − 1) + 1)(K − 1) < nMK < (M ! 2T (n,3))2M

< (M ! 2M)2M

< (MM )2M

= nnmM2M

< nM22M

< nnM

= nnnnm

< nnnnm

= T (n, 4(s − (i − 1)) + 2).

So we need to show that (AM)K = {0}. The proof of this is for the most part
an argument due to Zel’manov. The argument is based on a beautiful appli-
cation of the representation theory of the symmetric groups. We decribe the
represention theory that is needed below but we refer to [3] for more detailed
discussion.

Let N = MK. Since char k does not divede N !, we have that kSym(N) is a
semisimple algebra. We can thus write it as a direct sum of simple left ideals.
The number of simple ideals (up to isomorphism) is equal to the number of
conjugacy classes of Sym(N). That is, it is equal to the number of partitions
(m1, . . . , mt) of N with m1 + · · · + mt = N and m1 ≥ m2 ≥ · · · ≥ mt > 0.
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To each such partition we associate a Young diagram, which is an array of
N boxes arranged in t rows, with mi boxes in the i-th row. The boxes are
arranged so that the j-th column of the array consists of the j-th boxes out
of the rows which have length j or more. We obtain a Young tableau from
a Young diagram by filling in the N boxes of the diagram with 1, . . . , N in
some order.

3
7 11

13 4 10
8 14 2 5

1 6 9 12

A Young tableau

We then let R ≤Sym(N) be the stabilizer of the rows in the Young tableau
and C ≤Sym(N) be the stabilizer of the columns. If we let

e =
∑

π∈R,τ∈C

sign(π)πτ

then e generates a simple left ideal. The element e is called the Young
symmetrizer associated with the tableau. Different Young diagrams give
rise to non-isomorphic simple left ideals. It then follows that we can write
S = k Sym(N) as a direct sum of some left ideals Se1, Se2, . . . , Sem where
each ei is a Young symmetrizer.

Let J be a subset of {1, . . . , N} and let HJ be the subgroup in Sym (N)
consisting of the elements that fixes {1, . . . , N} \ J elementwise. We let

SJ =
∑

π∈HJ

π, AJ =
∑

π∈HJ

(sign(π))π.

We call the former element a symmetrization of J or less precisely a |J |-
symmetrization where |J | is the number of elements in J . We call the lat-
ter element similarly a skewsymmetrization of J or |J |-skewsymmetrization.
Now let J be a subset of some column in the tableau. Then HJ ≤ C. Let
g1, . . . , gl be some left coset representatives of HJ in C. Then

e =
∑

τ∈R

l∑

i=1

sign(τ)τgi

∑

π∈HJ
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so e is in the module span of the |J |-symmetrizations. Similarly if J is
a subset of some row of the tableau then e is in the module span of the
|J |-skewsymmetriztions . Since every Young tableau must have a column
or a row of length at least [

√
N ], it follows from the discussion above that

all the Young symmetrizators are in the module span of the set of [
√

N ]-
skewsymmetrizations and [

√
N ]-symmetrizations. Hence k Sym(N) is gener-

ated as a left ideal by these elements. We now finish the proof of Theorem 2
by proving the following proposition.

Proposition 1 (AM)N = {0}

Proof Let N = MK and let h(x1, . . . , xN) be some word in A which is
linear in the variables x1, x2, . . . xN and does not include other variables.
There is a natural action from the left by elements of k Sym(N) arising
from τh(x1, . . . , xN) = h(xτ(1), . . . , xτ(N)) for all τ ∈Sym(N). For r ∈
{1, 2, . . . , M} and J ⊆ {1, 2, . . . , K} let Sr

J be the symmetrization of the
set {r + (j − 1)M : j ∈ J}. Similarly let Ar

J be the skewsymmetrization of
this set. Sr

Jh is the symmetrization of h in the variables xr+(j−1)M , j ∈ J
and Ar

Jh is the skewsymmetrization of h in these variables.

To show that (AM)K = 0, it is sufficient to prove that

H := (x1x2 · · ·xM)(xM+1xM+2 · · ·x2M) · · · (xN−M+1xN−M+2 · · ·xN ) = 0.

We argue by contradiction and assume that this product is not zero. We
have K = d2M

where d = (M − 1)! · 2T (n,3). Now consider the variables
x1, x1+M , . . . , x1+(K−1)M . From the discussion about the representation the-
ory of the symmetric groups above it follows that if char k > K then the
product H can be written as a sum of words such that each word is either a
symmetrization or a skew-symmetrization in

√
K of these variables. There-

fore if H 6= 0 then there is either a symmetrization or skew-symmetrization
in d2M−1

of these variables which is non-zero. So we have

Q1
J1

H 6= 0.

Where Q1
J1

is either S1
J1

or A1
J1

, and J1 ⊆ {1, 2, . . . , K} with |J1| = d2M−1
.

Now look at the variables x2+(j−1)M , j ∈ J1. We use the same argument again
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and we see that there is either a symmetrization or a skew-symmetrization
of Q1

J1
H in d2M−2

of these variables which is non-zero. So we have

Q2
J2

Q1
J1

H 6= 0,

where Q2
J2

is either S2
J2

or A2
J2

, and J2 ⊆ J1 with |J2| = d2M−2
. Continuing

like this we finally get

QM
JM

QM−1
JM−1

· · ·Q1
J1

H 6= 0.

Where JM ⊆ JM−1 ⊆ · · · ⊆ J1 ⊆ {1, 2, . . . , K}, |Jr| = d2M−r

for r =
1, 2, . . . , M and Qr

Jr
is either Sr

Jr
or Ar

Jr
. Let J = JM then |J | = d. We

will now show that this leads to a contradiction.

Give each of the free generators x1, x2, . . . of A a weight 0 or 1 in the following
way. Let l ∈ {1, 2, . . . , M}. If Ql

Jl
= Al

Jl
then we give xr weight 1 for all

r such that r = l modulo M and if Ql
Jl

= Sl
Jl

then we give xr weight 0 for
all r such that r = l modulo M . Since A is multigraded, every product of
the generators can also be given a weight, where the weight of a product is
the sum of the weights of the generators occurring in the product (counting
multiplicities). So we can express A as a direct sum A = A0 ⊕A1, where A0

is spanned by the products of even weight and A1 is spanned by the products
of odd weight, and this defines a Z2-grading on A. Consider the ideal I of
A generated by all values g(a1, a2, . . . , ae) with a1, a2, . . . , ae ∈ A0. Then,
I = I0 ⊕ I1, with I0 = I ∩ A0 and I1 = I ∩ A1. Furthermore, I0 is an ideal
of the subalgebra A0, and the quotient algebra satisfies the identity gi = 0.
By the induction hypothesis, A0/I0 is then nilpotent of class not more than
m and then Lemma 2 implies that A/I = A0/I0 ⊕A1/I1 is nilpotent of class
not more than nnm − 1 = M − 1. Therefore x1x2 · · ·xM ∈ I. This implies
that

x1x2 · · ·xM =
l∑

r=1

hr.

Where each each hr has the form

hr = g(y1r, y2r, . . . , yer)ur.

Where y1r, y2r, . . . , yer ∈ A0, and ur ∈ Â. Where Â is the associative algebra
generated by ad(A). Since g is multilinear, we can assume that each hr is
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linear in the variables x1, x2, . . . , xM , that yjr for j = 1, 2, . . . , r are products
of these variables and that ur is a product of adjoints of these variables such
that no two products involve the same variables. Since the dimension of the
subspace generated by all products of x1, x2, . . . , xM (in some order) is at
most (M − 1)! we may also assume that l ≤ (M − 1)!. Let τ : A → A be
given by xjτ = xj+M for j = 1, 2, . . .. Note that τ preserves the Z2-grading
on A. Then

xM+1xM+2 · · ·x2M = (x1x2 · · ·xM)τ =
l∑

r=1

hrτ

and generally

xjM+1xjM+2 · · ·x(j+1)M =
l∑

r=1

hrτ
j .

Because

QM
JM

· · ·Q1
J1

H = QM
JM

· · ·Q1
J1

(
∑

hr)(
∑

hrτ) · · · (
∑

hrτ
K−1)

is not zero, we have

W := QM
JM

QM−1
JM−1

· · ·Q1
J1

(hr1)(hr2τ) · · · (hrK
τK−1) 6= 0

for some r1, r2, . . . , rK ∈ {1, 2, . . . , l}. We are interested in the subset J =
JM ⊆ {1, 2, . . . , K}. Since d = |J | = (M − 1)!2T (n,3) > (M − 1)! (2T (n,3) − 1)
≥ l(2T (n,3) − 1), we have that some 2T (n,3) of the indexes rj , (j ∈ J) must be
equal. Suppose these are rj1 = rj2 = · · · = rjc

= r, where j1, j2, . . . , jc ∈ J
and c = 2T (n,3), and where j1 < j2 < · · · < jc. Let ḡ = g(y1r, . . . , yer) then

(hr1)(hr2τ ) · · · (hrK
τK−1) = (ḡτ j1−1)V1(ḡτ j2−1)V2 · · · (ḡτ jc−1)Vc

for some V1, V2, . . . , Vc ∈ Â. We have by property (3) that the ideal generated
by an arbitrary value of g is nilpotent of class at most c − 1. We then have
that

g(u1, . . . , ue)V1g(u1, . . . , ue)V2 . . . g(u1, . . . , ue)Vc = 0

for all u1, u2, . . . , ue ∈ A and all V1, V2, . . . , Vc ∈ Â. If we replace each ut by
u1t + u2t + · · ·+ uct we get the multilinear version of this identity

∑

σ1

· · ·
∑

σe

(g(uσ1(1)1, . . . , uσe(1)e)V1 · · · (g(uσ1(c)1, . . . , uσe(c)e)Vc = 0
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where σ1, σ2, . . . , σe run independently over the symmetric group on {1, 2, . . . , c}.
Now if we let uqt = ytrτ

jq−1 we get U = 0 where

U :=
∑

σ1

· · ·
∑

σe

g(y1rτ
jσ1(1)−1, . . . , yerτ

jσe(1)−1)V1 · · · g(y1rτ
jσ1(c)−1, . . .

, yerτ
jσe(c)−1)Vc,

where σ1, σ2, . . . σe run over Sym(c). Now the word W is symmetric in all
{xj+(j1−1)M , . . . , xj+(jc−1)M} for those j in {1, . . . , M} where xj has weight
0. But it is antisymmetric when xj has weight 1. Since each ytr has weight
0 there is an even number of xj in ytr such that we have antisymmetry in
{xj+(j1−1)M , . . . , xj+(jc−1)M}. This implies that if we get w′ by interchanging
ytrτ

jq−1 and ytrτ
jq′−1 in w = (hr1)(hr2τ) · · · (hrK

τK−1), where 1 ≤ t ≤ e and
1 ≤ q, q′ ≤ c, then

QM
JM

· · ·Q1
J1

w′ = QM
JM

· · ·Q1
J1

w = W.

Therefore for all the (c!)e summands w̃ of U we have QM
JM

· · ·Q1
J1

w̃ = W and
therefore

0 = QM
JM

QM−1
JM−1

· · ·Q1
J1

U

= c!eW.

And because char k > c we have W=0, which is the contradiction we were
seeking. 2

Acknowledgement

This work originally formed a part of a D. Phil project at Oxford Uni-
versity and was done under the supervision of Dr. Michael Vaughan-Lee.

References

[1] S. I. Adian and A. A. Razborov. Periodic groups and Lie algebras,Russ.
Math. Surv. 42, no. 2, (1987) , 3-68.

[2] S. Bachmuth, H. Y. Mochizuki and D. Walkup. A nonsolvable Group of

Exponent 5, Bull. Am. Math. Soc. 76 (1970), 638-640.

12



[3] P. M. Cohn. Algebra, Second edition, Volume 2, John Wiley and Sons
(1989).

[4] E. S. Golod. Some problems of Burnside type, in: Proc. Int. Congr.
Math. (Moscow 1966) (1968), 284-289. English transl.: Transl.,II. Ser.,
Am. Math. Soc. 84 (1969), 83-88.

[5] M. I. Golovanov. Nilpotency class of 4-Engel Lie Rings, Algebra i’locika,
25 (1986), 508-532.

[6] G. Havas, M. F. Newman and M. R. Vaughan-Lee. A nilpotent quotient

algorithm for graded Lie rings, J. Symbolic Comput. 9 (1990), 653-664.

[7] P. J. Higgins. Lie Rings Satisfying the Engel Condition, Proc. Camb.
Phil. Soc., 50 (1954), 8-15.

[8] A. I. Kostrikin. The Burnside Problem, Izv. Akad. Nauk SSSR, Ser.
Mat., 23 (1959), 3-34.

[9] A. I. Kostrikin. Around Burnside (transl. J. Wiegold), Ergebnisse der
Mathematik und ihrer Grenzgebiete, 20 Berlin, Springer-Verlag (1990).

[10] Ju. P. Rasmyslov, On Engel Lie Algebras, Algebra i Logika, 10 (1971),
33-44.

[11] G. Traustason. Engel Lie algebras, D. Phil thesis at Oxford University
(1993).

[12] G. Traustason. Engel Lie-algebras, Quart. J. Math (2), 44 (1993), 355-
384.

[13] G. Traustason. A polynomial upper bound for the nilpotency classes of

Engel-3 Lie algebras over a field of characteristic 2, J. London Math.
Soc. (2), 51 (1995), 453-460.

[14] G. Traustason. Engel-5 Lie Algebras, International Journal of Algebra
and Computation, 6 no. 3 (1996), 291-312.

[15] M. R. Vaughan-Lee. The Nilpotency class of Finite Groups of Exponent

p, Trans. Amer. Math. Soc., 346 no. 2 (1994), 617-640.

13



[16] M. R. Vaughan-Lee and E. I. Zel’manov. Upper Bounds in the Restricted

Burnside Problem, Journal of Algebra, 162 (1993), no. 1, 107-145.

[17] E. I. Zel’manov. Engel Lie-algebras, Dokl, AKad. Nauk SSSR, 292

(1987), 265-268.

[18] E. I. Zel’manov. The solution of the restricted Burnside problem for

groups of odd exponent, Math. USSR Izvestia 36 (1991), no. 1, 41-60.

[19] E. I. Zel’manov. The solution of the restricted Burnside problem for 2-

groups, Mat. Sbornik, 182 (1991), no. 4, 568-592.

Christ Church
Oxford OX1 1DP
England
traustas@ermine.ox.ac.uk

14


