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Abstract. Let C be a class of groups, closed under taking subgroups and quotients.

We prove that if all metabelian groups of C are torsion-by-nilpotent, then all

soluble groups of C are torsion-by-nilpotent. From that, we deduce the following

consequence, similar to a well-known result of P. Hall: if H is a normal subgroup

of a group G such that H and G/H ′ are (locally finite)-by-nilpotent, then G is

(locally finite)-by-nilpotent. We give an example showing that this last statement

is false when ”(locally finite)-by-nilpotent” is replaced by ”torsion-by-nilpotent”.

1. INTRODUCTION AND MAIN RESULTS

The class of nilpotent groups is not closed under forming extensions.
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However, we have the following well-known result, due to P. Hall [2]:

Theorem A. Let H be a normal subgroup of a group G. If G/H ′ and H

are nilpotent, then G is nilpotent.

This result is often very useful to prove that a group is nilpotent. In

particular, by an induction on the derived length, it is easy to obtain the

following consequence:

Theorem B. Let C be a class of groups which is closed under taking sub-

groups and quotients. Suppose that all metabelian groups of C are nilpotent.

Then all soluble groups of C are nilpotent.

Since the first result of Hall, various results of a similar nature have been

given (see for instance [3, Part 1, p. 57]). The aim of this paper is to

see whether it is possible to obtain analogous results, when ”nilpotent” is

replaced by ”torsion-by-nilpotent”. At first, we shall prove an analogue to

Theorem B:

Theorem 1.1. Let C be a class of groups which is closed under taking

subgroups and quotients. Suppose that all metabelian groups of C are torsion-

by-nilpotent. Then all soluble groups of C are torsion-by-nilpotent.

On the other hand, Theorem A fails to be true when ”nilpotent” is re-

placed by ”torsion-by-nilpotent”. A counterexample will be given at the end

of this paper. However, we shall deduce from Theorem 1.1 the following:

Theorem 1.2. Let H be a normal subgroup of a group G. If G/H ′ and

H are (locally finite)-by-nilpotent, then G is (locally finite)-by-nilpotent.

In particular, since a locally soluble torsion group is locally finite, we

obtain:
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Corollary 1.3. Let H be a normal subgroup of a locally soluble group

G. If G/H ′ and H are torsion-by-nilpotent, then G is torsion-by-nilpotent.

As we said above, Corollary 1.3 is false if ”locally soluble” is omitted.

Also notice that contrary to the case ”nilpotent” where Theorem B is a

consequence of Theorem A, we shall use Theorem 1.1 to prove Theorem 1.2.

2. A PRELIMINARY LEMMA

Let x1, . . . , xn be elements of a group G. As usual, we define the left-

normed commutator [x1, . . . , xn] of weight n inductively by

[x1, . . . , xn] = [x1, . . . , xn−1]
−1x−1

n [x1, . . . , xn−1]xn.

If H and K are subgroups of G, we shall write [H, K] for the subgroup

generated by the elements of the form [y, z], with y ∈ H, z ∈ K. For n ≥ 1,

we shall denote by γn(G) the nth term of the descending central series of

G. This subgroup is generated by the set of all left-normed commutators of

weight n in G.

It is convenient to introduce a map δG on the set of normal subgroups

of G, defined by δG(H) = [H, G]. Note that δG(HK) = δG(H)δG(K) for

any normal subgroups H, K of G. By the Three Subgroups Lemma (see for

instance [3, Lemma 2.13]), we have

δG([H, K]) ≤ [δG(H), K][H, δG(K)].

It follows by induction that we have the Leibniz formula:

δn
G([H, K]) ≤

n
∏

i=0

[

δi
G(H), δn−i

G (K)
]

.
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Lemma 2.1. Let H, K be normal subgroups of a group G. Suppose that

for some integer c > 0, we have δc
G(H) ≤ K. Then, for any integer t > 0,

we have

δ
t(c−1)+1
G (γt(H)) ≤ δt−1

H (K) .

Proof. The proof is by induction on t. The case t = 1 is covered by

the hypothesis. So consider an integer t > 1 and suppose that the result is

true for t − 1. Since δ
t(c−1)+1
G (γt(H)) = δ

t(c−1)+1
G ([γt−1(H), H ]), the Leibniz

formula gives

δ
t(c−1)+1
G (γt(H)) ≤

t(c−1)+1
∏

i=0

[

δi
G(γt−1(H)), δ

t(c−1)+1−i

G (H)
]

.

It follows from the inductive hypothesis that for i ≥ (t − 1)(c − 1) + 1, we

have
[

δi
G(γt−1(H)), δ

t(c−1)+1−i

G (H)
]

≤
[

δt−2
H (K), H

]

= δt−1
H (K).

If i < (t − 1)(c − 1) + 1, then t(c − 1) + 1 − i ≥ c and so we can write

[

δi
G(γt−1(H)), δ

t(c−1)+1−i

G (H)
]

≤ [γt−1(H), K] .

Using the Three Subgroups Lemma and an induction, it is easy to show that

the inclusion [γt−1(H), K] ≤ δt−1
H (K) holds. Thus, as in the preceding case,

we obtain again

[

δi
G(γt−1(H)), δ

t(c−1)+1−i

G (H)
]

≤ δt−1
H (K).

Therefore, we have δ
t(c−1)+1
G (γt(H)) ≤ δt−1

H (K), as required. �

3. PROOF OF THEOREM 1.1
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If H is a subgroup of a group G, we shall write
√

H for the isolator of

H in G. Recall that
√

H is the set of elements x ∈ G such that, for some

integer e > 0, we have xe ∈ H . It is well-known that if G is nilpotent, then√
H is a subgroup.

Now consider a class of groups C, closed under taking subgroups and

quotients. We assume that for some integer d > 2, all soluble groups in C of

derived length at most d−1 are torsion-by-nilpotent. Under these conditions,

from Lemma 3.1 to Lemma 3.6, we suppose that G is a soluble group in C of

derived length ≤ d.

Lemma 3.1. The set of torsion elements of G is a subgroup.

Proof. Let a, b be elements of G of finite order. We want to show that

H = 〈a, b〉 is a torsion group. The derived length of H ′ is at most d − 1 and

this subgroup is therefore torsion-by-nilpotent. It follows that the torsion

elements of H ′ form a subgroup T . Let K = H/T . The quotient K/K ′′ ∈ C
is metabelian, and therefore torsion-by-nilpotent. Since K/K ′′ is generated

by the images of a, b, this quotient is then a torsion group. We have thus

in particular that K ′/K ′′ is a torsion group. As K ′ = H ′/T is nilpotent it

follows then that K ′ is a torsion group. We have shown that K/K ′ and K ′

are torsion groups. Hence, K = H/T is a torsion group and this implies that

H is a torsion group. �

The next lemma is an immediate consequence of Lemma 3.1:

Lemma 3.2. If H is a normal subgroup of G, then
√

H is a subgroup.

Lemma 3.3. Let a, b be elements of G such that [ar, bs] = 1 for some

integers r, s > 0. If G is torsion-free, then a and b commute.

Proof. Let H = 〈a, b〉. We need to show that H is abelian. The derived

length of H ′ is at most d − 1 and this subgroup is therefore torsion-by-

nilpotent. But as G is torsion-free, H ′ is torsion-free and nilpotent. Since
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the quotient H/
√

H ′′ ∈ C is metabelian, it is also torsion-free and nilpotent.

Since this quotient is generated by the images of a, b, it is abelian. It follows

that
√

H ′′ contains H ′ and so H ′/H ′′ is a torsion group. It follows that H ′

is a torsion group as H ′ is nilpotent. But then H ′ is both torsion-free and a

torsion group. It follows that H ′ is trivial. �

Lemma 3.4. If H and K are normal subgroups of G, then:

(i) [
√

H,
√

K] ≤
√

[H, K];

(ii) δG(
√

H) ≤
√

δG(H).

Proof. (i). Let a ∈
√

H and b ∈
√

K; then ar ∈ H and bs ∈ K for some

integers r, s > 0. Put L = G/
√

[H, K]. The images a, b of a, b in L satisfy

the relation [ar, b
s
] = 1. Since L ∈ C is a torsion-free group of derived length

at most d, Lemma 3.3 implies the relation [a, b] = 1. In other words, [a, b]

belongs to
√

[H, K], and the first part of the lemma follows.

(ii). We have δG(
√

H) =
[√

H, G
]

=
[√

H,
√

G
]

and
√

δG(H) =
√

[H, G];

hence the result follows from (i). �

Lemma 3.5. Let H be a normal subgroup of G. Suppose that for some

integer c > 0, we have δc
G(H) ≤

√
H ′. Then, for any integer t > 0, we have:

(i) δ
t(c−1)+1
G (γt(H)) ≤

√

γt+1(H);

(ii) δ
t(c−1)+1
G

(

√

γt(H)
)

≤
√

γt+1(H).

Proof. (i). We can apply Lemma 2.1, with K =
√

H ′; so we obtain

δ
t(c−1)+1
G (γt(H)) ≤ δt−1

H

(√
H ′

)

.

By Lemma 3.4, we have δt−1
H

(√
H ′

)

≤
√

δt−1
H (H ′). It remains to notice that

δt−1
H (H ′) = γt+1(H) and we have proved (i).

(ii). By Lemma 3.4, δ
t(c−1)+1
G

(

√

γt(H)
)

≤
√

δ
t(c−1)+1
G (γt(H)) and so, by us-

ing (i), δ
t(c−1)+1
G

(

√

γt(H)
)

≤
√

√

γt+1(H). Since
√

√

γt+1(H) =
√

γt+1(H),

the proof is complete. �
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Lemma 3.6. Let H be a normal subgroup of G. Suppose that for some

integer c > 0, we have δc
G(G) ≤

√
H ′. Then, for any integer t > 0, we have

δ
f(t)
G (G) ≤

√

γt+1(H), with f(t) =
t(t + 1)(c − 1)

2
+ t.

Proof. The proof is by induction on t, the case t = 1 being covered by the

hypothesis. Suppose that δ
f(t−1)
G (G) ≤

√

γt(H). It follows that δ
f(t)
G (G) ≤

δ
t(c−1)+1
G

(

√

γt(H)
)

. The hypothesis of our lemma implies that δc
G(H) ≤

√
H ′ and so we can apply Lemma 3.5. We obtain δ

t(c−1)+1
G

(

√

γt(H)
)

≤
√

γt+1(H); hence δ
f(t)
G (G) ≤

√

γt+1(H), as required. �

Proof of Theorem 1.1. We argue by induction on the derived length d,

the case d ≤ 2 being clear. Suppose that for some integer d > 2, all soluble

groups in C of derived length at most d − 1 are torsion-by-nilpotent. Let G

be a soluble group in C of derived length d. By Lemma 3.1, the set of torsion

elements of G forms a subgroup. Hence we can assume that G is torsion-free

without loss of generality. We must prove that G is nilpotent. With that

in mind we let H = G′. Then, by the inductive hypothesis, G/
√

H ′ and

H are nilpotent (and torsion-free). Let c, k be positive integers such that

γc+1(G) ≤
√

H ′ and γk+1(H) = {1}. Since γc+1(G) = δc
G(G), we can apply

Lemma 3.6. It follows that δ
f(t)
G (G) ≤

√

γt+1(H) for any positive integer

t. By taking t = k, we obtain δ
f(k)
G (G) ≤

√

{1}. But G is torsion-free and

hence
√

{1} = {1}. We conclude that δ
f(k)
G (G) = γf(k)+1(G) is trivial and

the result follows. �

4. PROOF OF THEOREM 1.2

We write ζ(G) for the centre of a group G.
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Lemma 4.1. Let G be a metabelian group such that G/ζ(G) is torsion-

by-nilpotent. Then G is torsion-by-nilpotent.

Proof. By assumption, there exists an integer k such that γk(G/ζ(G)) is

a torsion group; we can assume that k ≥ 2. Hence, for any x1, . . . , xk+1 ∈ G,

there exists an integer e > 0 such that [[x1, . . . , xk]
e, xk+1] = 1. But in a

metabelian group, the relation [ae, b] = [a, b]e holds for any element a in the

derived subgroup. Therefore, we have the equality [x1, . . . , xk, xk+1]
e = 1.

Also note that γk+1(G) ≤ G′ is abelian. It follows that γk+1(G) is a torsion

group, and the lemma follows. �

Lemma 4.2. Let G be a soluble group such that G/ζ(G) is torsion-by-

nilpotent. Then G is torsion-by-nilpotent.

Proof. Let C be the class of soluble groups G such that G/ζ(G) is torsion-

by-nilpotent. It is easy to see that C is closed under taking subgroups and

quotients. Thus the result follows from Theorem 1.1 and Lemma 4.1. �

Recall without proof the following extension of a well-known result due

to Schur (see for instance [3, Part 1, p. 102]):

Lemma 4.3. Let G be a group such that G/ζ(G) is locally finite. Then

G′ is locally finite.

Lemma 4.4. Let G be a group such that G/ζ(G) is (locally finite)-by-

nilpotent. Then G is (locally finite)-by-nilpotent.

Proof. Denote by ϕ(G) the locally finite radical of G, namely the product

of all the normal locally finite subgroups of G. Since the class of locally

finite groups is closed under forming extensions, ϕ(G) is locally finite and

ϕ (G/ϕ(G)) is trivial. Therefore, by replacing G by G/ϕ(G), we can assume

that G has no non-trivial normal locally finite subgroup. Then we must

prove that G is nilpotent. Let L be the normal subgroup of G containing
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ζ(G) such that L/ζ(G) = ϕ (G/ζ(G)). Then L/ζ(L) is locally finite, since

it is a quotient of L/ζ(G). It follows from Lemma 4.3. that L′ is locally

finite. But G contains no non-trivial normal locally finite subgroup, so we

must have L′ = {1}. Since G/L is nilpotent, it follows that G is soluble

and by Lemma 4.2 we see that G is torsion-by-nilpotent. As G is soluble it

is therefore (locally finite)-by-nilpotent. Finally, as ϕ(G) is trivial, we have

proved that G is nilpotent, as required. �

Proof of Theorem 1.2. Suppose that H is (locally finite)-by-(nilpotent of

class k). We prove the theorem by induction on k, the result being obvious

when k ≤ 1. By replacing G by G/ϕ(H), we can assume that H is torsion-

free and nilpotent of class k > 1. It follows from the inductive hypothesis

that G/γk(H) is (locally finite)-by-nilpotent. Thus there exists an integer

c such that γc+1(G)γk(H)/γk(H) is locally finite. In particular, we have

γc+1(G) ≤
√

γk(H). It is clear that this implies that δc
G(H) ≤ K, where

K = H ∩
√

γk(H). Now we can apply Lemma 2.1. By taking t = k, we have

δ
k(c−1)+1
G (γk(H)) ≤ δk−1

H (K) .

The group δk−1
H (K) is generated by the elements of the form [z, y1, . . . , yk−1],

with z ∈ K and y1, . . . , yk−1 ∈ H . Consider such a generator; let e be a

positive integer such that ze ∈ γk(H). Since H is nilpotent of class k, we

may write

[z, y1, . . . , yk−1]
e = [ze, y1, . . . , yk−1] = 1.

But as H is torsion-free, it follows that [z, y1, . . . , yk−1] = 1. This proves

that δk−1
H (K) is trivial which implies that δ

k(c−1)+1
G (γk(H)) is trivial. If we

denote by (ζn(G))n≥0 the upper central series of G, this means that γk(H) is

included in ζk(c−1)+1(G). Since G/γk(H) is (locally finite)-by-nilpotent, then

so is G/ζk(c−1)+1(G). By iterated application of Lemma 4.4, we conclude that

G is (locally finite)-by-nilpotent. �
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5. EXAMPLE

In this last part, we show that Theorem 1.2 is false if one substitutes

”torsion-by-nilpotent” for ”(locally finite)-by-nilpotent”.

With this aim, consider an odd integer e ≥ 665 and an integer m ≥ 2. In

[1, Chap. VII], Adian gives an example of a non soluble torsion-free group

A(m, e) such that ζ(A(m, e)) is cyclic (non trivial) and A(m, e)/ζ(A(m, e))

is m-generated of exponent e. For convenience, put A = A(m, e). Let B be

a torsion-free nilpotent group of class 2 whose centre is cyclic and coincides

with B′ (for example the group of 3 × 3 unitriangular matrices with entries

in the ring of integers).

Suppose ζ(A) = 〈a〉 and ζ(B) = 〈b〉. Let G = (A × B)/C, where C =

〈(a, b)〉, and let f : B → G is the homomorphism defined by f(z) = (1, z)C.

For H = f(B) one can easily check that:

• H is nilpotent of class 2;

• G/H ′ is (exponent e)-by-abelian;

• G is torsion-free and is not nilpotent.

Therefore, G/H ′ and H are torsion-by-nilpotent whereas G is not torsion-

by-nilpotent.
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