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Abstract

For a given positive integer n and a given prime number p, let r = r(n, p) be the
integer satisfying pr−1 < n ≤ pr. We show that every locally finite p-group, satisfying
the n-Engel identity, is (nilpotent of n-bounded class)-by-(finite exponent) where the
best upper bound for the exponent is either pr or pr−1 if p is odd. When p = 2 the
best upper bound is pr−1, pr or pr+1. In the second part of the paper we focus our
attention on 4-Engel groups. With the aid of the results of the first part we show that
every 4-Engel 3-group is soluble and the derived length is bounded by some constant.
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1 Introduction

A group is said to be an n-Engel group if it satisfies the law [x,n y] = 1, where [x,m y] is de-
fined inductively by [x,0 y] = x and [x,m+1 y] = [[x,m y], y] = [x,m y]−1y−1[x,m y]y. In the
first part of this paper we investigate locally finite p-groups that satisfy an n-Engel iden-
tity. Our results in this first part rely on the following two deep theorems of E. Zel’manov
[26,28,29].

Theorem Z1. Every n-Engel Lie algebra over a field of characteristic zero, is nilpo-
tent.

Theorem Z2. Every n-Engel Lie algebra is locally nilpotent.

In fact we will apply the following corollaries of Zel’manov’s results. The first is due
to Zel’manov [27] and the second to J. Wilson [25]. For a short proof of the latter see [4].

Theorem Z3. Every torsion free locally nilpotent n-Engel group is nilpotent of n-bounded
class.

∗The second author wishes to thank the European Community for their support with a Marie Curie

grant.
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2 Locally finite p-groups

Theorem W. Every residually finite n-Engel group is locally nilpotent.

Let n be a given positive integer and p a given prime number. Let r = r(n, p) be the
integer satisfying pr−1 < n ≤ pr. If p is odd, we will show that all locally finite n-Engel p-
groups are (nilpotent of n-bounded class)-by-(finite exponent), where the exponent divides
pr. We will also show that either pr or pr−1 is the best upper bound. For p = 2 we will
show that (G2r

)2 is nilpotent. So here again G is (nilpotent of n-bounded class)-by-(finite
exponent) but the best upper bound is either 2r−1, 2r or 2r+1. We remark here that in
[5], the authors already show that locally finite n-Engel p-groups are nilpotent by (finite
exponent) but the proof is different and they do not obtain our sharp upper bound for the
exponent.

Our proof also uses some theory of powerful p-groups. The reader can find most of the
material we use in [6] or [17].

In the second part of the paper we will work on 4-Engel groups. Whereas 3-Engel groups
are now quite well understood (see for example [2,10,12,13,15]), relatively little is known
about the structure of 4-Engel groups. In particular it is still unknown whether every
4-Engel p-group needs to be locally finite. In [22] it was shown that this is true if p = 2 or
p = 3 and for other primes p, the problem was reduced to determining whether 4-Engel
groups of exponent p are locally finite. In [24] M. Vaughan-Lee proved that 4-Engel groups
of exponent 5 are locally finite but for primes greater than 5 the question remains open.
However, if p ≥ 7 then every locally finite 4-Engel p-group is nilpotent of class at most 7
[22] (see also [9,21]).

There are 4-Engel p-groups that are not nilpotent, if p = 2, 3 or 5. This is easily seen
for p = 2 or 3 by considering a standard wreath product of a cyclic group of order p by
an elementary abelian p-group of countable rank. Then in [2], Bachmuth and Mochizuki,
constructed an example of a 3-Engel group of exponent 5 that is not soluble. By looking
at a power commutator presentation of the free 3-generator group of exponent 4 [3], one
sees that every group of exponent 4, is central by 4-Engel. As groups of exponent 4 need
not be soluble [18], the same is true for 4-Engel groups of exponent 4. We should add here
that all 3-Engel 2-groups are on the other hand soluble [10].

There remains the question whether 4-Engel 3-groups are soluble. With the aid of the
results of the first part, we will show that 4-Engel 3-groups are soluble and that the de-
rived length is bounded by some constant. We will see that it follows from this that any
locally nilpotent 4-Engel group, without elements of order 2 or 5 is soluble. This answers
question 9.50.(a) in the Kourovka notebook [23] for locally nilpotent groups. This was
also conjectured by S. Bachmuth [1].

2 Locally finite p-groups

In this section, we let n be a fixed positive integer, p be a fixed prime number and
r = r(n, p) be the integer satisfying pr−1 < n ≤ pr. Our results will depend on the
following corollary of the theorems of Zel’manov mentioned in the introduction. This
proposition is ’folklore’.

Proposition 2.1 There exist numbers l = l(n) and m = m(n) such that the law

[x1, x2, . . . , xm+1]
l = 1

holds in all locally nilpotent n-Engel groups.
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Proof By Theorem Z3 mentioned in the introduction, every torsion free locally nilpotent
n-Engel group is nilpotent of bounded class, say m = m(n). Let F be the free n-Engel
group on m + 1 generators, say x1, . . . , xm+1. Let R = ∩∞

i=1γi(F ). It is clear that F/R
is residually nilpotent and as every finitely generated nilpotent group is residually finite
it follows that F/R is residually finite. By Wilson’s theorem (Theorem W), F/R is then
nilpotent. Let T/R be the torsion group of F/R. Now F/T is a torsion free nilpotent
n-Engel group and by the remark at the beginning of the proof, F/T is thus nilpotent of
class at most m. So [x1, . . . , xm+1]

l ∈ R for some positive integer l = l(n).
Now let G be any locally nilpotent n-Engel group and let g1, . . . , gm+1 ∈ G. There is a
homomorphism

φ : F −→ G, φ(xi) = gi, i = 1, 2, . . . ,m + 1.

As 〈g1, . . . , gm+1〉 = φ(F ) is nilpotent, we have that R ≤ Ker (φ). Hence 1 = φ([x1, . . . , xm+1]
l) =

[g1, . . . , gm+1]
l. 2

We will need some theory of powerful p-groups. We start by reminding the reader of
some definitions. Let G be a finite p-group. If p is odd then G is said to be powerful if
[G,G] ≤ Gp and if p = 2 then G is powerful if [G,G] ≤ G4. We also need the notion of
powerful embedding. Let H be a subgroup of G. If p is odd then H is said to be powerfully
embedded in G if [H,G] ≤ Hp and if p = 2 then we require instead that [H,G] ≤ H4.

Now we list some of the properties that we will be using. Let G be a powerful p-group. If
a subgroup H is powerfully embedded in G then Hp is also powerfully embedded. We also
have that (Gpi

)p
j

= Gpi+j

. Furthermore, if G is generated by x1, . . . , xd then Gp is and
generated by xp

1, . . . , x
p
d. It follows that if G is generated by elements of order dividing pm

then G has exponent dividing pm. We also have that the terms of the lower central series
are powerfully embedded in G. We refer to [6] or [17] for the details.

Proposition 2.2 There exists a positive integer s = s(n) such that any powerful n-Engel
p-group is nilpotent of class at most s.

Proof By Proposition 2.1 , [g1, . . . , gm+1]
l = 1 for all g1, . . . , gm+1 ∈ G, where m and l

are the integers given in Proposition 2.1. Suppose that v = v(n) is the largest exponent of
the primes that appear in the decomposition of l. Then [g1, . . . , gm+1]

pv

= 1. So γm+1(G)
is generated by elements of order dividing pv. But γm+1(G) is powerfully embedded in G
and therefore it follows that γm+1(G) is powerful and has exponent dividing pv.

On the other hand, since γm+1(G) is powerfully embedded in G, we have [γm+1(G), G] ≤
γm+1(G)p if p odd, and [γm+1(G), G] ≤ γm+1(G)4, if p = 2. Using some basic properties
of powerful groups we see inductively that

[γm+1(G), vG] ≤ γm+1(G)p
v

= 1.

Hence, G is nilpotent of class at most s(n) = m + v. 2

Proposition 2.3 Let G be a finite n-Engel p-group.
(a) If p is odd, then Gpr

is powerful.
(b) If p = 2, then (G2r

)2 is powerful.

Proof Suppose that K ≤ H are two normal subgroups of G such that H/K is elementary
abelian, and x is an arbitrary element of G. Put t = xK and V = H/K. Since [V,n t] = 1,
we have that [V,pr t] = 1 and 0 = (t− 1)p

r

= tp
r

− 1 in End (V ). Therefore Gpr

centralises
every elementary abelian normal section of G. By a lemma of A. Shalev [20], this implies
that Gpr

is powerful if p is odd and (G2r

)2 is powerful if p = 2. 2
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Theorem 2.4 Let G be a locally finite n-Engel p-group.
(a) If p is odd, then Gpr

is nilpotent of n-bounded class.
(b) If p = 2 then (G2r

)2 is nilpotent of n-bounded class.

Proof First suppose that p is odd. Let g1, . . . , gs+1 ∈ Gpr

where s = s(n) is as in Propo-
sition 2.2. Now g1, . . . , gs+1 ∈ Hpr

, for some finitely generated subgroup H of G. As G is
locally finite, H is finite. It follows by Proposition 2.3 that Hpr

is powerful. By Proposi-
tion 2.2 we can deduce that Hpr

is nilpotent of class at most s. Hence [g1, . . . , gs+1] = 1.
This shows that Gpr

is nilpotent of class at most s. The proof for p = 2 is similar. 2

Remark. Suppose that n, p are such that r = r(n, p) ≥ 2 and

G = Zpwr ⊕∞

i=1 Zpr−1.

Then G is a metabelian n-Engel p-group of exponent pr such that Gpr−2

is not nilpotent.
Therefore, if t is the least non-negative integer such that Gpt

is nilpotent, for all locally
finite n-Engel p-groups G, then we have t ∈ {r − 1, r} if p is odd and t ∈ {r − 1, r, r + 1}
if p = 2.

We end this section by an application which is of independent interest. A group is said to
be (d,m) nilpotent, if every d-generator subgroup is nilpotent of class at most m. In [7],
G. Endimioni posed the question whether every (d, 3d− 3) nilpotent 2-group G is soluble.
He also proved that this is true when G is of finite exponent. As a corollary to our work
we show that this is true in general. Such groups are locally finite [8], and by Proposition
2.4, G2r

is nilpotent for some r. So the problem is reduced to the case when G is of finite
exponent. Hence the result.

We remark that the free group B(∞, 4) of exponent 4 with countable rank is (d, 3d − 2)
nilpotent for d ≥ 3 [11,18]. As the group B(∞, 4) is non-solvable [18], it follows that
3d − 3 is the best upper bound in the result above provided that d ≥ 3. Endimioni [7]
asked whether this is also the case when d = 2. As B(∞, 4) is not (2, 4) nilpotent this is
not immediately clear. However, one can see from a power commutator presentation of
the free 3-generator group of exponent 4, that B(∞, 4)/Z(B(∞, 4)) is (2, 4) nilpotent [3].
So 3d − 3 is also the best upper bound when d = 2.

3 4-Engel 3-groups

In this section we shall prove that every 4-Engel 3-group is soluble. The following argu-
ments will involve 2-Engel groups. We first introduce a class of groups E2. We will see
later that E2 coinsides with the class of 2-Engel groups.

Definition. A group G is said to be an E2-group if G is a product of a family of normal
abelian subgroups (Hi)i∈I and

[a, b, c][a, c, b] = 1 (1)

for all a, b, c ∈ ∪i∈IHi.

Remark. Suppose that Hi is generated by Xi then it is easy to see that, in the defi-
nition above, it is sufficient to assume that [a, b, c][a, c, b] = 1 for all a, b, c ∈ ∪i∈IXi. We
will be using this later without mention.

Lemma 3.1 If G is an E2-group then G is nilpotent of class at most 3.
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Proof Let (Hi)i∈I be as in the definition. Take a, b, c ∈ ∪i∈IHi. By (1) we have that
[a, b, c] = [a, c, b]−1 = [c, a, b] and thus

[a, b, c] = [c, a, b] = [b, c, a]. (2)

Notice that ∪i∈IHi is closed under taking commutators. Now let a, b, c, d ∈ ∪i∈IHi. By
using (1) and (2) we have

[[a, b], c, d] = [c, d, [a, b]]

= [c, d, a, b][c, d, b, a]−1 = [c, d, a, b]2

and also

[[a, b, c], d] = [[c, a, b], d] = [[c, a], b, d]

= [[c, a], d, b]−1 = [c, a, d, b]−1 = [c, d, a, b].

Comparing these two calculations we have [c, d, a, b] = 1. As G is generated by ∪i∈IHi, it
follows that G is nilpotent of class at most 3. 2

Lemma 3.2 A group is an E2-group if and only if it is 2-Engel.

Proof First suppose that G is 2-Engel. Let a, b, c ∈ G. We know that G is nilpotent of
class at most 3 [16]. Therefore 1 = [a, bc, bc] = [a, b, c][a, c, b]. In every 2-Engel group, the
normal closure of an element is abelian. Thus every 2-Engel group is a product of normal
abelian subgroups. Hence G is an E2-group.

Conversely, suppose that G is an E2-group. Now let a =
∏

i∈I ai and b =
∏

i∈I bi be
elements of G, where ai, bi ∈ Hi and for almost all i we have that ai = bi = 1. Clearly
any element in G has such a representation. By Lemma 3.1 we know that G is nilpotent
of class at most 3. Expanding [a, b, b] we see that it is a product of elements of the form
[ai, bj , bk][ai, bk, bj ] and thus trivial. 2

We want to show that every 4-Engel 3-group is soluble of bounded derived length. As
3 < 4 ≤ 32, it follows from Theorem 2.4 that it suffices to consider groups of exponent 9.
We will see that these groups are built from 2-Engel groups.

From now on suppose that G is a 4-Engel group of exponent dividing 9 and let

X =
⋃

a∈G

〈

a3
〉G

.

By Lemma 10 of [22] we have that 〈a3〉G is abelian of exponent dividing 3 for all a ∈ G.
We will next perform some calculations that will eventually give us Proposition 3.6 and
this proposition will enable us to derive solubility of 4-Engel 3-groups. The following
calculations are modelled on calculations done by P. J. Higgins on 4-Engel Lie rings [14].

Lemma 3.3 Let x1, x2, x3, u, y ∈ X and let x = x1x2x3. Then

[u, x, x, x, y][u, x, x, y, x][u, x, y, x, x][u, y, x, x, x] = 1 (3)

[u, x, x, x, y][u, x, x, y, x]−1 [u, y, x, x, x]−1 = 1 (4)

[u, x, y, x, x][u, x, x, x, y]−1 = 1. (5)

Proof We remark first that the group generated by x1, x2, x3, u, y is nilpotent of class at
most 5, as the normal closure of each of these elements is abelian. We get the first identity
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by expanding 1 = [u,4 xy]. We then have

1 = [y,4 ux]

= [y, u, x, x, x][y, x, u, x, x][y, x, x, u, x][y, x, x, x, u]

= [u, y, x, x, x]−1[u, [y, x], x, x]−1[u, [y, x, x], x]−1[u, [y, x, x, x]]−1

= [u, y, x, x, x]−1[u, x, x, y, x]−1[u, x, x, x, y].

This gives the second identity and the third follows by multiplying the first two together.
Note that we have here used the fact that 〈u〉G is of exponent dividing 3. 2

Lemma 3.4 Let x1, x2, x3, x4, u, y ∈ X and let x = x1x2x3x4. Then

[u, x, x, y, x, x] = [u, x, x, x, y, x] = [u, x, y, x, x, x] = 1.

Proof For i ∈ {1, 2, 3, 4}, let x̃(i) be the product of the elements xj , j ∈ {1, 2, 3, 4} \ {i}.
The order of the product will not matter in the following calculations. Notice also that
the group generated by x1, x2, x3, x4, u, y is nilpotent of class at most 6. By (5), we have

[u, xi, x̃(i), x̃(i), x̃(i), y] = [u, xi, x̃(i), y, x̃(i), x̃(i)]

[u, x̃(i), x̃(i), x̃(i), y, xi] = [u, x̃(i), y, x̃(i), x̃(i), xi].

Now summing over i = 1, 2, 3, 4, gives

[u, x, x, x, x, y] = [u, x, x, y, x, x] (6)

[u, x, x, x, y, x] = [u, x, y, x, x, x].

As G is 4-Engel it is follows from the former identity that [u, x, x, y, x, x] = 1. We next
perform a similar calculations using (3) and see that

1 = [u, x, x, x, y, x][u, x, x, y, x, x][u, x, y, x, x, x][u, y, x, x, x, x]

(6)
= [u, x, x, x, y, x]2.

So [u, x, x, x, y, x] = [u, x, y, x, x, x] = 1, since 〈u〉G is of exponent 3. 2

Lemma 3.5 Suppose x1, x2, x3, y1, y2, y3 ∈ X, i ∈ {1, 2, 3} and let ỹ(i) be the product of
{yj | j ∈ {1, 2, 3} \ {i}}. Let x = x1x2x3. Then

1 = [u, x, x, x, ỹ(i), ỹ(i)][u, x, x, ỹ(i), ỹ(i), x][u, x, ỹ(i), x, ỹ(i), x][u, ỹ(i), x, x, ỹ(i), x]
1 = [u, x, x, ỹ(i), x, ỹ(i)][u, x, x, ỹ(i), ỹ(i), x][u, x, ỹ(i), ỹ(i), x, x][u, ỹ(i), x, ỹ(i), x, x]
1 = [u, x, ỹ(i), x, x, ỹ(i)][u, x, ỹ(i), x, ỹ(i), x][u, x, ỹ(i), ỹ(i), x, x][u, ỹ(i), ỹ(i), x, x, x]
1 = [u, ỹ(i), ỹ(i), x, x, x][u, ỹ(i), x, x, x, ỹ(i)][u, ỹ(i), x, ỹ(i), x, x][u, ỹ(i), x, x, ỹ(i), x]
1 = [u, x, x, x, ỹ(i), ỹ(i)][u, ỹ(i), x, x, x, ỹ(i)][u, x, x, ỹ(i), x, ỹ(i)][u, x, ỹ(i), x, x, ỹ(i)]
[u, ỹ(i), x, x, x, ỹ(i)] = [u, ỹ(i), x, ỹ(i), x, x]
[u, x, x, x, ỹ(i), ỹ(i)] = [u, x, ỹ(i), x, x, ỹ(i)].

Proof Let j, k ∈ {1, 2, 3}\{i}. From the first identity of Lemma 3.4 we have

1 = [u, xyj, xyj , yk, xyj , xyj]

= [u, yj, x, yk, x, x][u, x, yj , yk, x, x][u, x, x, yk , yj, x]

[u, x, x, yk, x, yj ]

Now interchange yj and yk. Adding the new identity to the above gives the second iden-
tity in the Lemma. The first and third are proved similarly using the other identities of
Lemma 3.4. The fourth identity comes from (3). First replace u by [u, yj ] and y by yk.
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Then interchange j and k and add. The fifth identity follows also from (3). First replace
y by yj and take commutator with yk from the right, then interchange j and k and add
as before. The last two identities follow from (5) in the same way. 2

For the final part of the calculations, we first need some notation. Let x1, x2, x3, y1, y2, y3

be in X. We let x = x1x2x3 and y = y1y2y3. We give the commutators of weight 7 names
as follows.

a = [u, x, x, x, y, y, y] ā = [u, y, y, y, x, x, x]
b = [u, y, y, x, x, x, y] b̄ = [u, x, x, y, y, y, x]
c = [u, y, x, x, x, y, y] c̄ = [u, x, y, y, y, x, x]
d = [u, x, x, y, x, y, y] d̄ = [u, y, y, x, y, x, x]
e = [u, y, x, y, x, x, y] ē = [u, x, y, x, y, y, x]
f = [u, x, x, y, y, x, y] f̄ = [u, y, y, x, x, y, x]
g = [u, x, y, y, x, x, y] ḡ = [u, y, x, x, y, y, x]
h = [u, x, y, x, x, y, y] h̄ = [u, y, x, y, y, x, x]
k = [u, y, x, x, y, x, y] k̄ = [u, x, y, y, x, y, x]
l = [u, x, y, x, y, x, y] l̄ = [u, y, x, y, x, y, x]

Now take the equations of Lemma 3.5 and commute them on the right by yi. Adding for
i = 1, 2, 3 gives the following 7 identities.

afkl = 1 defg = 1 bghl = 1 bcek = 1
acdh = 1 c = e a = h.

By symmetry, there are similar identities for ā, . . . , l̄. Solving these linear equations to-
gether gives

d = ac−1 e = c f = abc g = ab−1c−1

h = a k = b−1c l = ac.

Similarly for ā, . . . , l̄. Next we take the equations in Lemma 3.5 and replace u by [u, yi].
Adding for i = 1, 2, 3 gives

1 = cḡl̄f̄ = cc̄ 1 = kḡh̄d̄ = b−1b̄−1cc̄ 1 = ābd̄f̄ = bb̄ 1 = el̄ h̄ā = cc̄
1 = cbke b = d̄ = āc̄−1 c = e.

By symmetry we also have b̄ = ac̄−1.
It now follows that c̄ = c−1, b̄ = b−1 and ā = a−1. It is this last one that is going to give
us the solubility of 4-Engel 3-groups. Let us state this as a proposition.

Proposition 3.6 If x1, x2, x3, y1, y2, y3, u ∈ X, x = x1x2x3 and y = y1y2y3 then

[u, x, x, x, y, y, y][u, y, y, y, x, x, x] = 1.

We can now prove the main result of this section.

Theorem 3.7 Every 4-Engel 3-group is soluble and the derived length is bounded by some
constant.

Proof First of all, we know that every 4-Engel 3-group is locally finite [22]. By Theorem
2.4 we have that G9 is nilpotent for all 4-Engel 3-groups G and the nilpotency class is
bounded by some constant. It therefore suffices to consider a 4-Engel group G of exponent
9. We know that the normal closure of the third power of any element is abelian of exponent
3. Let g, a1, a2, a3, b1, b2, b3 be arbitrary elements in G and let a = a3

1a
3
2a

3
3 and b = b3

1b
3
2b

3
3.

By Proposition 3.6 we have

1 = [g3, a, a, a, b, b, b][g3 , b, b, b, a, a, a]

= [g3, a3, b3][g3, b3, a3].
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For each a1, a2, a3 ∈ G we let H(a1, a2, a3) = 〈(a3
1a

3
2a

3
3)

3〉G and then

H =
∏

(a1,a2,a3)∈G×G×G

H(a1, a2, a3).

In other words H is the verbal subgroup generated by the word (x3
1x

3
2x

3
3)

3. We have just
seen that Proposition 3.6 implies that H is an E2-group and thus 2-Engel. Now consider
G/H. For all g1, g2, g3 ∈ G we have

(g3
1g

3
2g

3
3)

3 = (g3
1g

3
2)

3(g3
3)

(g3
1
g3
2
)2+(g3

1
g3
2
)+1

= [g3
3 , g

3
1g3

2 , g
3
1g

3
2 ]

= [g3
3 , g

3
1 , g3

2 ][g
3
3 , g3

2 , g
3
1 ].

So G/H satisfies the identity

1 = [g3, a3, b3][g3, b3, a3].

This shows that G3/H is also 2-Engel. Finally G/G3 is of exponent 3 and thus 2-Engel
[16]. Thus G/G3, G3/H and H are 2-Engel and thus metabelian and it follows that G is
soluble of derived length at most 6. 2

Remark. The referee has pointed out to us that in 4-Engel groups of exponent 9, a
stronger result holds than the one we obtained. One can show that G3 is 2-Engel with a
computer using the p-quotient algorithm. It follws that the derived length of these groups
is at most 4.

As a corollary of Theorem 3.7 we have

Theorem 3.8 Let G be a locally nilpotent 4-Engel group without elements of order 2 or
5. Then G is soluble and the derived length is bounded by some constant.

Proof Let P be the set of all primes and let Π = P \ {2, 5}. We say that a finite group
H is a Π-group if the order of any element in H has all its prime divisors from Π.

Let H be a finite 4-Engel p-group for some p ∈ Π. If p 6= 3, we know that H is nilpotent
of class at most 7 [22] and if p = 3, we have seen that H is soluble of some derived length
bounded by some constant. So in any case, we have that H is soluble and the derived
length is bounded by some constant m. By a theorem of Zorn (see [19, 12.3.4]), all finite
4-Engel groups are nilpotent and so it follows that every finite 4-Engel Π-group is soluble
of derived length at most m. We finish the proof by showing that G is also soluble of
derived lenght at most m. Clearly we can assume that G is generated by 2m elements and
thus that G is a finitely generated nilpotent group. Let τ(G) be the torsion subgroup of
G. It suffices now to show that G is residually a finite Π-group.

Let 1 6= x ∈ G. We need to find a normal subgroup M such that G/M is a finite Π-
group and x 6∈ M . We consider two cases. Firstly suppose that x has infinite order. Then
G/τ(G) is a finitely generated torsion-free nilpotent group and thus residually a finite
p-group for any prime p (see [19, 5.2.22]). In particular we can choose p ∈ Π and a normal
subgroup M of G with G/M a finite p-group and x 6∈ M .

We are left with the case when x has finite order. As G is a finitely generated nilpotent
group, it is residually finite (see [19, 5.4.17]). Therefore there exists a normal subgroup
M of G and some prime p such that G/M is a finite p-group and x 6∈ M . As the order of
xM in G/M divides the order of x we must have p ∈ Π. 2
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