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Introduction

Let G be a group with identity element e. The set P(G) of subsets of G is
usually called the power set of G. There is an induced semigroup structure on
P(G). Let H ∈ P(G) be an idempotent, so HH = H . We are interested in
subsemigroups of P(G) which are actually groups and have H as multiplicative
identity. We will refer to these as power groups of G.

To take an obvious example, let H, N be subgroups of G with H � N , then
the set of cosets N/H is a power group of G. So every section of G is a power
group of G. More generally for any idempotent H , let N be a subgroup of the
normaliser NG(H) of the set H . Then G = {xH : x ∈ N} is a power group.
Such a construction is called a quasiquotient group. Clearly every quasiquotient
group of G is isomorphic to a section. In [3] it is shown that a power group with
identity H is always a quasiquotient group provided e ∈ H .

However, this is not true in general if e 6∈ H . Let G = Q, the additive group of
rationals, and let R be the additive group of real numbers. Let

G = {Iα : α ∈ R}

where Iα = {x ∈ Q : x < α}. Then G is a power group of G that is isomorphic to
R. What we have here is of course the well known Dedekind cuts construction.
It is clear that G is not a quasiquotient group of G in fact it is not isomorphic
to a section of G as it is not countable.

In this example, if we replace each Iα by the subset Jα = {x ∈ R : x < α}
of R, then G is isomorphic to the group {Jα : α ∈ R} which is a quasiquotient
group of R. Such types of extensions were dealt with in [4], where the author
proves some interesting results about criteria for the existence of such extensions.
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In view of our remarks, one class of groups of particular interest consists of
those groups for which every non-empty idempotent contains the group identity
e. In this event all power groups are isomorphic to sections of G. These groups
are called monoidal groups and are dealt with in [2]. The authors prove that for
a large class of groups these groups coincide with the class of groups that are
torsion-by-cyclic-by-finite or torsion. It is not difficult to see that such a group is
torsion, torsion-by-cyclic or torsion-by-(infinite dihedral). Although this classi-
fication holds for a very large class of groups there are however monoidal groups
that are not of this type [1].

In this paper we will mostly be interested in the power groups of free abelian
groups of finite rank. We will see that even here the situation is quite compli-
cated and we will give a rich family of examples to illustrate this.

1 General observations.

We are interested in the subsets of P(G) that form groups. Let CG be the class
of these groups.

Proposition 1 Let H ⊆ G be such that HH = H. There is a unique largest
subset GH of P(G) that is a group with H as the identity.

Proof Let MH = {HAH : A ⊆ G}. Now MH is the unique largest monoid
which is a subset of P(G) and has H as an identity. Let

GH = {A ∈ MH : AB = BA = H for some B ∈ MH}.

Now GH is clearly a group and thus the unique largest subsemigroup of P(G)
that is a group with H as the identity. 2

Notation. In the notation of Proposition 1, a group of the form GH is called
the maximal power group with respect to H .

If A ∈ P(G), then we will denote by A−1 the set {a−1 : a ∈ A}. If A ∈ GH ,
we will denote by Ā the inverse of A in the group GH . A subset H of G such
that HH = H will be called an idempotent.

Proposition 2 Let H be an idempotent in P(G). Then H−1 is also an idem-
potent and GH−1 is isomorphic to GH .

Proof Notice that if A ∈ MH then A−1 is clearly in MH−1 . Also if AB =
BA = H then B−1A−1 = A−1B−1 = H−1. We thus have two maps Φ : GH →
GH−1 and Ψ : GH−1 → GH given by Φ(A) = (Ā)−1 and Ψ(A) = (Ā)−1. Then

Ψ(AB) = (AB)−1 = (B̄ · Ā)−1 = Ψ(A) · Ψ(B).

So Ψ is a homomorphism and by symmetry Φ is also a homomorphism. Now
AĀ = H so Ā−1A−1 = H−1. It follows that (Ā)−1 = A−1 by uniqueness of
inverses. So
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Ψ(Φ(A)) = Ψ(A
−1

) = (Ā−1)−1 = A.

Similarly Φ(Ψ(A)) = A and thus Φ is an isomorphism. 2

Let G be a powergroup of G with identity H . When the group identity e is
in H the situation is well understood [3]. So we will only be interested in the
case when e 6∈ H . In this case there is a natural partial order on G. This is
defined by

x < y if and only if x−1y ∈ H

Then we have that < is a left-invariant dense order on G. Conversely let <
be any left-invariant dense order on G and let H = {g ∈ G : g > e}, then H
is an idempotent that does not contain the identity. So there is a one-to-one
correspondence between the set of all idempotents H of G not containing the
identity, and the set of all left-invariant dense orders on G. Notice that we could
instead have defined the order by x < y iff yx−1 ∈ H . This would have given
us a right invariant dense order instead and we have an analogous one-to-one
correspondence between idempotents and right-invariant orderings. If H is a
normal set in G the two orders are the same.

Let H be any idempotent that is normalised by G. Then K = HH−1 is the
smallest subgroup in G containing H and clearly we have that K is normal in
G. The next result tells us how the powerset group for H in K and the powerset
group for H in G are related.

Proposition 3 Let H be an idempotent of G such that NG(H) = G and let
K = HH−1, then

GH/KH
∼= G/K.

Proof Consider the map

φ : GH → P(G), A 7→ AK.

Then Im φ clearly contains φ(aH) = aHK = aK for all a ∈ G. So G/K ⊆ Im φ.

Also φ(AB) = ABK = AKB = AKKB = AKBK = φ(A)φ(B) and φ pre-
serves the multiplication. It follows that Imφ is a group with identity K. So
Im φ ≤ GK = G/K and φ is a surjective homomorphism. Now A ∈ Kerφ if and
only if AK = K, and this happens if and only if A ⊆ K. Hence Kerφ = KH . 2

The Dedekind cuts in Q form a linearly ordered set with respect to inclusion.
Notice that this power group is torsion-free. For elements of finite order the
situation is very different.

Proposition 4 Let A, B be distinct elements of finite order in a power group
G of G. Then neither A nor B is contained in the other.
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Proof For contradiction suppose that A is contained in B. Let H be the
identity element of G. Let n be a positive integer such that An = Bn = H .
Then

B = BAn ⊆ BnA = A

and B = A, a contradiction. 2

2 Free abelian groups of finite rank

In this section we will be looking for power groups of the free abelian groups
of finite rank. In the following we mostly concentrate on the groups with rank
2. But most of the results generalise easily to higher ranks. We start with the
much simpler task of finding all the idempotents of the integers.

Let H be any non-empty idempotent of Z. Suppose ZH = dZ where d ≥ 0
(here ZH denotes the set of products of an integer and an element of H ; this
amounts to H − H). If d = 0, then H = {0} so let us suppose that d ≥ 1. As
H/d is also an idempotent it suffices to assume that ZH = Z. If H has both
positive and negative numbers. Then it is easy to see that H = hZ where h is
the smallest positive number in H . So we can further suppose that H contains
either only positive numbers or only negative numbers. Without loss of gener-
ality we may suppose that all the numbers are positive.

Let a be the smallest number in H . Since ZH = Z there are some h, k ∈ H
such that h − k = 1. Let 0 ≤ i ≤ a then

ak + i = i(k + 1) + (a − i)k = ih + (a − i)k ∈ H.

(Note that this is also true when i = 0 or i = a). As a ∈ H we then have that
ak + ra + i ∈ H for all r ≥ 0 and all 0 ≤ i ≤ a . In other words, all numbers
greater than or equal to ak are in H . This shows

Lemma 1 Let H be an idempotent of Z and suppose that ZH = dZ. If H is
neither empty nor a subgroup, then (1/d)H is a cofinite subset of the positive
numbers or the negative numbers (including 0).

We now turn to the problem of determining the idempotents H of the free
abelian group of rank 2 where 0 6∈ H . We will use some (elementary) geometric
arguments so we embed Z2 into the standard Euclidean plane R2.

Proposition 5 For each non-zero (x, y) ∈ Z2 we have that the line R(x, y)
contains an element from H. Furthermore the elements of H on the line are all
either in R+(x, y) or R−(x, y).

Proof We can assume that x and y are coprime. Now choose (u, v) ∈ Z2 such
that (x, y) and (u, v) generate the group Z2. Let

K = {a ∈ Z : a(u, v) + t(x, y) ∈ H for some t ∈ Z}.
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Now K is clearly an idempotent of Z. By Lemma 1, every idempotent of Z

contains 0. Therefore 0 ∈ K and we have proved the first statement. Also the
latter statement has to be true since otherwise we would be forced to have (0, 0)
in H . 2

Remark. Notice that Proposition 5 does not hold in general for higher ranks
than 2. For example, take any idempotent H of Z2 × 0 ⊆ R3 that does not con-
tain the identity. Then all one dimensional subspaces, that are not contained
in R2 × 0, do not contain any elements from H . However for same reasons as
before we can never have that R+v and R−v both contain elements from H
when v is any non-trivial element of Rn and H is an idempotent of Zn without
the identity.

Proposition 6 There is a line y = wx where w is an irrational number and
all elements of H are either above the line or under the line.

Proof We know that for each line going through the origin and another point
of Z2, one (and only one) of the half-lines contains elements from H . We let
K = Q+H . Then K contains exactly one of the (strict) half-lines from each line
in the rational plane. We next show that K is also an idempotent.

Let a, b ∈ H and r, s be some positive rationals. Choose an integer n such
that nr, ns are integers. Then nra+nsb ∈ H and thus ra+ rb ∈ K. This shows
that K + K ⊆ K. Conversely suppose a ∈ H and r some positive rational.
Chose b, c ∈ H such that b + c = a. Then ra = rb + rc. Hence K = K + K and
K is an idempotent.

Note that if we take two rational half-lines L1, L2 contained in K then the
whole cone L1 +L2 that these two half-lines generate is also contained in K (as
K + K ⊆ K). Moving to the real plane. We say that a cone (R1, R2) is good
if all the rational lines between R1, R2 are contained in K. (We don’t exclude
the possibility that R1 and R2 are opposite lines. In that case between means
either above the line or under the line, so the rational half lines contained in K
are then all either above or below the line so there is no ambiguity). It is clear
that a good cone exists. Now if R1 and R2 are not opposite then we can take
some rational line through the origin such that R1, R2 are one the same side of
this line. Now one of the half lines of this new line is contained in K. Taking
the corresponding real half line and then the sum of it and the good cone, we
obtain a larger good cone. By Zorn’s lemma there is a maximal good cone.
And the preceding argument shows that its half-lines must be opposite. Now
take the corresponding real line. This line cannot have rational slope. Because
otherwise, one of the half-lines would be contained in K. Take the element of H
on this line that is closest to the origin and notice that it cannot be in H +H . 2

Proposition 6 characterises all the maximal idempotents of Z2. This can be
generalised to a characterisation for Zn, n ≥ 2. We describe this now briefly,
leaving the proofs to the reader.
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Let ā = (a1, a2, . . . , an) be an arbitrary non-zero element of Rn and let U be
the normal complement. We think of R as a vectorspace over Q and consider
the linear map

φ : Qn → R; (x1, . . . , xn) 7→ x1a1 + · · · + xnan.

Then U∩Qn = ker φ and the rank of the abelian group U∩Zn is the same as the
rank of U ∩ Qn = n − rank (Qa1 + · · ·Qan). Let H0 be a maximal idempotent
of U ∩Zn without the identity (notice that this always exists by Zorn’s Lemma
and when the rank is less than 2 then this is the empty set) then

H = H0 ∪ [(U + R+a) ∩ Zn]

is a maximal idempotent of Zn without the identity. This recursively gives all
the maximal idempotents of Zn that do not contain the identity.

Although this characterisation is simple, it does not seem to be a simple prob-
lem to find the subidempotents. The next example illustrates this by giving a
rich variety of subidempotents of Z2.

Example. Let w be an irrational number and embed the free abelian group of
rank 2 as G = Z + Zw in the additive group of real numbers. Let T be any set
of positive real numbers such that inf T = 0. Let S be the set of all subgroups of
rank 2 in G (and thus all subgroups of G that are dense in R). Take L : T → S
to be an increasing function where the order in S is the inclusion order. Let

Ht = {z ∈ L(t) : z > t}

and
H =

⋃

t∈T

Ht.

Lemma 2 H is an idempotent of G.

Proof Firstly if t1 ≤ t2 then L(t1) ≤ L(t2) and thus

Ht1 + Ht2 = {h ∈ L(t1) : h > t1} + {h ∈ L(t2) : h > t2}

⊆ {h ∈ L(t2) : h > t1 + t2}

⊆ Ht2 .

Hence H + H ⊆ H . Now suppose h ∈ Ht. Then h ∈ L(t) and h > t. As L(t) is
a dense subgroup of R there is h1 ∈ L(t) such that h > h1 + t > t. As h1 > 0
and infT = 0 there exists some s ∈ T such that h1 > s and t ≥ s. Since L(s) is
dense in R there is h2 ∈ L(s) such that s < h2 < h1, then h > h1 + t > h2 + t
As L(s) ≤ L(t), we have that h − h2 ∈ L(t) and as h − h2 > t, it follows that
h − h2 ∈ Ht. Clearly h2 ∈ Hs. Hence h ∈ Ht + Hs ⊆ H + H . 2
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We now turn to the problem of finding the elements of GH . First notice that
A ∈ MH if and only if it is the union of sets of the form a + H , a ∈ G. If such
an element has an inverse B in MH then A + B = H is bounded below by 0
and thus A must be bounded below. So we can restrict our attention to those
elements of MH that are bounded below.

Let L(0) =
⋂

t∈T
L(t) and G = G/L(0). Let X be a transversal of L(0) in

G such that 0 ∈ X . For an element g ∈ G we will as usual denote the image in
G by g. Let A ∈ MH , then

A =
⋃

x∈X

A(x)

where
A(x) =

⋃
{z + H ⊆ A : z = x}.

Suppose that a < b and a = b. Let t ∈ T . As a + L(t) = b + L(t) we have

b + Ht = {z ∈ L(t) + a : z > t + b}

⊆ {z ∈ L(t) + a : z > t + a}

= a + Ht.

Hence b + H ⊆ a + H . Now assume that A is bounded below and let a(x) =
inf A(x). By the remark just made we have that for x ∈ X

A(x) =
⋃

t∈T

At(x)

where
At(x) = {z ∈ L(t) + x : z > a(x) + t}.

We now describe a more general type of elements. We will later see that every
element in GH can be written in this way. Let r be any real number and
x : T → G be a function such that

x(s) + L(t) = x(t) + L(t) when s ≤ t.

we let
G(x, r) =

⋃

t∈T

Gt(x, r)

Where
Gt(x, r) = {z ∈ L(t) + x(t) : z > r + t}.

Taking x as a constant function and r = a(x) we have that G(x, r) is like A(x)
above.

Lemma 3 Let x, y : T → G be some functions of the above mentioned type and
r, s ∈ R, then

G(x, r) + G(y, s) = G(x + y, r + s)
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Proof Firstly if t1 ≤ t2 then L(t1) ≤ L(t2) and

Gt1(x, r) + Gt2(y, s) = {z ∈ L(t1) + x(t1) : z > r + t1} +

{z ∈ L(t2) + y(t2) : z > s + t2}

⊆ {z ∈ L(t2) + x(t2) + y(t2) : z > r + s + t1 + t2}

⊆ Gt2(x + y, r + s).

Conversely suppose that z ∈ G(x + y, r + s) so z ∈ Gt(x + y, r + s) for some
t ∈ T . Then z ∈ L(t) + x(t) + y(t) and z > r + s + t. As L(t) + y(t) is a dense
subset in R, there exists z1 ∈ L(t) + y(t) such that

z > r + t + z1 > r + s + t.

Since z1 > s and infT = 0, there exists some u ∈ T such that z1 > s + u and
t ≥ u. Since L(u) + y(u) is dense in R there exists z2 ∈ L(u) + y(u) such that
s + u < z2 < z1, then

z > r + t + z1 > r + t + z2 > r + s + t.

As L(u) ≤ L(t), we have z − z2 ∈ L(t) + x(t) + y(t)− y(u) = L(t) + x(t). As we
also have z − z2 > r + t we have that z − z2 ∈ Gt(x, r). Clearly z2 ∈ Gu(y, s)
and thus z ∈ Gt(x, r) + Gu(y, s) ⊆ G(x, r) + G(y, s). 2

It follows in particular that the elements of this type form a group G with
identity G(0, 0) = H . What is this group?

Consider the inverse system (G/L(t))t∈T of quotients of G/L(0) with the nat-
ural homomorphisms G/L(t) → G/L(s) as map when t ≤ s. The group of
all functions x̂ : T → G/L(0), defined by x̂(t) = x(t) + L(0), is the inverse
limit of this system. Denote this by G(L). There is a natural homomorphism
from G(L) ⊕ R to G, taking (x̂, r) to G(x, r). It should be clear that this is
well defined. To show that we have an isomorphism we need to show that if
G(x, r) = G(0, 0), then x̂ = 0̂ and r = 0. As r is the greatest lower bound of
G(x, r) the latter is clear. The next lemma settles the other one.

Lemma 4 If G(x, 0) ⊆ H, then x̂ = 0̂.

Proof We argue by contradiction. Suppose not. As x̂ 6= 0̂ there exists a real
number r such that

x(t) + L(t) 6= L(t) when t < r. (1)

Now let h < r. As h is in G(x, 0) and H , there exits t1, t2 ≤ h such that
h ∈ L(t1) + x(t1) and h ∈ L(t2). Take t be the larger of the two. Then h is in
both the cosets L(t) and L(t) + x(t). Hence these cosets must be equal. But
this contradicts (1). 2
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Now suppose B is the inverse of A. If G/L(0) is finite then a(x) + b(y) must be
zero for some x, y with A(x), B(y) non-empty. Hence by Lemma 3 and Lemma
4, A(x) + B(y) = H . But then

H = A(x) + B(y) ⊆ A + B(y) ⊆ A + B = H

and A + B(y) = H . As the inverse of B(y) is uniquely determined we must
have A = A(x). Hence for the case G/L(0) finite we have that all the elements
of GH are of the form G(x, r) for some constant function x. We have also seen
that the group of these elements is isomorphic to G(L)⊕R. But in this case we
have G(L) = G/L(0) and hence:

Proposition 7 If G/L(0) is finite then GH is isomorphic to G/L(0) ⊕ R.

In particular, if H is one of the maximal idempotents then L(0) = G and GH is
isomorphic to R.

We now deal with the case when G/L(0) is infinite we want to show that every
element of GH is of the form G(x, r) where x̂ is in G(L). The following simple
lemma is going to be crucial.

Lemma 5 Let ε be an arbitrary small real number and let Hε be the set of all
elements in H that are smaller than ε. Then

Hε + H = H.

Proof One inclusion is obvious. Now let h ∈ H as H = H + H we have that
h = h0 + h1 for some h0, h1 ∈ H then one of them must be at most half of h.
Suppose this is h1 then we write h1 = h2 + h3 and now one of h2 and h3 is at
most one fourth of h. Iterate this process n times such that (1/2)n < ε. Then
h is a sum of elements one of which is less than ε. Let k1 be this element and
k2 be the sum of the others. Then h = k1 + k2 is in Hε + H . 2

Suppose A + B = H then we must have a(x) + b(y) ≥ 0 for all x, y ∈ X
with A(x), B(y) non-empty. Let a = infA and b = infB. Replacing A, B by
A+G(0,−a), B +G(0,−b) we can assume that the infimum is 0 for both A and
B. Now let X(ε) = {x ∈ X : a(x) ≤ ε} and

Aε =
⋃

x∈X(ε)

A(x).

Then Aε +B contains all the elements of H that are less than ε and as Aε +B =
Aε + B + H we have by the previous lemma that Aε + B = H therefore

Lemma 6 A = Aε for all ε > 0.

To make use of this we need to introduce new idempotents that are derived from
H . For each s ∈ T we let Ls : T → S be the function defined by Ls(t) = L(t)
if t > s and Ls(t) = L(s) if t ≤ s. Let H(s) be the idempotent that is defined
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from Ls just as H was defined from L. One can check that H ⊂ H(s) and
H +H(s) = H(s). Now there is a group homomorphism from GH to GH(s) that
takes A to A+H(s). The elements in A+H(s) = Aε +H(s) are the same as in
A = Aε+H when we are above s+ε. This is true for all ε > 0, so the elements of
A+H(s) are the same as in A when we are above s. As G/L(s) is finite we know
from the previous discussion that A+H(s) = A(x(s))+H(s) for some x(s) in G.
In particular we have that a(x) = 0 and A looks like {z ∈ L(s) + x(s) : z > s}
when we are above s. If we let x be the corresponding function then we have
that A = G(x, 0). Hence

Theorem 1 The group GH is isomorphic to G(L) ⊕ R.

We have the same type of construction for any free abelian group of rank n by
embedding it first in R. Let T be any set of positive real numbers such that
infT = 0. Let S be the set of all subgroups of rank n in G. As before let
L : T → S be an increasing function. Let G(L) be the corresponding inverse
limit. Then G(L) ⊕ R is the group GH as before.

Our construction gives a number of maximal powergroups in a free abelian
group of finite rank but complete classification seems to be very difficult. This
would mean finding all possible idempotents H and we have seen that they can
be quite complicated. The problem of calculating the corresponding powergroup
then adds to the problem. The problem of finding all powergroups related to
a finite abelian group of finite rank seems much simpler. Here we are looking
for those groups that arise as subgroups of some GH . This includes all the sub-
groups of R and thus all torsion free abelian groups of order up to 2ℵ0 . So there
is no restriction on torsion free groups. However in all the examples we have
calculated, the torsion subgroup has rank at most 2. One might ask if this is
always the case?

Remark There is a different way to find many of the groups arising from the
construction applying Proposition 3. Let r be any irrational number and let
F = Z + rZ. Furthermore we take G to be the subgroup mZ + nrZ. Let H
be the set of all positive elements of G. One can prove without much difficulty
that GH is isomorphic to R. As H generates G we then have by Proposition 3
that

FH/GH
∼= F/G ∼= Zn ⊕ Zm.

So FH is an extension of R by Zn ⊕Zm. But a divisible group is always a direct
summand and hence FH = R ⊕ Zn ⊕ Zm.
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