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We characterize the varieties in which all soluble groups are

torsion-by-nilpotent as well as the varieties in which all soluble

groups are locally finite-by-nilpotent.

1. Introduction and main results

Let Be be the variety of groups of exponent dividing e and Nc the variety

of nilpotent groups of class at most c. In addition, we denote by A = N1

the variety of abelian groups and by Ap = A ∩ Bp the variety of elementary

abelian p-groups (where p is a prime). The product of varieties is defined in

the usual sense. In particular, Ad is the variety of soluble groups of derived

length ≤ d. Two varieties will play an important role in this paper: the

variety ApA, defined by the laws [x, y]p = [[x, y], [z, t]] = 1, and the variety

AAp, defined by the laws [xp, yp] = [x, y, zp] = [[x, y], [z, t]] = 1.
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Consider a variety V which does not contain ApA, for any prime p. Groves

[3] showed that for any positive integer d, there are integers c, e such that

V ∩Ad ⊆ NcBe. Afterwards, by using deep results of Zel’manov, it has been

proved in [2] that c and e may be chosen independent of d.

Similarly, if V is a variety which does not contain AAp (for any prime p),

Groves [3] showed that for any d, there are integers c, e such that V ∩ Ad ⊆

BeNc. In this case, we show that c may be chosen independent of d, with an

integer e whose the set of prime divisors is independent of d (if Π is a set of

primes, we say that a positive integer is a Π-number if each prime divisor of

this integer belongs to Π). We do not know whether e can be chosen totally

independent of d.

Theorem 1.1. Let V be a variety of groups. Then the following assertions

are equivalent:

(i) V does not contain AAp (for any prime p).

(ii) There exist a finite set Π of primes and an integer c such that for any

d, we can find a Π-number e satisfying V ∩ Ad ⊆ BeNc.

(iii) Each soluble group in V is torsion-by-nilpotent.

(iv) In each soluble group in V, the elements of finite order form a subgroup.

Now consider a variety V in which the subclass of locally nilpotent groups

forms a variety. It is easy to see that this property is equivalent to the fol-

lowing one: for each integer n, the nilpotency class of n-generated nilpotent

groups of V is bounded (the bound depending on V and n only). This prop-

erty occurs for example in the solution of the restricted Burnside problem,

due to Zel’manov [8, 9], where the key result can be stated like this: in

the variety of groups of exponent dividing a given prime-power, the locally

nilpotent groups form a variety. It turns out that this property is true as

well for the variety of m-Engel groups, namely the variety defined by the
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law [x, y, . . . , y] = 1, where y occurs m times [7, Theorem 2]. That leads

to a natural question: what are the varieties in which the locally nilpotent

groups form a variety? Our next result characterizes in different ways these

varieties.

Theorem 1.2. Let V be a variety of groups. Then the following assertions

are equivalent:

(i) V contains neither AAp nor ApA (for any prime p).

(ii) Each finitely generated soluble group of V is finite-by-nilpotent.

(iii) There exist a function ω, a finite set Π of primes and an integer c such

that, for any n, each n-generated soluble group G ∈ V is an extension

of a finite Π-group of order dividing ω(n) by a nilpotent group of class

≤ c.

(iv) The subclass of locally nilpotent groups of V forms a variety.

Varieties containing neither AAp nor ApA occur already in Groves’ works

[3]. Also note another characteristic property of these varieties: the locally

nilpotent groups of a variety V form a variety if and only if there are constants

c and e such that the class of nilpotent groups of V is included in NcBe∩BeNc

[2].

2. Preliminaries

As usual, in a group G, the left-normed commutator [a1, . . . , an] (ai ∈ G)

of weight n is defined inductively by

[a1, . . . , an] = [a1, . . . , an−1]
−1a−1

n [a1, . . . , an−1]an.

We shall denote by γn(G) (n ≥ 1) the nth term of the lower central series of G.

Recall that this subgroup is generated by the set of left-normed commutators
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of weight n. If A and B are subgroups of G, we write [A, B] for the subgroup

generated by the elements of the form [a, b], with a ∈ A, b ∈ B.

Let V be a variety of groups. We denote by F (V) the relatively free

group in V of countably infinite rank, freely generated by S = {ui,j | i, j =

0, 1, 2, . . .} (for convenience sake, we use a double index to write the elements

of S). It is easy to see that the derived subgroup F (V)′ is generated by the

set R of all the left-normed commutators

[xλ1

1 , . . . , xλh

h ] (h ≥ 2, x1, . . . , xh ∈ S, λ1, . . . , λh = ±1).

It follows from [5, 34.21] that γn(F (V)′) is the normal closure of the set of

commutators of the form

[yµ1

1 , . . . , yµn

n ] (y1, . . . , yn ∈ R, µ1, . . . , µn = ±1).

Therefore, one can easily verify that γn(F (V)′) is generated by the commu-

tators

[yµ1

1 , . . . , yµn

n , xν1

1 , . . . , xνr

r ],

with y1, . . . , yn ∈ R, x1, . . . , xr ∈ S, and µ1, . . . , µn, ν1, . . . , νr = ±1.

In the following, we consider a fixed integer m ≥ 0. Denote by Sm the

set {ui,0 | i = 0, 1, . . . , m} and by Rm the set of elements of the form

[xλ1

1 , . . . , xλh

h ] (h ≥ 2, x1, . . . , xh ∈ S, λ1, . . . , λh = ±1),

such that among the elements x1, . . . , xh, at least one belongs to Sm. Let Hn

be the subgroup of γn(F (V)′) generated by the elements of the form

[yµ1

1 , . . . , yµn

n , xν1

1 , . . . , xνr

r ] (yi ∈ R, xi ∈ S, µi, νi = ±1)

such that at least one element of Sm occurs in this expression. This means

that at least one of the elements x1, . . . , xr belongs to Sm, or at least one of

the elements y1, . . . , yn belongs to Rm. It is clear that Hn is normal in F (V).

Moreover, we have:

Lemma 2.1. Let Φ : F (V) → F (V) be the endomorphism defined by

Φ(ui,j) = 1 if ui,j ∈ Sm and Φ(ui,j) = ui,j otherwise. Then, for any integers

n, n′ ≥ 1, we have:
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(i) Hn = ker Φ ∩ γn(F (V)′).

(ii) [γn(F (V)′), Hn′] ≤ Hn+n′; in particular, [Hn, Hn′] ≤ Hn+n′ (hence

(Hn)n≥1 is a central series of H1).

Proof. (i). Let Kn be the subgroup of γn(F (V)′) generated by the elements

of the form

[yµ1

1 , . . . , yµn

n , xν1

1 , . . . , xνr

r ] (yi ∈ R, xi ∈ S, µi, νi = ±1)

such that no element of Sm occurs in this expression. Clearly, γn(F (V)′) =

HnKn; besides, for any a ∈ Hn (resp. b ∈ Kn), we have Φ(a) = 1 (resp.

Φ(b) = b). Let z be an element in ker Φ ∩ γn(F (V)′). There exist elements

a ∈ Hn, b ∈ Kn such that z = ab; it follows

1 = Φ(z) = Φ(a)Φ(b) = b,

hence z = a ∈ Hn. Thus we have shown the inclusion ker Φ∩γn(F (V)′) ≤ Hn.

Since the converse inclusion is clear, (i) is proved.

(ii). This is an easy consequence of (i) and the well-known inclusion

[γn(F (V)′), γn′(F (V)′)] ≤ γn+n′(F (V)′).

2

Lemma 2.2. Suppose that for some integers c, e ≥ 1, we have V ∩ A2 ⊆

BeNc. Then, for any integer k ≥ 1, we have

(

m
∏

i=0

[ui,0, ui,1, ui,2, . . . , ui,kc]

)ek

∈ Hk+1.

Proof. We prove by induction on the integer t (1 ≤ t ≤ k) that the

element

wt =

(

m
∏

i=0

[ui,0, ui,(k−t)c+1, . . . , ui,kc]

)et
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belongs to Ht+1 (the conclusion is the case t = k). By assumption, F (V)/γ2(F (V)′)

is in BeNc and so

w1 =

(

m
∏

i=0

[ui,0, ui,(k−1)c+1, . . . , ui,kc]

)e

lies in γ2(F (V)′). Besides, if Φ is the endomorphism defined in Lemma 2.1,

we have Φ(w1) = 1. Hence, by Lemma 2.1(i), w1 belongs to H2.

Now suppose that for some t (with 1 < t ≤ k), wt−1 belongs to Ht. Let

Ψ : F (V) → F (V) be the endomorphism defined by

Ψ(ui,0) = [ui,0, ui,(k−t)c+1, . . . , ui,(k−t+1)c]

if 0 ≤ i ≤ m (that is, ui,0 ∈ Sm) and Ψ(ui,j) = ui,j otherwise. We have

wt = Ψ(we
t−1). By the inductive hypothesis, wt−1 is a product of elements of

the form

[yµ1

1 , . . . , yµt

t , xν1

1 , . . . , xνr

r ]±1,

where at least one element of Sm occurs in this commutator. Therefore,

since Ht/Ht+1 is abelian, we
t−1 can be expressed modulo Ht+1 as a product

of elements of the form

[yµ1

1 , . . . , yµt

t , xν1

1 , . . . , xνr

r ]±e,

where at least one element of Sm occurs in this commutator. Moreover, by

using Lemma 2.1(i), it is easy to see that Ψ(Hn) ≤ Hn for any positive integer

n. Consequently, in order to prove that wt belongs to Ht+1, it is enough to

prove that

Ψ ([yµ1

1 , . . . , yµt

t , xν1

1 , . . . , xνr

r ]e)

belongs to Ht+1. We consider two cases.

Case 1. Suppose that at least one of the elements x1, . . . , xr, say xq, belongs

to Sm. Then Ψ(xq) lies in H1. Since [γt(F (V)′), H1] ≤ Ht+1 (Lemma 2.1(ii)),

the element

Ψ
(

[yµ1

1 , . . . , yµt

t , xν1

1 , . . . , xνq

q , . . . , xνr

r ]e
)

= [Ψ(y1)
µ1 , . . . , Ψ(yt)

µt , Ψ(x1)
ν1, . . . , Ψ(xq)

νq , . . . , Ψ(xr)
νr ]e
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belongs to Ht+1.

Case 2. Suppose that none of the elements x1, . . . , xr belongs to Sm. In this

case, there exists an integer q (1 ≤ q ≤ t) such that yq belongs to the set Rm

defined above. This means that yq may be written in the form

yq = [xλ1

1 , . . . , xλp

p , . . . , xλh

h ] (λ1, . . . , λh = ±1),

where xp = ud,0 ∈ Sm (0 ≤ d ≤ m).

Since (Hn)n≥1 is a central series of H1 (Lemma 2.1) and since

Ψ(xp) = [ud,0, ud,(k−t)c+1, . . . , ud,(k−t+1)c]

belongs to H1, it follows from well-known commutator identities (see for

example [6, 5.1.5]) the relations:

Ψ(yq)
e ≡ [Ψ(xλ1

1 ), . . . , Ψ(xλp

p ), . . . , Ψ(xλh

h )]e

≡ [Ψ(xλ1

1 ), . . . , Ψ(xλp

p )e, . . . , Ψ(xλh

h )] modulo H2.

But as we have seen in the case t = 1, we remark that the element

Ψ(xλp

p )e = [ud,0, ud,(k−t)c+1, . . . , ud,(k−t+1)c]
eλp

belongs to H2, and so does Ψ(yq)
e. By using again the commutator identities,

we can write:

Ψ
(

[yµ1

1 , . . . , yµq

q , . . . , yµt

t , xν1

1 , . . . , xνr

r ]e
)

≡ [Ψ(yµ1

1 ), . . . , Ψ(yµq

q ), . . . , Ψ(yµt

t ), Ψ(xν1

1 ), . . . , Ψ(xνr

r )]e

≡ [[Ψ(yµ1

1 ), . . . , Ψ(yµq

q ), . . . , Ψ(yµt

t )]e, Ψ(xν1

1 ), . . . , Ψ(xνr

r )]

≡ [Ψ(yµ1

1 ), . . . , Ψ(yµq

q )e, . . . , Ψ(yµt

t ), Ψ(xν1

1 ), . . . , Ψ(xνr

r )] modulo Ht+1.

Since Ψ(y
µq
q )e belongs to H2, by applying Lemma 2.1(ii), we obtain

Ψ
(

[yµ1

1 , . . . , yµq

q , . . . , yµt

t , xν1

1 , . . . , xνr

r ]e
)

∈ Ht+1,

as required. 2
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Lemma 2.3. Suppose that for some integers c, e ≥ 1, we have V ∩ A2 ⊆

BeNc. Then, for any integer k ≥ 1, we have V ∩ (NkA) ⊆ BekNkc.

Proof. By Lemma 2.2, we have

(

m
∏

i=0

[ui,0, ui,1, ui,2, . . . , ui,kc]

)ek

∈ Hk+1

and so
(

m
∏

i=0

[ui,0, ui,1, ui,2, . . . , ui,kc]

)ek

∈ γk+1(F (V)′)

since Hk+1 is a subgroup of γk+1(F (V)′). But F (V) is freely generated by

S = {ui,j | i, j = 0, 1, 2, . . .} and γk+1(F (V)′) is a fully-invariant subgroup of

F (V). Therefore we have in fact

(

m
∏

i=0

[vi,0, vi,1, vi,2, . . . , vi,kc]

)ek

∈ γk+1(F (V)′)

for all elements vi,j ∈ F (V). Clearly, this implies that F (V)/γk+1(F (V)′)

belongs to BekNkc and so V ∩ (NkA) ⊆ BekNkc. 2

The two next propositions are key results in the proof of Theorem 1.1

and may be of independent interest.

Proposition 2.1. Let V be a variety of groups. Suppose there exist integers

c, e ≥ 1 such that V ∩ A2 ⊆ BeNc. Then, for any integer d ≥ 2, we have

V ∩ Ad ⊆ Be′Nc′, with e′ = e1+c+c2+···+cd−2

and c′ = cd−1.

Proof. It suffices to prove by induction on d that

V ∩ Ad ⊆ Be0
Be1

. . .Bed−2
Ncd−1, with en = ecn

.

The case d = 2 follows from hypothesis of the proposition. Thus suppose

that the result is true for d − 1 (d ≥ 3) and consider a group G ∈ V ∩ Ad.

Since the derived subgroup G′ belongs to V ∩ Ad−1, we have by induction
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G′ ∈ Be0
. . .Bed−3

Ncd−2, and so G ∈ Be0
. . .Bed−3

Ncd−2A. In other words,

G contains a normal subgroup H ∈ Be0
. . .Bed−3

such that G/H ∈ Ncd−2A.

Lemma 2.3 yields the inclusion V ∩ Ncd−2A ⊆ Bed−2
Ncd−1. Consequently,

the quotient G/H belongs to Bed−2
Ncd−1. This implies that G belongs to

Be0
. . .Bed−3

Bed−2
Ncd−1, as required. 2

Proposition 2.1 can be considered as an extension of the well-known fol-

lowing result (see for example [4, 3.30]):

Corollary 2.1. Let V be a variety of groups such that V ∩A2 ⊆ Nc for some

integer c ≥ 1. Then, for any integer d ≥ 2, we have V ∩ Ad ⊆ Nc′, with

c′ = cd−1.

The bound c′ = cd−1 obtained here improves slightly the bound given

in [4, 3.30]. Notice that if V is a variety such that each group in V ∩ A2 is

nilpotent, then there exists necessarily an integer c such that V∩A2 ⊆ Nc (we

can take for c the nilpotency class of the relatively free group of countably

infinite rank in V ∩ A2).

The next lemma is a consequence of [1, Theorem 1].

Lemma 2.4. Let G be a nilpotent group of class k generated by a subset

S ⊆ G. Let e be an integer such that xe = 1 for each product x of at most k

elements of S. Then we have xe = 1 for all x ∈ G.

Proposition 2.2. Let V be a variety of groups. Then the following two

assertions are equivalent:

(i) V does not contain A2.

(ii) There exist a finite set Π of primes and an integer c such that for any

k, we can find a Π-number σ(k) satisfying V ∩ Nk ⊆ Bσ(k)Nc.

Proof. (i)⇒(ii). Since V does not contain A2, there exist a finite set of

primes Π and an integer c such that each nilpotent group of V without non-

trivial Π-element belongs to Nc [2, Corollary 1]. Let k be a positive integer.
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Denote by Γ the relatively free group of rank k(c + 1) in the variety V ∩Nk,

freely generated by {ui,j | i = 1, . . . k, j = 1, . . . , c + 1}. The set H of Π-

elements of Γ is obviously a normal subgroup of Γ and the nilpotency class

of Γ/H is at most c. Consequently, the product

[u1,1, . . . , u1,c+1] × · · · × [uk,1, . . . , uk,c+1]

is a Π-element, of order say σ(k). In particular, in any group G ∈ V ∩ Nk,

we have the relation

([x1,1, . . . , x1,c+1] × · · · × [xk,1, . . . , xk,c+1])
σ(k) = 1

for all xi,j ∈ G (i = 1, . . . k, j = 1, . . . , c + 1}). Since γc+1(G) is nilpotent of

class ≤ k and generated by the elements of the form [y1, . . . , yc+1] (yi ∈ G),

it follows from Lemma 2.4 that γc+1(G)σ(k) = {1}. Hence G ∈ Bσ(k)Nc, as

desired.

(ii)⇒(i). Let p be a prime which is not in the set Π. Then the nilpotency

class of each nilpotent p-group G ∈ V is at most c. Consider the wreath

product G = (Z/pZ) ≀ (Z/pn
Z), where n is an integer such that pn − 1 > c.

Clearly, G is a nilpotent p-group (of class say k) which is in A2; moreover,

we have k > pn − 1 [7, Result 2.2]. If V contains A2, then G belongs to V

and so k ≤ c, a contradiction. Therefore the variety V does not contain A2

and this completes the proof. 2

Remark 2.1. In the precedent statement, we cannot hope replace σ(k)

by a constant independent of k. Indeed, consider for example the variety

V = AA√, where p is a given prime. Evidently, V does not contain A2.

Suppose that there are integers c, e such that V ∩Nk ⊆ BeNc for all integers

k. Then the wreath product Z≀(Z/pZ), which belongs to V, would be in BeNc

since it is residually nilpotent. But this group does not contain a non-trivial

normal torsion subgroup and is not nilpotent, a contradiction.

3. Proof of the theorems
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Proof of Theorem 1.1. (i)⇒(ii). By the result of Groves already mentioned

[3, Theorem C(ii)], there exist two positive integers e1, c1 such that V ∩A2 ⊆

Be1
Nc1. Denote by Π1 the set of primes dividing e1. By Proposition 2.1,

there are functions θ and τ such that each group G ∈ V ∩ Ad belongs to

Bθ(d)Nτ(d) (also note that θ(d) is a Π1-number). Let H be a normal subgroup

of G satisfying H ∈ Bθ(d) and G/H ∈ Nτ(d). Since AAp ⊆ A2, the variety V

does not contain A2. Hence, by Proposition 2.2, there exist a finite set Π2 of

primes and an integer c2 (depending on V only) such that G/H belongs to

Bσ(τ(d))Nc2, where σ(τ(d)) is a Π2-number depending on d and V. It follows

that G belongs to Bθ(d)Bσ(τ(d))Nc2. Now put Π = Π1 ∪ Π2, e = θ(d)σ(τ(d))

and c = c2. Then e is a Π-number and we have V ∩Ad ⊆ BeNc, as required.

(ii)⇒(iii) and (iii)⇒(iv) are clear.

(iv)⇒(i). Suppose that V contains AAp for some prime p. The restricted

wreath product G = Z ≀ (Z/pZ) belongs to AAp and so would be in V. But

G is a metabelian group in which the elements of finite order do not form a

subgroup. Since that contradicts (iv), the implication is proved. 2

To prove Theorem 1.2, we shall use the following result, which is an

immediate consequence of Lemma 2 and Theorem 2 of [2].

Lemma 3.1. Let V be a variety of groups which does not no contain ApA

(for any prime p). Then there is a function ρ such that, for any positive

integer n, the derived length of every n-generated soluble group of V is at

most ρ(n).

Proof of Theorem 1.2. (i)⇒(ii). Let G be a finitely generated soluble

group of a variety V, where V contains neither AAp nor ApA (for any prime

p). Then G is torsion-by-nilpotent by Theorem 1.1. But G is polycyclic since

it is nilpotent-by-finite [2, Theorem 2]. Hence G is finite-by-nilpotent.

(ii)⇒(iii). Suppose that V is a variety whose finitely generated soluble groups

are finite-by-nilpotent. The wreath products Z ≀ (Z/pZ) and (Z/pZ) ≀ Z are

finitely generated soluble groups which belong to AAp and ApA respectively.
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Since these groups are not finite-by-nilpotent, V contains neither AAp nor

ApA. Now Consider the set Π and the integer c given by Theorem 1.1, and

the function ρ given by Lemma 3.1. If n is a positive integer, denote by Γ

the relatively free group of rank n in the variety V ∩ Aρ(n). By Theorem

1.1, Γ contains a normal Π-subgroup H such that G/H ∈ Nc. Moreover, Γ

is polycyclic since it is nilpotent-by-finite [2, Theorem 2]. Consequently, H

is a finite Π-group, and so Γ is an extension of a finite Π-group (of order

say ω(n)) by a nilpotent group of class ≤ c. Since each n-generated soluble

group G ∈ V belongs to V ∩Aρ(n), G is a homomorphic image of Γ, and the

result follows.

(iii)⇒(iv). It suffices to prove that the nilpotency class of every n-generated

nilpotent group G ∈ V is bounded by a function of V and n. Such a group G

is an extension of a finite group of order dividing ω(n) by a nilpotent group

of class ≤ c. Then, if ω(n) = pα1

1 . . . pαm
m is the factorization of ω(n) into a

product of prime numbers, the nilpotency class of G is clearly bounded by

c + α1 + · · ·+ αm.

(iv)⇒(i). If a variety V contains AAp for some prime p, then the restricted

wreath product G = Z ≀ (Z/pZ) (which is in AAp) belongs to V. Since

the group G is finitely generated, residually nilpotent but is not nilpotent,

the class of locally nilpotent groups of V is not a variety. We obtain the

same conclusion when V contains ApA, by considering the group (Z/pZ) ≀Z.

Therefore, if the class of locally nilpotent groups of V is a variety, then V

contains neither AAp nor ApA. 2
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