ON VARIETIES IN WHICH SOLUBLE GROUPS ARE TORSION-BY-NILPOTENT

GÉRARD ENDIMIONI
C.M.I., Université de Provence, UMR-CNRS 6632
39, rue F. Joliot-Curie, 13453 Marseille Cedex 13, France
E-mail: endimion@gyptis.univ-mrs.fr
GUNNAR TRAUSTASON
Centre for Mathematical Sciences, Lund University Box 118, SE-221 00 Lund, Sweden
E-mail: gt@maths.lth.se

Abstract

2000 Mathematics Subject Classification: 20E10, 20F18. We characterize the varieties in which all soluble groups are torsion-by-nilpotent as well as the varieties in which all soluble groups are locally finite-by-nilpotent.

1. Introduction and main results

Let \mathcal{B}_{e} be the variety of groups of exponent dividing e and \mathcal{N}_{c} the variety of nilpotent groups of class at most c. In addition, we denote by $\mathcal{A}=\mathcal{N}_{1}$ the variety of abelian groups and by $\mathcal{A}_{p}=\mathcal{A} \cap \mathcal{B}_{p}$ the variety of elementary abelian p-groups (where p is a prime). The product of varieties is defined in the usual sense. In particular, \mathcal{A}^{d} is the variety of soluble groups of derived length $\leq d$. Two varieties will play an important role in this paper: the variety $\mathcal{A}_{p} \mathcal{A}$, defined by the laws $[x, y]^{p}=[[x, y],[z, t]]=1$, and the variety $\mathcal{A} \mathcal{A}_{p}$, defined by the laws $\left[x^{p}, y^{p}\right]=\left[x, y, z^{p}\right]=[[x, y],[z, t]]=1$.

Consider a variety \mathcal{V} which does not contain $\mathcal{A}_{p} \mathcal{A}$, for any prime p. Groves [3] showed that for any positive integer d, there are integers c, e such that $\mathcal{V} \cap \mathcal{A}^{d} \subseteq \mathcal{N}_{c} \mathcal{B}_{e}$. Afterwards, by using deep results of Zel'manov, it has been proved in [2] that c and e may be chosen independent of d.

Similarly, if \mathcal{V} is a variety which does not contain $\mathcal{A} \mathcal{A}_{p}$ (for any prime p), Groves [3] showed that for any d, there are integers c, e such that $\mathcal{V} \cap \mathcal{A}^{d} \subseteq$ $\mathcal{B}_{e} \mathcal{N}_{c}$. In this case, we show that c may be chosen independent of d, with an integer e whose the set of prime divisors is independent of d (if Π is a set of primes, we say that a positive integer is a Π-number if each prime divisor of this integer belongs to Π). We do not know whether e can be chosen totally independent of d.

Theorem 1.1. Let \mathcal{V} be a variety of groups. Then the following assertions are equivalent:
(i) \mathcal{V} does not contain $\mathcal{A} \mathcal{A}_{p}$ (for any prime p).
(ii) There exist a finite set Π of primes and an integer c such that for any d, we can find a Π-number e satisfying $\mathcal{V} \cap \mathcal{A}^{d} \subseteq \mathcal{B}_{e} \mathcal{N}_{c}$.
(iii) Each soluble group in \mathcal{V} is torsion-by-nilpotent.
(iv) In each soluble group in \mathcal{V}, the elements of finite order form a subgroup.

Now consider a variety \mathcal{V} in which the subclass of locally nilpotent groups forms a variety. It is easy to see that this property is equivalent to the following one: for each integer n, the nilpotency class of n-generated nilpotent groups of \mathcal{V} is bounded (the bound depending on \mathcal{V} and n only). This property occurs for example in the solution of the restricted Burnside problem, due to Zel'manov [8, 9], where the key result can be stated like this: in the variety of groups of exponent dividing a given prime-power, the locally nilpotent groups form a variety. It turns out that this property is true as well for the variety of m-Engel groups, namely the variety defined by the
law $[x, y, \ldots, y]=1$, where y occurs m times [7, Theorem 2]. That leads to a natural question: what are the varieties in which the locally nilpotent groups form a variety? Our next result characterizes in different ways these varieties.

Theorem 1.2. Let \mathcal{V} be a variety of groups. Then the following assertions are equivalent:
(i) \mathcal{V} contains neither $\mathcal{A} \mathcal{A}_{p}$ nor $\mathcal{A}_{p} \mathcal{A}$ (for any prime p).
(ii) Each finitely generated soluble group of \mathcal{V} is finite-by-nilpotent.
(iii) There exist a function ω, a finite set Π of primes and an integer c such that, for any n, each n-generated soluble group $G \in \mathcal{V}$ is an extension of a finite Π-group of order dividing $\omega(n)$ by a nilpotent group of class $\leq c$.
(iv) The subclass of locally nilpotent groups of \mathcal{V} forms a variety.

Varieties containing neither $\mathcal{A} \mathcal{A}_{p}$ nor $\mathcal{A}_{p} \mathcal{A}$ occur already in Groves' works [3]. Also note another characteristic property of these varieties: the locally nilpotent groups of a variety \mathcal{V} form a variety if and only if there are constants c and e such that the class of nilpotent groups of \mathcal{V} is included in $\mathcal{N}_{c} \mathcal{B}_{e} \cap \mathcal{B}_{e} \mathcal{N}_{c}$ [2].

2. Preliminaries

As usual, in a group G, the left-normed commutator $\left[a_{1}, \ldots, a_{n}\right]\left(a_{i} \in G\right)$ of weight n is defined inductively by

$$
\left[a_{1}, \ldots, a_{n}\right]=\left[a_{1}, \ldots, a_{n-1}\right]^{-1} a_{n}^{-1}\left[a_{1}, \ldots, a_{n-1}\right] a_{n}
$$

We shall denote by $\gamma_{n}(G)(n \geq 1)$ the nth term of the lower central series of G. Recall that this subgroup is generated by the set of left-normed commutators
of weight n. If A and B are subgroups of G, we write $[A, B]$ for the subgroup generated by the elements of the form $[a, b]$, with $a \in A, b \in B$.

Let \mathcal{V} be a variety of groups. We denote by $F(\mathcal{V})$ the relatively free group in \mathcal{V} of countably infinite rank, freely generated by $S=\left\{u_{i, j} \mid i, j=\right.$ $0,1,2, \ldots\}$ (for convenience sake, we use a double index to write the elements of S). It is easy to see that the derived subgroup $F(\mathcal{V})^{\prime}$ is generated by the set R of all the left-normed commutators

$$
\left[x_{1}^{\lambda_{1}}, \ldots, x_{h}^{\lambda_{h}}\right] \quad\left(h \geq 2, x_{1}, \ldots, x_{h} \in S, \lambda_{1}, \ldots, \lambda_{h}= \pm 1\right) .
$$

It follows from $[5,34.21]$ that $\gamma_{n}\left(F(\mathcal{V})^{\prime}\right)$ is the normal closure of the set of commutators of the form

$$
\left[y_{1}^{\mu_{1}}, \ldots, y_{n}^{\mu_{n}}\right] \quad\left(y_{1}, \ldots, y_{n} \in R, \mu_{1}, \ldots, \mu_{n}= \pm 1\right)
$$

Therefore, one can easily verify that $\gamma_{n}\left(F(\mathcal{V})^{\prime}\right)$ is generated by the commutators

$$
\left[y_{1}^{\mu_{1}}, \ldots, y_{n}^{\mu_{n}}, x_{1}^{\nu_{1}}, \ldots, x_{r}^{\nu_{r}}\right]
$$

with $y_{1}, \ldots, y_{n} \in R, x_{1}, \ldots, x_{r} \in S$, and $\mu_{1}, \ldots, \mu_{n}, \nu_{1}, \ldots, \nu_{r}= \pm 1$.
In the following, we consider a fixed integer $m \geq 0$. Denote by S_{m} the set $\left\{u_{i, 0} \mid i=0,1, \ldots, m\right\}$ and by R_{m} the set of elements of the form

$$
\left[x_{1}^{\lambda_{1}}, \ldots, x_{h}^{\lambda_{h}}\right] \quad\left(h \geq 2, x_{1}, \ldots, x_{h} \in S, \lambda_{1}, \ldots, \lambda_{h}= \pm 1\right)
$$

such that among the elements x_{1}, \ldots, x_{h}, at least one belongs to S_{m}. Let H_{n} be the subgroup of $\gamma_{n}\left(F(\mathcal{V})^{\prime}\right)$ generated by the elements of the form

$$
\left[y_{1}^{\mu_{1}}, \ldots, y_{n}^{\mu_{n}}, x_{1}^{\nu_{1}}, \ldots, x_{r}^{\nu_{r}}\right] \quad\left(y_{i} \in R, x_{i} \in S, \mu_{i}, \nu_{i}= \pm 1\right)
$$

such that at least one element of S_{m} occurs in this expression. This means that at least one of the elements x_{1}, \ldots, x_{r} belongs to S_{m}, or at least one of the elements y_{1}, \ldots, y_{n} belongs to R_{m}. It is clear that H_{n} is normal in $F(\mathcal{V})$. Moreover, we have:

Lemma 2.1. Let $\Phi: F(\mathcal{V}) \rightarrow F(\mathcal{V})$ be the endomorphism defined by $\Phi\left(u_{i, j}\right)=1$ if $u_{i, j} \in S_{m}$ and $\Phi\left(u_{i, j}\right)=u_{i, j}$ otherwise. Then, for any integers $n, n^{\prime} \geq 1$, we have:
(i) $H_{n}=\operatorname{ker} \Phi \cap \gamma_{n}\left(F(\mathcal{V})^{\prime}\right)$.
(ii) $\left[\gamma_{n}\left(F(\mathcal{V})^{\prime}\right), H_{n^{\prime}}\right] \leq H_{n+n^{\prime}}$; in particular, $\left[H_{n}, H_{n^{\prime}}\right] \leq H_{n+n^{\prime}}$ (hence $\left(H_{n}\right)_{n \geq 1}$ is a central series of $\left.H_{1}\right)$.

Proof. (i). Let K_{n} be the subgroup of $\gamma_{n}\left(F(\mathcal{V})^{\prime}\right)$ generated by the elements of the form

$$
\left[y_{1}^{\mu_{1}}, \ldots, y_{n}^{\mu_{n}}, x_{1}^{\nu_{1}}, \ldots, x_{r}^{\nu_{r}}\right] \quad\left(y_{i} \in R, x_{i} \in S, \mu_{i}, \nu_{i}= \pm 1\right)
$$

such that no element of S_{m} occurs in this expression. Clearly, $\gamma_{n}\left(F(\mathcal{V})^{\prime}\right)=$ $H_{n} K_{n}$; besides, for any $a \in H_{n}$ (resp. $b \in K_{n}$), we have $\Phi(a)=1$ (resp. $\Phi(b)=b)$. Let z be an element in $\operatorname{ker} \Phi \cap \gamma_{n}\left(F(\mathcal{V})^{\prime}\right)$. There exist elements $a \in H_{n}, b \in K_{n}$ such that $z=a b$; it follows

$$
1=\Phi(z)=\Phi(a) \Phi(b)=b
$$

hence $z=a \in H_{n}$. Thus we have shown the inclusion $\operatorname{ker} \Phi \cap \gamma_{n}\left(F(\mathcal{V})^{\prime}\right) \leq H_{n}$. Since the converse inclusion is clear, (i) is proved.
(ii). This is an easy consequence of (i) and the well-known inclusion

$$
\left[\gamma_{n}\left(F(\mathcal{V})^{\prime}\right), \gamma_{n^{\prime}}\left(F(\mathcal{V})^{\prime}\right)\right] \leq \gamma_{n+n^{\prime}}\left(F(\mathcal{V})^{\prime}\right)
$$

Lemma 2.2. Suppose that for some integers $c, e \geq 1$, we have $\mathcal{V} \cap \mathcal{A}^{2} \subseteq$ $\mathcal{B}_{e} \mathcal{N}_{c}$. Then, for any integer $k \geq 1$, we have

$$
\left(\prod_{i=0}^{m}\left[u_{i, 0}, u_{i, 1}, u_{i, 2}, \ldots, u_{i, k c}\right]\right)^{e^{k}} \in H_{k+1}
$$

Proof. We prove by induction on the integer $t(1 \leq t \leq k)$ that the element

$$
w_{t}=\left(\prod_{i=0}^{m}\left[u_{i, 0}, u_{i,(k-t) c+1}, \ldots, u_{i, k c}\right]\right)^{e^{t}}
$$

belongs to H_{t+1} (the conclusion is the case $t=k$). By assumption, $F(\mathcal{V}) / \gamma_{2}\left(F(\mathcal{V})^{\prime}\right)$ is in $\mathcal{B}_{e} \mathcal{N}_{c}$ and so

$$
w_{1}=\left(\prod_{i=0}^{m}\left[u_{i, 0}, u_{i,(k-1) c+1}, \ldots, u_{i, k c}\right]\right)^{e}
$$

lies in $\gamma_{2}\left(F(\mathcal{V})^{\prime}\right)$. Besides, if Φ is the endomorphism defined in Lemma 2.1, we have $\Phi\left(w_{1}\right)=1$. Hence, by Lemma 2.1(i), w_{1} belongs to H_{2}.

Now suppose that for some t (with $1<t \leq k$), w_{t-1} belongs to H_{t}. Let $\Psi: F(\mathcal{V}) \rightarrow F(\mathcal{V})$ be the endomorphism defined by

$$
\Psi\left(u_{i, 0}\right)=\left[u_{i, 0}, u_{i,(k-t) c+1}, \ldots, u_{i,(k-t+1) c}\right]
$$

if $0 \leq i \leq m$ (that is, $u_{i, 0} \in S_{m}$) and $\Psi\left(u_{i, j}\right)=u_{i, j}$ otherwise. We have $w_{t}=\Psi\left(w_{t-1}^{e}\right)$. By the inductive hypothesis, w_{t-1} is a product of elements of the form

$$
\left[y_{1}^{\mu_{1}}, \ldots, y_{t}^{\mu_{t}}, x_{1}^{\nu_{1}}, \ldots, x_{r}^{\nu_{r}}\right]^{ \pm 1}
$$

where at least one element of S_{m} occurs in this commutator. Therefore, since H_{t} / H_{t+1} is abelian, w_{t-1}^{e} can be expressed modulo H_{t+1} as a product of elements of the form

$$
\left[y_{1}^{\mu_{1}}, \ldots, y_{t}^{\mu_{t}}, x_{1}^{\nu_{1}}, \ldots, x_{r}^{\nu_{r}}\right]^{ \pm e}
$$

where at least one element of S_{m} occurs in this commutator. Moreover, by using Lemma 2.1(i), it is easy to see that $\Psi\left(H_{n}\right) \leq H_{n}$ for any positive integer n. Consequently, in order to prove that w_{t} belongs to H_{t+1}, it is enough to prove that

$$
\Psi\left(\left[y_{1}^{\mu_{1}}, \ldots, y_{t}^{\mu_{t}}, x_{1}^{\nu_{1}}, \ldots, x_{r}^{\nu_{r}}\right]^{e}\right)
$$

belongs to H_{t+1}. We consider two cases.
Case 1. Suppose that at least one of the elements x_{1}, \ldots, x_{r}, say x_{q}, belongs to S_{m}. Then $\Psi\left(x_{q}\right)$ lies in H_{1}. Since $\left[\gamma_{t}\left(F(\mathcal{V})^{\prime}\right), H_{1}\right] \leq H_{t+1}$ (Lemma 2.1(ii)), the element

$$
\begin{aligned}
& \Psi\left(\left[y_{1}^{\mu_{1}}, \ldots, y_{t}^{\mu_{t}}, x_{1}^{\nu_{1}}, \ldots, x_{q}^{\nu_{q}}, \ldots, x_{r}^{\nu_{r}}\right]^{e}\right) \\
= & {\left[\Psi\left(y_{1}\right)^{\mu_{1}}, \ldots, \Psi\left(y_{t}\right)^{\mu_{t}}, \Psi\left(x_{1}\right)^{\nu_{1}}, \ldots, \Psi\left(x_{q}\right)^{\nu_{q}}, \ldots, \Psi\left(x_{r}\right)^{\nu_{r}}\right]^{e} }
\end{aligned}
$$

belongs to H_{t+1}.
Case 2. Suppose that none of the elements x_{1}, \ldots, x_{r} belongs to S_{m}. In this case, there exists an integer $q(1 \leq q \leq t)$ such that y_{q} belongs to the set R_{m} defined above. This means that y_{q} may be written in the form

$$
y_{q}=\left[x_{1}^{\lambda_{1}}, \ldots, x_{p}^{\lambda_{p}}, \ldots, x_{h}^{\lambda_{h}}\right] \quad\left(\lambda_{1}, \ldots, \lambda_{h}= \pm 1\right)
$$

where $x_{p}=u_{d, 0} \in S_{m}(0 \leq d \leq m)$.
Since $\left(H_{n}\right)_{n \geq 1}$ is a central series of H_{1} (Lemma 2.1) and since

$$
\Psi\left(x_{p}\right)=\left[u_{d, 0}, u_{d,(k-t) c+1}, \ldots, u_{d,(k-t+1) c}\right]
$$

belongs to H_{1}, it follows from well-known commutator identities (see for example $[6,5.1 .5]$) the relations:

$$
\begin{aligned}
\Psi\left(y_{q}\right)^{e} & \equiv\left[\Psi\left(x_{1}^{\lambda_{1}}\right), \ldots, \Psi\left(x_{p}^{\lambda_{p}}\right), \ldots, \Psi\left(x_{h}^{\lambda_{h}}\right)\right]^{e} \\
& \equiv\left[\Psi\left(x_{1}^{\lambda_{1}}\right), \ldots, \Psi\left(x_{p}^{\lambda_{p}}\right)^{e}, \ldots, \Psi\left(x_{h}^{\lambda_{h}}\right)\right] \text { modulo } H_{2} .
\end{aligned}
$$

But as we have seen in the case $t=1$, we remark that the element

$$
\left.\Psi\left(x_{p}^{\lambda_{p}}\right)^{e}=\left[u_{d, 0}, u_{d,(k-t) c+1}, \ldots, u_{d,(k-t+1) c}\right]\right]^{e \lambda_{p}}
$$

belongs to H_{2}, and so does $\Psi\left(y_{q}\right)^{e}$. By using again the commutator identities, we can write:

$$
\begin{aligned}
& \Psi\left(\left[y_{1}^{\mu_{1}}, \ldots, y_{q}^{\mu_{q}}, \ldots, y_{t}^{\mu_{t}}, x_{1}^{\nu_{1}}, \ldots, x_{r}^{\nu_{r}}\right]^{e}\right) \\
\equiv & {\left[\Psi\left(y_{1}^{\mu_{1}}\right), \ldots, \Psi\left(y_{q}^{\mu_{q}}\right), \ldots, \Psi\left(y_{t}^{\mu_{t}}\right), \Psi\left(x_{1}^{\nu_{1}}\right), \ldots, \Psi\left(x_{r}^{\nu_{r}}\right)\right]^{e} } \\
\equiv & {\left[\left[\Psi\left(y_{1}^{\mu_{1}}\right), \ldots, \Psi\left(y_{q}^{\mu_{q}}\right), \ldots, \Psi\left(y_{t}^{\mu_{t}}\right)\right]^{e}, \Psi\left(x_{1}^{\nu_{1}}\right), \ldots, \Psi\left(x_{r}^{\nu_{r}}\right)\right] } \\
\equiv & {\left[\Psi\left(y_{1}^{\mu_{1}}\right), \ldots, \Psi\left(y_{q}^{\mu_{q}}\right)^{e}, \ldots, \Psi\left(y_{t}^{\mu_{t}}\right), \Psi\left(x_{1}^{\nu_{1}}\right), \ldots, \Psi\left(x_{r}^{\nu_{r}}\right)\right] \text { modulo } H_{t+1} . }
\end{aligned}
$$

Since $\Psi\left(y_{q}^{\mu_{q}}\right)^{e}$ belongs to H_{2}, by applying Lemma 2.1(ii), we obtain

$$
\Psi\left(\left[y_{1}^{\mu_{1}}, \ldots, y_{q}^{\mu_{q}}, \ldots, y_{t}^{\mu_{t}}, x_{1}^{\nu_{1}}, \ldots, x_{r}^{\nu_{r}}\right]^{e}\right) \in H_{t+1}
$$

as required.

Lemma 2.3. Suppose that for some integers $c, e \geq 1$, we have $\mathcal{V} \cap \mathcal{A}^{2} \subseteq$ $\mathcal{B}_{e} \mathcal{N}_{c}$. Then, for any integer $k \geq 1$, we have $\mathcal{V} \cap\left(\mathcal{N}_{k} \mathcal{A}\right) \subseteq \mathcal{B}_{e^{k}} \mathcal{N}_{k c}$.

Proof. By Lemma 2.2, we have

$$
\left(\prod_{i=0}^{m}\left[u_{i, 0}, u_{i, 1}, u_{i, 2}, \ldots, u_{i, k c}\right]\right)^{e^{k}} \in H_{k+1}
$$

and so

$$
\left(\prod_{i=0}^{m}\left[u_{i, 0}, u_{i, 1}, u_{i, 2}, \ldots, u_{i, k c}\right]\right)^{e^{k}} \in \gamma_{k+1}\left(F(\mathcal{V})^{\prime}\right)
$$

since H_{k+1} is a subgroup of $\gamma_{k+1}\left(F(\mathcal{V})^{\prime}\right)$. But $F(\mathcal{V})$ is freely generated by $S=\left\{u_{i, j} \mid i, j=0,1,2, \ldots\right\}$ and $\gamma_{k+1}\left(F(\mathcal{V})^{\prime}\right)$ is a fully-invariant subgroup of $F(\mathcal{V})$. Therefore we have in fact

$$
\left(\prod_{i=0}^{m}\left[v_{i, 0}, v_{i, 1}, v_{i, 2}, \ldots, v_{i, k c}\right]\right)^{e^{k}} \in \gamma_{k+1}\left(F(\mathcal{V})^{\prime}\right)
$$

for all elements $v_{i, j} \in F(\mathcal{V})$. Clearly, this implies that $F(\mathcal{V}) / \gamma_{k+1}\left(F(\mathcal{V})^{\prime}\right)$ belongs to $\mathcal{B}_{e^{k}} \mathcal{N}_{k c}$ and so $\mathcal{V} \cap\left(\mathcal{N}_{k} \mathcal{A}\right) \subseteq \mathcal{B}_{e^{k}} \mathcal{N}_{k c}$.

The two next propositions are key results in the proof of Theorem 1.1 and may be of independent interest.

Proposition 2.1. Let \mathcal{V} be a variety of groups. Suppose there exist integers $c, e \geq 1$ such that $\mathcal{V} \cap \mathcal{A}^{2} \subseteq \mathcal{B}_{e} \mathcal{N}_{c}$. Then, for any integer $d \geq 2$, we have $\mathcal{V} \cap \mathcal{A}^{d} \subseteq \mathcal{B}_{e^{\prime}} \mathcal{N}_{c^{\prime}}$, with $e^{\prime}=e^{1+c+c^{2}+\cdots+c^{d-2}}$ and $c^{\prime}=c^{d-1}$.

Proof. It suffices to prove by induction on d that

$$
\mathcal{V} \cap \mathcal{A}^{d} \subseteq \mathcal{B}_{e_{0}} \mathcal{B}_{e_{1}} \ldots \mathcal{B}_{e_{d-2}} \mathcal{N}_{c^{d-1}}, \text { with } e_{n}=e^{c^{n}}
$$

The case $d=2$ follows from hypothesis of the proposition. Thus suppose that the result is true for $d-1(d \geq 3)$ and consider a group $G \in \mathcal{V} \cap \mathcal{A}^{d}$. Since the derived subgroup G^{\prime} belongs to $\mathcal{V} \cap \mathcal{A}^{d-1}$, we have by induction
$G^{\prime} \in \mathcal{B}_{e_{0}} \ldots \mathcal{B}_{e_{d-3}} \mathcal{N}_{c^{d-2}}$, and so $G \in \mathcal{B}_{e_{0}} \ldots \mathcal{B}_{e_{d-3}} \mathcal{N}_{c^{d-2}} \mathcal{A}$. In other words, G contains a normal subgroup $H \in \mathcal{B}_{e_{0}} \ldots \mathcal{B}_{e_{d-3}}$ such that $G / H \in \mathcal{N}_{c^{d-2}} \mathcal{A}$. Lemma 2.3 yields the inclusion $\mathcal{V} \cap \mathcal{N}_{c^{d-2}} \mathcal{A} \subseteq \mathcal{B}_{e_{d-2}} \mathcal{N}_{c^{d-1}}$. Consequently, the quotient G / H belongs to $\mathcal{B}_{e_{d-2}} \mathcal{N}_{c^{d-1}}$. This implies that G belongs to $\mathcal{B}_{e_{0}} \ldots \mathcal{B}_{e_{d-3}} \mathcal{B}_{e_{d-2}} \mathcal{N}_{c^{d-1}}$, as required.

Proposition 2.1 can be considered as an extension of the well-known following result (see for example [4, 3.30]):

Corollary 2.1. Let \mathcal{V} be a variety of groups such that $\mathcal{V} \cap \mathcal{A}^{2} \subseteq \mathcal{N}_{c}$ for some integer $c \geq 1$. Then, for any integer $d \geq 2$, we have $\mathcal{V} \cap \mathcal{A}^{d} \subseteq \mathcal{N}_{c^{\prime}}$, with $c^{\prime}=c^{d-1}$.

The bound $c^{\prime}=c^{d-1}$ obtained here improves slightly the bound given in [4, 3.30]. Notice that if \mathcal{V} is a variety such that each group in $\mathcal{V} \cap \mathcal{A}^{2}$ is nilpotent, then there exists necessarily an integer c such that $\mathcal{V} \cap \mathcal{A}^{2} \subseteq \mathcal{N}_{c}$ (we can take for c the nilpotency class of the relatively free group of countably infinite rank in $\left.\mathcal{V} \cap \mathcal{A}^{2}\right)$.

The next lemma is a consequence of [1, Theorem 1].

Lemma 2.4. Let G be a nilpotent group of class k generated by a subset $S \subseteq G$. Let e be an integer such that $x^{e}=1$ for each product x of at most k elements of S. Then we have $x^{e}=1$ for all $x \in G$.

Proposition 2.2. Let \mathcal{V} be a variety of groups. Then the following two assertions are equivalent:
(i) \mathcal{V} does not contain \mathcal{A}^{2}.
(ii) There exist a finite set Π of primes and an integer c such that for any k, we can find a Π-number $\sigma(k)$ satisfying $\mathcal{V} \cap \mathcal{N}_{k} \subseteq \mathcal{B}_{\sigma(k)} \mathcal{N}_{c}$.

Proof. (i) \Rightarrow (ii). Since \mathcal{V} does not contain \mathcal{A}^{2}, there exist a finite set of primes Π and an integer c such that each nilpotent group of \mathcal{V} without nontrivial Π-element belongs to \mathcal{N}_{c} [2, Corollary 1]. Let k be a positive integer.

Denote by Γ the relatively free group of rank $k(c+1)$ in the variety $\mathcal{V} \cap \mathcal{N}_{k}$, freely generated by $\left\{u_{i, j} \mid i=1, \ldots k, j=1, \ldots, c+1\right\}$. The set H of Π elements of Γ is obviously a normal subgroup of Γ and the nilpotency class of Γ / H is at most c. Consequently, the product

$$
\left[u_{1,1}, \ldots, u_{1, c+1}\right] \times \cdots \times\left[u_{k, 1}, \ldots, u_{k, c+1}\right]
$$

is a Π-element, of order say $\sigma(k)$. In particular, in any group $G \in \mathcal{V} \cap \mathcal{N}_{k}$, we have the relation

$$
\left(\left[x_{1,1}, \ldots, x_{1, c+1}\right] \times \cdots \times\left[x_{k, 1}, \ldots, x_{k, c+1}\right]\right)^{\sigma(k)}=1
$$

for all $\left.x_{i, j} \in G(i=1, \ldots k, j=1, \ldots, c+1\}\right)$. Since $\gamma_{c+1}(G)$ is nilpotent of class $\leq k$ and generated by the elements of the form $\left[y_{1}, \ldots, y_{c+1}\right]\left(y_{i} \in G\right)$, it follows from Lemma 2.4 that $\gamma_{c+1}(G)^{\sigma(k)}=\{1\}$. Hence $G \in \mathcal{B}_{\sigma(k)} \mathcal{N}_{c}$, as desired.
$(\mathrm{ii}) \Rightarrow(\mathrm{i})$. Let p be a prime which is not in the set Π. Then the nilpotency class of each nilpotent p-group $G \in \mathcal{V}$ is at most c. Consider the wreath product $G=(\mathbb{Z} / p \mathbb{Z}) 乙\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$, where n is an integer such that $p^{n}-1>c$. Clearly, G is a nilpotent p-group (of class say k) which is in \mathcal{A}^{2}; moreover, we have $k>p^{n}-1\left[7\right.$, Result 2.2]. If \mathcal{V} contains \mathcal{A}^{2}, then G belongs to \mathcal{V} and so $k \leq c$, a contradiction. Therefore the variety \mathcal{V} does not contain \mathcal{A}^{2} and this completes the proof.

Remark 2.1. In the precedent statement, we cannot hope replace $\sigma(k)$ by a constant independent of k. Indeed, consider for example the variety $\mathcal{V}=\mathcal{A A}_{\mathcal{V}}$, where p is a given prime. Evidently, \mathcal{V} does not contain \mathcal{A}^{2}. Suppose that there are integers c, e such that $\mathcal{V} \cap \mathcal{N}_{k} \subseteq \mathcal{B}_{e} \mathcal{N}_{c}$ for all integers k. Then the wreath product $\mathbb{Z} \ell(\mathbb{Z} / p \mathbb{Z})$, which belongs to \mathcal{V}, would be in $\mathcal{B}_{e} \mathcal{N}_{c}$ since it is residually nilpotent. But this group does not contain a non-trivial normal torsion subgroup and is not nilpotent, a contradiction.

3. Proof of the theorems

Proof of Theorem 1.1. (i) \Rightarrow (ii). By the result of Groves already mentioned [3, Theorem C(ii)], there exist two positive integers e_{1}, c_{1} such that $\mathcal{V} \cap \mathcal{A}^{2} \subseteq$ $\mathcal{B}_{e_{1}} \mathcal{N}_{c_{1}}$. Denote by Π_{1} the set of primes dividing e_{1}. By Proposition 2.1, there are functions θ and τ such that each group $G \in \mathcal{V} \cap \mathcal{A}^{d}$ belongs to $\mathcal{B}_{\theta(d)} \mathcal{N}_{\tau(d)}$ (also note that $\theta(d)$ is a Π_{1}-number). Let H be a normal subgroup of G satisfying $H \in \mathcal{B}_{\theta(d)}$ and $G / H \in \mathcal{N}_{\tau(d)}$. Since $\mathcal{A}_{p} \subseteq \mathcal{A}^{2}$, the variety \mathcal{V} does not contain \mathcal{A}^{2}. Hence, by Proposition 2.2, there exist a finite set Π_{2} of primes and an integer c_{2} (depending on \mathcal{V} only) such that G / H belongs to $\mathcal{B}_{\sigma(\tau(d))} \mathcal{N}_{c_{2}}$, where $\sigma(\tau(d))$ is a Π_{2}-number depending on d and \mathcal{V}. It follows that G belongs to $\mathcal{B}_{\theta(d)} \mathcal{B}_{\sigma(\tau(d))} \mathcal{N}_{c_{2}}$. Now put $\Pi=\Pi_{1} \cup \Pi_{2}$, $e=\theta(d) \sigma(\tau(d))$ and $c=c_{2}$. Then e is a Π-number and we have $\mathcal{V} \cap \mathcal{A}^{d} \subseteq \mathcal{B}_{e} \mathcal{N}_{c}$, as required. (ii) \Rightarrow (iii) and (iii) \Rightarrow (iv) are clear.
(iv) \Rightarrow (i). Suppose that \mathcal{V} contains $\mathcal{A} \mathcal{A}_{p}$ for some prime p. The restricted wreath product $G=\mathbb{Z} \imath(\mathbb{Z} / p \mathbb{Z})$ belongs to $\mathcal{A} \mathcal{A}_{p}$ and so would be in \mathcal{V}. But G is a metabelian group in which the elements of finite order do not form a subgroup. Since that contradicts (iv), the implication is proved.

To prove Theorem 1.2, we shall use the following result, which is an immediate consequence of Lemma 2 and Theorem 2 of [2].

Lemma 3.1. Let \mathcal{V} be a variety of groups which does not no contain $\mathcal{A}_{p} \mathcal{A}$ (for any prime p). Then there is a function ρ such that, for any positive integer n, the derived length of every n-generated soluble group of \mathcal{V} is at most $\rho(n)$.

Proof of Theorem 1.2. (i) \Rightarrow (ii). Let G be a finitely generated soluble group of a variety \mathcal{V}, where \mathcal{V} contains neither $\mathcal{A} \mathcal{A}_{p}$ nor $\mathcal{A}_{p} \mathcal{A}$ (for any prime $p)$. Then G is torsion-by-nilpotent by Theorem 1.1. But G is polycyclic since it is nilpotent-by-finite [2, Theorem 2]. Hence G is finite-by-nilpotent.
$($ ii $) \Rightarrow$ (iii). Suppose that \mathcal{V} is a variety whose finitely generated soluble groups are finite-by-nilpotent. The wreath products $\mathbb{Z} \imath(\mathbb{Z} / p \mathbb{Z})$ and $(\mathbb{Z} / p \mathbb{Z}) \imath \mathbb{Z}$ are finitely generated soluble groups which belong to $\mathcal{A} \mathcal{A}_{p}$ and $\mathcal{A}_{p} \mathcal{A}$ respectively.

Since these groups are not finite-by-nilpotent, \mathcal{V} contains neither $\mathcal{A} \mathcal{A}_{p}$ nor $\mathcal{A}_{p} \mathcal{A}$. Now Consider the set Π and the integer c given by Theorem 1.1, and the function ρ given by Lemma 3.1. If n is a positive integer, denote by Γ the relatively free group of rank n in the variety $\mathcal{V} \cap \mathcal{A}^{\rho(n)}$. By Theorem 1.1, Γ contains a normal Π-subgroup H such that $G / H \in \mathcal{N}_{c}$. Moreover, Γ is polycyclic since it is nilpotent-by-finite [2, Theorem 2]. Consequently, H is a finite Π-group, and so Γ is an extension of a finite Π-group (of order say $\omega(n)$) by a nilpotent group of class $\leq c$. Since each n-generated soluble group $G \in \mathcal{V}$ belongs to $\mathcal{V} \cap \mathcal{A}^{\rho(n)}, G$ is a homomorphic image of Γ, and the result follows.
(iii) \Rightarrow (iv). It suffices to prove that the nilpotency class of every n-generated nilpotent group $G \in \mathcal{V}$ is bounded by a function of \mathcal{V} and n. Such a group G is an extension of a finite group of order dividing $\omega(n)$ by a nilpotent group of class $\leq c$. Then, if $\omega(n)=p_{1}^{\alpha_{1}} \ldots p_{m}^{\alpha_{m}}$ is the factorization of $\omega(n)$ into a product of prime numbers, the nilpotency class of G is clearly bounded by $c+\alpha_{1}+\cdots+\alpha_{m}$.
(iv) \Rightarrow (i). If a variety \mathcal{V} contains $\mathcal{A} \mathcal{A}_{p}$ for some prime p, then the restricted wreath product $G=\mathbb{Z} \imath(\mathbb{Z} / p \mathbb{Z})$ (which is in $\mathcal{A A}_{p}$) belongs to \mathcal{V}. Since the group G is finitely generated, residually nilpotent but is not nilpotent, the class of locally nilpotent groups of \mathcal{V} is not a variety. We obtain the same conclusion when \mathcal{V} contains $\mathcal{A}_{p} \mathcal{A}$, by considering the group $(\mathbb{Z} / p \mathbb{Z}) \imath \mathbb{Z}$. Therefore, if the class of locally nilpotent groups of \mathcal{V} is a variety, then \mathcal{V} contains neither $\mathcal{A} \mathcal{A}_{p}$ nor $\mathcal{A}_{p} \mathcal{A}$.

References

1. G. Endimioni, On conditions for a group to satisfy given laws, J. Group Theory 2 (1999), 191-198.
2. G. Endimioni, Bounds for nilpotent-by-finite groups in certain varieties, J. Austral. Math. Soc. 73 (2002), 393-404.
3. J.R.J. Groves, Varieties of soluble groups and a dichotomy of P. Hall, Bull. Austral. Math. Soc. 5 (1971), 391-410.
4. E. I. Khukhro, p-automorphisms of finite p-groups, London Math. Soc. Lecture Note Ser. 246, Cambridge Univ. Press, 1998.
5. H. Neumann, Varieties of groups, Springer-Verlag, Berlin, 1967.
6. D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1982.
7. J.S. Wilson, Two-generator conditions for residually finite groups, Bull. London Math. Soc. 23 (1991), 239-248.
8. E.I. Zel'manov, Solution of the restricted Burnside problem for groups of odd exponent, Izv. Akad. Nauk. SSSR Ser. Mat. 54 (1990), 42-59.
9. E.I. Zel'manov, Solution of the restricted Burnside problem for 2-groups, Mat. Sb. 182 (1991), 568-592.
