On right n-Engel subgroups II

Peter G. Crosby \& Gunnar Traustason Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

In this sequel to "On right n-Engel subgroups" we add a new general structure result on right n-Engel subgroups. We also use one of the structure results to prove some results about right n-Engel subgroups in finite p-groups.

1 Introduction

Let n be a non-negative integer. The n-Engel word $\left[y_{,_{n}} x\right]$ is defined recursively by $[y, 0 x]=y$ and $\left[y{ }_{,_{+1}} x\right]=\left[\left[y,_{n} x\right], x\right]$. Recall that an element a in a group G is said to be right n-Engel if $[a, n g]=1$ for all $g \in G$ and that the group G is said to be n-Engel if every element $a \in G$ is right n-Engel. Clearly for every element a in the $(n+1)$ th term of the upper central series, $Z_{n}(G)$, we have that all the elements in $\langle a\rangle^{G}$ are right n-Engel. It is conversely not true in general that right n-Engel elements need to be in the hypercentre. Take for example the standard wreath product $C_{2} \mathrm{wr} C_{2}^{\infty}$, of the cyclic group of order 2 with the infinite countable direct product of groups of order 2. This group is a 3 -Engel group with a trivial centre. For a number of classes of groups we do however have that the right Engel elements belong to the hyper centre. For example this is true for finite groups [2] and finitely generated solvable groups [3].

This paper is a sequel to [6]. Our work in that paper and the present one is motivated by the following results on the structure of n-Engel groups. For all four results we let G be a nilpotent n-Engel group.

Structure Theorem 1 (Wilson [11]) If G is a d-generator group, then the nilpotence class of G is (d, n)-bounded.

Structure Theorem 2 (Zel'manov [12]) If G is torsion free, then the nilpotence class of G is n-bounded class.

Structure Theorem 3 (Crosby and Traustason [5]) There exist integers $f(n)$ and $c(n)$ such that $G^{f(n)} \leq Z_{c(n)}(G)$.

Structure Theorem 4 (Burns and Medvedev [4]) There exist integers $f(n)$ and $c(n)$ such that $\gamma_{c(n)}(G)^{f(n)}=\{1\}$.

Notice that both the third and the fourth theorem imply the 2nd. It should also be mentioned that the third theorem was preceded by a result of Burns and Medvedev [4], who proved under the same assumptions that there exist integers $f(n), c(n)$ such that $G^{f(n)}$ is nilpotent of class $c(n)$.

We now move to the analogous statements for right Engel subgroups. First a definition.

Definition. Let H be a subgroup of a group G. Then H is said to be a right n-Engel subgroup if all the elements of H are right n-Engel elements of G.

As we said above, for any group G, the normal subgroup $Z_{n}(G)$ consists of right n-Engel elements. We are interested in the reverse problem. Suppose H is a normal right n-Engel subgroup of G and suppose that H belongs to some term of the upper central series. We refer to the smallest integer c such that $H \leq Z_{c}(G)$ as the upper central degree of H. Our analogous results for this situation are.

Theorem 1 ([6]) If G is a d-generator group, then the upper central degree of H is (d,n)-bounded.

Theorem 2 ([6]) If H is torsion-free, then the upper central degree of H is n-bounded.

Theorem 3 ([6]) There exist integers $c(n), f(n)$, only depending on n, such that $H^{f(n)} \leq Z_{c(n)}(G)$.

Theorem 4 There exist integers $c(n), f(n)$, only depending on n, such that $\left[H,{ }_{c(n)} G\right]^{f(n)}=\{1\}$.

It is not difficult to see that these theorems imply the structure theorems on Engel groups discussed above and that both Theorem 3 and Theorem 4 imply Theorem 2. The way the proof works is however that one uses Theorems 1 and 2 to prove Theorem 3 and Theorem 4.

Theorems 1,2 and 3 were proved in [6]. In Section 2 we will prove Theorem 4 and we will also use Theorem 3 to obtain some results concerning right n-Engel subgroups of finite p-groups. These results are analogues to the following results on the structure of n-Engel p-groups [1]. Let p be a prime and let $r=r(n, p)$ be the integer saisfying $p^{r-1}<n \leq p^{r}$.

Structure Theorem 5 ([1]) There exists a positive integer $s=s(n)$ such that any finite powerful n-Engel p-group is nilpotent of class at most s.

Structure Theorem 6 ([1]) Let G be a finite n-Engel p-group.
(a) If p is odd, then $G^{p^{r}}$ is powerful.
(b) If $p=2$, then $\left(G^{2^{r}}\right)^{2}$ is powerful.

As corollary of Theorems 5 and 6 we then have
Structure Theorem 7 ([1]) Let G be a locally finite n-Engel p-group.
(a) If p is odd, then $G^{p^{r}}$ is nilpotent of n-bounded class.
(b) If $p=2$ then $\left(G^{2^{r}}\right)^{2}$ is nilpotent of n-bounded class.

The analogous results for right n-Engel subgroups are
Theorem 5 There exists a positive integer $s(n)$ such that, for any finite p group G and right n-Engel subgroup H which is powerfully embedded in G, $\left[H_{s(n)} G\right]=1$.

Theorem 6 Let G be a finite p-group and H be a normal right n-Engel subgroup of G.
(a) If p is odd, $H^{p^{r}}$ is powerfully embedded in $G^{p^{r}}$.
(b) If $p=2,\left(H^{2^{r}}\right)^{2}$ is powerfully embedded in $\left(G^{2^{r}}\right)^{2}$.

Theorem 7 Let G be a locally finite p-group and H be a normal right nEngel subgroup of G. There exists an integer $s=s(n)$ such that the following hold.
(a) If p is odd, $\left[H^{p^{r}}{ }_{, s} G^{p^{r}}\right]=1$.
(b) If $p=2,\left[\left(H^{2^{r}}\right)^{2},{ }_{s}\left(G^{2^{r}}\right)^{2}\right]=1$.

Remark. The r given in Theorem 7 is close to being the best bound. Let t be the smallest positive integer such that $H^{p^{t}}$ is upper central of n-bounded degree. Then $r \in\{r-1, r\}$ if p is odd and $t \in\{r-1, r, r+1\}$ if $p=2$ [1].

2 Proofs

In this section we prove Theorems 4,5,6 and 7 . We start with Theorem 4.
Proof of Theorem 4. By Lemma 3 [6], we know that there exist positive integers $m=m(n)$ and $l=l(n)$ such that, for any $h \in H$ and $g_{1}, \ldots, g_{m} \in G,\left[h, g_{1}, \ldots, g_{m}\right]^{l}=1$. Fix $h \in H$ and $g_{1}, \ldots, g_{m+1} \in G$ and let $K=\left\langle\left[h, g_{1}, \ldots, g_{m}\right], g_{m+1}\right\rangle$. Then $K^{\prime} /\left[K^{\prime}, K^{\prime}\right]$ is abelian of exponent dividing l. Let $k=\left[h, g_{1}, \ldots, g_{m}\right]$. By Theorem 1 , there exists a positive integer $s=s(n)$ such that $\left.[<k\rangle^{K}{ }_{, s} K\right]=\{1\}$. It follows in particular that K^{\prime} is nilpotent of class at most s and thus K^{\prime} has exponent dividing l^{s}. Let e be an integer such that $\binom{l^{e}}{k}$ is divisble by l^{s} for $k=1, \ldots, s$ and set $f=l^{e}$. Let $g=a_{1} \cdots a_{t}$ be any product of commutators of the form $\left[y, x_{1}, \ldots, x_{m}\right]$, with $y \in H$ and $x_{1}, \ldots, x_{m} \in G$. We prove, by induction on t, that $g^{f}=1$. if $t=1$ this is trivial. Now suppose $t \geq 2$ and that the inductive hypothesis holds for smaller values of t. Let $z=a_{2} \cdots a_{t}$ and $a=a_{1}$. Applying the well known Hall-Petrescu identity, we have that

$$
a^{f} z^{f}=(a z)^{f} w_{2}^{\left(\frac{f}{2}\right)} w_{3}^{\left(\frac{f}{3}\right)} \cdots w_{s}^{\left(\frac{f}{s}\right)}
$$

with $w_{i} \in \gamma_{i}(\langle a, z\rangle)$. By inductive hypothesis the left hand side is trivial and by definition of f every $w_{i}^{\binom{f}{i}}$ is also trivial, since each w_{i} is in $\left\langle a_{1}, z\right\rangle^{\prime}$. Hence
$\left(a_{1} \cdots a_{t}\right)^{f}=(a z)^{f}=1$. This finishes the inductive proof and we conclude that $g^{f}=1$ for all $g \in\left[H,_{m} G\right]$.

We now move to Theorem 5. Let G be a finite p-group. Recall that a group H is powerfully embedded in G if $[H, G] \leq H^{p}$ provided that p is odd. If $p=2$, we require that $[H, G] \leq H^{4}$. For the proof we need to apply few well known properties of powerfully embedded subgroups. Firstly if H is powerfully embedded in G, then H^{p} is also powerfully embedded in G. Secondly, if H is powerfully embedded in G, then for each positive integer m we have that $H^{m}=\left\{h^{m}: h \in H\right\}$. The details can be found in [7] for example.

Proof of Theorem 5. As H is powerfully embedded in G we have that $H^{p^{k}}$ is powerfully embedded for any positive integer k. Furthermore $H^{p^{k}}=$ $\left\{h^{p^{k}}: h \in H\right\}$. We use these properties to show by induction on $k \geq 1$ that $\left[H,_{k} G\right] \leq H^{p^{k}}$. The induction basis is given by the assumption that H is powerfully embedded in G. Now suppose that $k \geq 2$ and that the result holds for smaller values of k. Then

$$
\left[H,_{k} G\right]=\left[H_{, k-1} G, G\right] \leq\left[H^{p^{k-1}}, G\right] \leq\left(H^{p^{k-1}}\right)^{p}=H^{p^{k}}
$$

This finishes the inductive proof. Let c and f be as in Theorem 3, and let $v=v(n)$ be the largest power of any prime that occurs in $f(n)$. Then $\left[H^{p^{v}}{ }_{c} G\right]=\{1\}$ and thus $\left[H,{ }_{v+c} G\right] \leq\left[H^{p^{v}}{ }_{c} G\right]=\{1\}$.

We finally turn to Theorems 6 and 7. Let p be a fixed prime and n be a fixed positive integer. Let r be the integer satisfying $p^{r-1}<n \leq p^{r}$.

Proof of Theorem 6. (a) We can assume that $\left(H^{p^{r}}\right)^{p}=\{1\}$ and then the aim is to show that $\left[H^{p^{r}}, G^{p^{r}}\right]=\{1\}$. Let $g \in G$ be arbitrary and set $V=H^{p^{r}}$. Since H is a finite n-Engel p-group, we have by Structure Theorem 6 that V is powerful and hence elementary abelian. Since H is a right n-Engel subgroup, for each $v \in V,\left[v,{ }_{n} g\right]=1$ and thus $\left[v, p^{r} g\right]=1$. Hence, in End $(V), 0=(-1+g)^{p^{r}}=g^{p^{r}}-1$. So $\left[v, g^{p^{r}}\right]=1$ as required.
(b) Let $K=\left(H^{2^{r}}\right)^{2}$. We may assume that $K^{4}=1$ and the aim is then to show that $\left[K,\left(G^{2^{r}}\right)^{2}\right]=\{1\}$. Let $g \in G$ be arbitrary and set $V=K / K^{2}$. As H is a right n-Engel subgroup, we have by Structure Theorem 6 that K is powerful and hence abelian. It follows that V is an elementary abelian 2-group and
$\left[v, 2^{r} g\right]=1$. We can conclude that in $\operatorname{End}(V), 0=(-1+g)^{2^{r}}=t^{2^{r}}-1$. This shows that $\left[K, G^{2^{r}}\right] \leq K^{2}$. Let $k \in K$, then

$$
\left[k,\left(g^{2^{r}}\right)^{2}\right]=\left[k, g^{2^{r}}\right]^{2}\left[k, g^{2^{r}}, g^{2^{r}}\right]
$$

and since $\left[k, g^{2^{r}}\right] \in K^{2}$ we have that $\left[k, g^{2^{r}}\right]^{2}=1$. It remains to see that $\left[k, g^{2^{r}}, g^{2^{r}}\right]=1$ and for this it suffices to show that $\left[K^{2}, G^{2^{r}}\right]=\{1\}$. But as K^{2} is right n-Engel we have as before that in $\operatorname{End}\left(K^{2}\right), 0=(-1+g)^{2^{r}}=g^{2^{r}}-1$, and so $\left[K^{2}, G^{2^{r}}\right]=\{1\}$. This finishes the proof.

Proof of Theorem 7. (a) Let $s=s(n)$ be as in Theorem 5. Let $h \in H^{p^{r}}$ and $g_{1}, \ldots, g_{s} \in G^{p^{r}}$. Then $h, g_{1}, \ldots, g_{s} \in K^{p^{r}}$ for some finitely generated, and hence finite subgroup K of G. By Theorem $6,\left(\langle h\rangle^{K}\right)^{p^{r}}$ is powerfully embedded in $K^{p^{r}}$. Hence, by Theorem $5,\left[h, g_{1}, \ldots, g_{s}\right]=1$. This finishes the proof of part (a). Part (b) is proved similarly.

3 Right 2-Engel subgroups

In this section we consider the simplest non-trivial case of right 2-Engel subgroups. First we determine the integers $f(2)$ and $c(2)$ of Theorem 4. Let G be any group with a normal subgroup right 2-Engel subgroup H. In [8,9] (see also [10] Theorem 7.13), it is shown that $[h, x, y, z]^{2}=1$ for all right 2-Engel elements h in G and all $x, y, z \in G$ and that $\langle h\rangle^{G}$ is an abelian right 2-Engel subgroup. We also have

$$
1=[h, x, x y, x y]=[h, x, y, x y]=[h, x, y, x]^{y}
$$

and $\left[h, x^{-1}\right]=[h, x]^{-1}$. From this it is clear that any commutator $\left[h, u_{1}, \ldots, u_{m}\right]$ with $u_{1}, \ldots, u_{m} \in\{x, y\}$ and with a repeated entry of either x or y is trivial. In particular, such a commutator is trivial if $m \geq 3$. It follows that

$$
1=[h, x y, x y]=[h, x, y][h, y, x]
$$

and $[h, y, x]=[h, x, y]^{-1}$. It follows that if $h \in H$ and $x_{1}, \ldots, x_{m} \in G$, then any commutator $\left[h, x_{i_{1}}, \ldots, x_{i_{t}}\right]$, with some x_{i} repeated, is trivial. Thus for $h \in H$ and $x, y, z \in G$, we have

$$
[h, x,[y, z]]=[h, x, y, z][h, x, z, y]^{-1}=[h, x, y, z]^{2}=1
$$

It follows that $[H, G, G, G]=\{[h, x, y, z]: h \in H, x, y, z \in G\}$, is abelian and so $[H, G, G, G]^{2}=1$. Examples 1 and 2 in $[6]$ then show that this is the best possible. Thus $c(2)=3$ and $f(2)=2$.

We next move to Theorems 5 and 7. Let $s(2, p)$ be the smallest positive integer such that $[H, s(2, p) G]=\{1\}$ for all pairs (H, G), where G is a finite p-group and H is a right n-Engel subgroup that is powerfully embedded in G. Also, let $e(2, p)$ and $f(2, p)$ be integers such that for any pair pairs (H, G), where G is a locally finite p-group and H is a normal right 2-Engel subgroup of $G,\left[H^{p^{f(2, p)}}, e(2, p) G^{p^{f(2, p)}}\right]=\{1\}$. We want to find the value of $s(2,2)$ and the best possible values for $e(2, p)$ and $f(2, p)$.

First we deal with the case when p is odd. From [6], we know that $\left[a^{2}, x, y, z\right]=$ 1 when a is a right 2 -Engel element and $x, y, z \in G$. Hence $[a, x, y, z]=1$ when p is odd. Hence $s(2, p) \leq 3$ and the best possible value for $f(2, p)=0$. Next example shows that $s(2, p)=3$ and that the best possible value for $e(2, p)$ is 3 .

Example 1. For any given positive integer s we let $\mathbb{Z}_{p^{s}}$ be the congruence class of the integers modulo p^{s}. We let $N(s)=\mathbb{Z}_{p^{s}}^{4}$ and we let $M(s)$ be the subgroup of $\mathrm{GL}\left(4, \mathbb{Z}_{p^{s}}\right.$, generated by

$$
X(s)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
p & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -p & 1
\end{array}\right), \quad Y(s)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
p & 0 & 1 & 0 \\
0 & p & 0 & 1
\end{array}\right)
$$

Let $L(s)=N(s) \rtimes M(s)$ where $M(s)$ acts on $N(s)$ by multiplication on the left. Notice that if $v_{1}, v_{2}, v_{3}, v_{4}$ is the standard basis for the $\mathbb{Z}_{p^{s}}$-module $N(s)$ then

$$
\begin{array}{llll}
{\left[v_{1}, X\right]=p v_{2}} & {\left[v_{2}, X\right]=0} & {\left[v_{3}, X\right]=-p v_{4}} & {\left[v_{4}, X\right]=0} \\
{\left[v_{1}, Y\right]=p v_{3}} & {\left[v_{2}, Y\right]=p v_{4}} & {\left[v_{3}, Y\right]=0} & {\left[v_{4}, Y\right]=0}
\end{array}
$$

Notice that $L(s)$ is a finite p-group and that $N(s)$ is powerfully embedded right 2-Engel subgroup in $L(s)$. Then

$$
\left[p^{t} v_{1}, X^{p^{t}}, Y^{p^{t}}\right]=p^{3 t+2} v_{4}
$$

which is non trivial in $L(3 t+3)$. This shows that the best possible value for $e(2, p)$ is 3. Since $\left[v_{1}, X, Y\right]=p^{2} v_{4}$, that is non-trivial in $L(3)$, we also see
that $c(2, p)=3$.
It remains to deal with $p=2$. Notice that Example 1 in fact shows also that the best value for $e(2,2)$ is 3 as we know that $\left[a^{2}, x^{2}, y^{2}, z^{2}\right]=1$ for $a \in H$ and $x, y, z \in G$. This also shows that the best value for $f(2,2)$ is at most 1. The group $N(2)$ is however not powerfully embedded in $L(2)$ so it remains to deal with $s(2,2)$ and $f(2,2)$. The first example shows that the best possible value of $f(2,2)$ is 1 .

Example 2. For each $t \in \mathbb{N}$, we let

$$
R(t)=C_{2} \operatorname{wr} C_{2}^{t}=\prod_{g \in C_{2}^{t}}\left\langle a^{g}\right\rangle \rtimes C_{2}^{t}
$$

The base group $B(t)=\prod_{g \in C_{2}^{t}}\left\langle a^{g}\right\rangle$ is then a normal right 2-Engel subgroup. However if g_{1}, \ldots, g_{t} is the standard basis for C_{2}^{t} then

$$
\left[a, g_{1}, \ldots, g_{t}\right]=a^{\left(-1+g_{1}\right) \cdots\left(-1+g_{t}\right)} \neq 1 .
$$

This shows that the best possible value of $f(2,2)$ is 1 .
It now only remains to deal with $s(2,2)$. As we have remarked before we know that $\left[H^{2},{ }_{3} G\right]=\{1\}$ for any pair (H, G) where H is a normal right 2-Engel subgroup of G. Thus, if H is a powerfully embedded subgroup of a finite p-group G, then

$$
\left[H,{ }_{4} G\right] \leq\left[H^{4}{ }_{3} G\right]=\{1\} .
$$

We now show that $s(2,2)=4$, by giving an example that shows that $s(2,2)>3$.

Example 3. The construction is similar to the one in Example 1. This time we let $N(s)=\mathbb{Z}_{2^{s}}^{8}$ and we consider the subgroup of GL $\left(8, \mathbb{Z}_{2^{s}}\right)$ generated by the following three matrices
$X(s)=\left(\begin{array}{rrrrrrrr}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -4 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 & 1\end{array}\right), Y(s)=\left(\begin{array}{rrrrrrrr}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -4 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -4 & 0 & 1\end{array}\right)$
and

$$
Z(s)=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 & 0 & 1
\end{array}\right)
$$

We then let $L(s)=N(s) \rtimes M(s)$, where as before $M(s)$ acts on $N(s)$ by matrix multiplication on the left. The group $L(s)$ is then a finite 2-group where $N(s)$ is powerfully embedded in $L(s)$. If we let v_{1}, \ldots, v_{8} be the standard basis for $N(s)$ then

$$
\begin{array}{llll}
{\left[v_{1}, X\right]=4 v_{2},} & {\left[v_{2}, X\right]=0,} & {\left[v_{3}, X\right]=-4 v_{5},} & {\left[v_{4}, X\right]=-4 v_{6},} \\
{\left[v_{5}, X\right]=0,} & {\left[v_{6}, X\right]=0,} & {\left[v_{7}, X\right]=4 v_{8},} & {\left[v_{8}, X\right]=0,} \\
{\left[v_{1}, Y\right]=4 v_{3},} & {\left[v_{2}, Y\right]=4 v_{5},} & {\left[v_{3}, Y\right]=0,} & {\left[v_{4}, Y\right]=-4 v_{7},} \\
{\left[v_{5}, Y\right]=0,} & {\left[v_{6}, Y\right]=-4 v_{8},} & {\left[v_{7}, Y\right]=0,} & {\left[v_{8}, Y\right]=0} \\
{\left[v_{1}, Z\right]=4 v_{4},} & {\left[v_{2}, Z\right]=4 v_{6},} & {\left[v_{3}, Z\right]=4 v_{7},} & {\left[v_{4}, Z\right]=0,} \\
{\left[v_{5}, Z\right]=4 v_{8},} & {\left[v_{6}, Z\right]=0} & {\left[v_{7}, Z\right]=0} & {\left[v_{8}, Z\right]=0 .}
\end{array}
$$

Notice that for all $v \in\left\{v_{1}, \ldots, v_{8}\right\}$ that

$$
[v, X, X]=[v, Y, Y]=[v, Z, Z]=0
$$

and

$$
[v, X, Y]=-[v, Y, X],[v, X, Z]=-[v, Z, X],[v, Y, Z]=-[v, Z, Y]
$$

Notice also that

$$
[v, X,[Y, Z]]=[v, Y,[Z, X]]=[v, Z,[X, Y]]=2[v, X, Y, Z] .
$$

It follows that in $L(7)$, we have $[v, X,[Y, Z]]=[v, Y,[Z, X]]=[v, Z,[X, Y]]=$ $2[v, X, Y, Z] \in 2^{7} N(s)=\{0\}$ which implies that $N(7)$ is a right 2-Engel subgroup of $L(7)$. However

$$
\left[v_{1}, X, Y, Z\right]=2^{6} v_{4} \neq 0
$$

This shows that $s(2,2)=4$.

References

[1] A. Abdollahi and G. Traustason, On locally finite p-groups satisfying an Engel condition, Proc. Am. Math. Soc. 130 (2002), 2827-2836.
[2] R. Baer, Engelsche Elemente Noetherscher Gruppen, Math. Ann. 133 (1957), 256-270.
[3] C. Brookes, Engel elements of soluble groups, Bull. London Math. Soc. 18 (1986), 7-10.
[4] R. G. Burns and Y. Medvedev, A note on Engel groups and local nilpotence, J. Austral Math. Soc. (Series A) 64 (1998), 92-100.
[5] P. G. Crosby and G. Traustason, A remark on the structure of n-Engel groups, Comm. Alg., to appear.
[6] P. G. Crosby and G. Traustason, On right 2-Engel subgroups, J. Algebra, to appear.
[7] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic pro-p groups, London Mathematical Society Series 157, Cambridge University Press (1991).
[8] W. P. Kappe, Die A-Norm einer Gruppe, Illinois J. Math. 5 (1961), 187-197.
[9] F. W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.
[10] D. J. Robinson, Finiteness conditions and generalized soluble groups, Parts II, Ergebinsse der Mathematik und ihrer Grenzgebiete, 62 (Springer-Verlag, New York 1972).
[11] J. S. Wilson, Two-generator conditions for residually finite groups, Bull. Lond. Math. Soc. 23 (1991), 239-248.
[12] E. I. Zel'manov, Some problems in the theory of groups and Lie algebras, Math. Sb. 180 (1989), 159-167.

