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In this sequel to “On right n-Engel subgroups” we add a new

general structure result on right n-Engel subgroups. We also use one

of the structure results to prove some results about right n-Engel

subgroups in finite p-groups.

1 Introduction

Let n be a non-negative integer. The n-Engel word [y,n x] is defined recur-
sively by [y,0 x] = y and [y,n+1 x] = [[y,n x], x]. Recall that an element a in a
group G is said to be right n-Engel if [a,n g] = 1 for all g ∈ G and that the
group G is said to be n-Engel if every element a ∈ G is right n-Engel. Clearly
for every element a in the (n + 1)th term of the upper central series, Zn(G),
we have that all the elements in 〈a〉G are right n-Engel. It is conversely not
true in general that right n-Engel elements need to be in the hypercentre.
Take for example the standard wreath product C2 wr C∞

2 , of the cyclic group
of order 2 with the infinite countable direct product of groups of order 2.
This group is a 3-Engel group with a trivial centre. For a number of classes
of groups we do however have that the right Engel elements belong to the
hyper centre. For example this is true for finite groups [2] and finitely gen-
erated solvable groups [3].

This paper is a sequel to [6]. Our work in that paper and the present one is
motivated by the following results on the structure of n-Engel groups. For
all four results we let G be a nilpotent n-Engel group.
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Structure Theorem 1 (Wilson [11]) If G is a d-generator group, then the
nilpotence class of G is (d, n)-bounded.

Structure Theorem 2 (Zel’manov [12]) If G is torsion free, then the nilpo-
tence class of G is n-bounded class.

Structure Theorem 3 (Crosby and Traustason [5]) There exist integers
f(n) and c(n) such that Gf(n) ≤ Zc(n)(G).

Structure Theorem 4 (Burns and Medvedev [4]) There exist integers f(n)
and c(n) such that γc(n)(G)f(n) = {1}.

Notice that both the third and the fourth theorem imply the 2nd. It should
also be mentioned that the third theorem was preceded by a result of Burns
and Medvedev [4], who proved under the same assumptions that there exist
integers f(n), c(n) such that Gf(n) is nilpotent of class c(n).

We now move to the analogous statements for right Engel subgroups. First
a definition.

Definition. Let H be a subgroup of a group G. Then H is said to be
a right n-Engel subgroup if all the elements of H are right n-Engel elements
of G.

As we said above, for any group G, the normal subgroup Zn(G) consists
of right n-Engel elements. We are interested in the reverse problem. Sup-
pose H is a normal right n-Engel subgroup of G and suppose that H belongs
to some term of the upper central series. We refer to the smallest integer
c such that H ≤ Zc(G) as the upper central degree of H . Our analogous
results for this situation are.

Theorem 1 ([6]) If G is a d-generator group, then the upper central degree
of H is (d, n)-bounded.

Theorem 2 ([6]) If H is torsion-free, then the upper central degree of H is
n-bounded.
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Theorem 3 ([6]) There exist integers c(n), f(n), only depending on n, such
that Hf(n) ≤ Zc(n)(G).

Theorem 4 There exist integers c(n), f(n), only depending on n, such that
[H,c(n) G]f(n) = {1}.

It is not difficult to see that these theorems imply the structure theorems on
Engel groups discussed above and that both Theorem 3 and Theorem 4 im-
ply Theorem 2. The way the proof works is however that one uses Theorems
1 and 2 to prove Theorem 3 and Theorem 4.

Theorems 1,2 and 3 were proved in [6]. In Section 2 we will prove Theo-
rem 4 and we will also use Theorem 3 to obtain some results concerning
right n-Engel subgroups of finite p-groups. These results are analogues to
the following results on the structure of n-Engel p-groups [1]. Let p be a
prime and let r = r(n, p) be the integer saisfying pr−1 < n ≤ pr.

Structure Theorem 5 ([1]) There exists a positive integer s = s(n) such
that any finite powerful n-Engel p-group is nilpotent of class at most s.

Structure Theorem 6 ([1]) Let G be a finite n-Engel p-group.

(a) If p is odd, then Gpr

is powerful.
(b) If p = 2, then (G2r

)2 is powerful.

As corollary of Theorems 5 and 6 we then have

Structure Theorem 7 ([1]) Let G be a locally finite n-Engel p-group.

(a) If p is odd, then Gpr

is nilpotent of n-bounded class.
(b) If p = 2 then (G2r

)2 is nilpotent of n-bounded class.

The analogous results for right n-Engel subgroups are

Theorem 5 There exists a positive integer s(n) such that, for any finite p-
group G and right n-Engel subgroup H which is powerfully embedded in G,
[H,s(n) G] = 1.
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Theorem 6 Let G be a finite p-group and H be a normal right n-Engel sub-
group of G.

(a) If p is odd, Hpr

is powerfully embedded in Gpr

.
(b) If p = 2, (H2r

)2 is powerfully embedded in (G2r

)2.

Theorem 7 Let G be a locally finite p-group and H be a normal right n-
Engel subgroup of G. There exists an integer s = s(n) such that the following
hold.

(a) If p is odd, [Hpr

,s Gpr

] = 1.
(b) If p = 2, [(H2r

)2,s (G2r

)2] = 1.

Remark. The r given in Theorem 7 is close to being the best bound. Let t
be the smallest positive integer such that Hpt

is upper central of n-bounded
degree. Then r ∈ {r − 1, r} if p is odd and t ∈ {r − 1, r, r + 1} if p = 2 [1].

2 Proofs

In this section we prove Theorems 4,5,6 and 7. We start with Theorem 4.

Proof of Theorem 4. By Lemma 3 [6], we know that there exist pos-
itive integers m = m(n) and l = l(n) such that, for any h ∈ H and
g1, . . . , gm ∈ G, [h, g1, . . . , gm]l = 1. Fix h ∈ H and g1, . . . , gm+1 ∈ G and let
K = 〈[h, g1, . . . , gm], gm+1〉. Then K ′/[K ′, K ′] is abelian of exponent divid-
ing l. Let k = [h, g1, . . . , gm]. By Theorem 1, there exists a positive integer
s = s(n) such that [< k >K ,s K] = {1}. It follows in particular that K ′ is
nilpotent of class at most s and thus K ′ has exponent dividing ls. Let e be
an integer such that

(

le

k

)

is divisble by ls for k = 1, . . . , s and set f = le. Let
g = a1 · · ·at be any product of commutators of the form [y, x1, . . . , xm], with
y ∈ H and x1, . . . , xm ∈ G. We prove, by induction on t, that gf = 1. if
t = 1 this is trivial. Now suppose t ≥ 2 and that the inductive hypothesis
holds for smaller values of t. Let z = a2 · · ·at and a = a1. Applying the well
known Hall-Petrescu identity, we have that

afzf = (az)fw
(f
2)

2 w
(f
3)

3 · · ·w
(f

s)
s

with wi ∈ γi(〈a, z〉). By inductive hypothesis the left hand side is trivial and

by definition of f every w
(f

i)
i is also trivial, since each wi is in 〈a1, z〉

′. Hence
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(a1 · · ·at)
f = (az)f = 1. This finishes the inductive proof and we conclude

that gf = 1 for all g ∈ [H,m G]. 2

We now move to Theorem 5. Let G be a finite p-group. Recall that a
group H is powerfully embedded in G if [H, G] ≤ Hp provided that p is
odd. If p = 2, we require that [H, G] ≤ H4. For the proof we need to apply
few well known properties of powerfully embedded subgroups. Firstly if H
is powerfully embedded in G, then Hp is also powerfully embedded in G.
Secondly, if H is powerfully embedded in G, then for each positive integer
m we have that Hm = {hm : h ∈ H}. The details can be found in [7] for
example.

Proof of Theorem 5. As H is powerfully embedded in G we have that
Hpk

is powerfully embedded for any positive integer k. Furthermore Hpk

=
{hpk

: h ∈ H}. We use these properties to show by induction on k ≥ 1
that [H,k G] ≤ Hpk

. The induction basis is given by the assumption that H
is powerfully embedded in G. Now suppose that k ≥ 2 and that the result
holds for smaller values of k. Then

[H,k G] = [H,k−1 G, G] ≤ [Hpk−1

, G] ≤ (Hpk−1

)p = Hpk

.

This finishes the inductive proof. Let c and f be as in Theorem 3, and
let v = v(n) be the largest power of any prime that occurs in f(n). Then
[Hpv

,c G] = {1} and thus [H,v+c G] ≤ [Hpv

,c G] = {1}. 2.

We finally turn to Theorems 6 and 7. Let p be a fixed prime and n be
a fixed positive integer. Let r be the integer satisfying pr−1 < n ≤ pr.

Proof of Theorem 6. (a) We can assume that (Hpr

)p = {1} and then
the aim is to show that [Hpr

, Gpr

] = {1}. Let g ∈ G be arbitrary and set
V = Hpr

. Since H is a finite n-Engel p-group, we have by Structure Theo-
rem 6 that V is powerful and hence elementary abelian. Since H is a right
n-Engel subgroup, for each v ∈ V , [v,n g] = 1 and thus [v,pr g] = 1. Hence,
in End (V ), 0 = (−1 + g)pr

= gpr

− 1. So [v, gpr

] = 1 as required.

(b) Let K = (H2r

)2. We may assume that K4 = 1 and the aim is then to show
that [K, (G2r

)2] = {1}. Let g ∈ G be arbitrary and set V = K/K2. As H is a
right n-Engel subgroup, we have by Structure Theorem 6 that K is powerful
and hence abelian. It follows that V is an elementary abelian 2-group and
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[v,2r g] = 1. We can conclude that in End (V ), 0 = (−1+g)2r

= t2
r

−1. This
shows that [K, G2r

] ≤ K2. Let k ∈ K, then

[k, (g2r

)2] = [k, g2r

]2[k, g2r

, g2r

]

and since [k, g2r

] ∈ K2 we have that [k, g2r

]2 = 1. It remains to see that
[k, g2r

, g2r

] = 1 and for this it suffices to show that [K2, G2r

] = {1}. But as K2

is right n-Engel we have as before that in End (K2), 0 = (−1+g)2r

= g2r

−1,
and so [K2, G2r

] = {1}. This finishes the proof. 2

Proof of Theorem 7. (a) Let s = s(n) be as in Theorem 5. Let h ∈ Hpr

and g1, . . . , gs ∈ Gpr

. Then h, g1, . . . , gs ∈ Kpr

for some finitely generated,
and hence finite subgroup K of G. By Theorem 6, (〈h〉K)pr

is powerfully
embedded in Kpr

. Hence, by Theorem 5, [h, g1, . . . , gs] = 1. This finishes the
proof of part (a). Part (b) is proved similarly. 2.

3 Right 2-Engel subgroups

In this section we consider the simplest non-trivial case of right 2-Engel
subgroups. First we determine the integers f(2) and c(2) of Theorem 4. Let
G be any group with a normal subgroup right 2-Engel subgroup H . In [8,9]
(see also [10] Theorem 7.13), it is shown that [h, x, y, z]2 = 1 for all right
2-Engel elements h in G and all x, y, z ∈ G and that 〈h〉G is an abelian right
2-Engel subgroup. We also have

1 = [h, x, xy, xy] = [h, x, y, xy] = [h, x, y, x]y

and [h, x−1] = [h, x]−1. From this it is clear that any commutator [h, u1, . . . , um]
with u1, . . . , um ∈ {x, y} and with a repeated entry of either x or y is trivial.
In particular, such a commutator is trivial if m ≥ 3. It follows that

1 = [h, xy, xy] = [h, x, y][h, y, x]

and [h, y, x] = [h, x, y]−1. It follows that if h ∈ H and x1, . . . , xm ∈ G, then
any commutator [h, xi1 , . . . , xit ], with some xi repeated, is trivial. Thus for
h ∈ H and x, y, z ∈ G, we have

[h, x, [y, z]] = [h, x, y, z][h, x, z, y]−1 = [h, x, y, z]2 = 1.
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It follows that [H, G, G, G] = {[h, x, y, z] : h ∈ H, x, y, z ∈ G}, is abelian
and so [H, G, G, G]2 = 1. Examples 1 and 2 in [6] then show that this is the
best possible. Thus c(2) = 3 and f(2) = 2.

We next move to Theorems 5 and 7. Let s(2, p) be the smallest positive
integer such that [H,s(2,p) G] = {1} for all pairs (H, G), where G is a finite
p-group and H is a right n-Engel subgroup that is powerfully embedded in
G. Also, let e(2, p) and f(2, p) be integers such that for any pair pairs (H, G),
where G is a locally finite p-group and H is a normal right 2-Engel subgroup
of G, [Hpf(2,p)

,e(2,p) Gpf(2,p)
] = {1}. We want to find the value of s(2, 2) and

the best possible values for e(2, p) and f(2, p).

First we deal with the case when p is odd. From [6], we know that [a2, x, y, z] =
1 when a is a right 2-Engel element and x, y, z ∈ G. Hence [a, x, y, z] = 1
when p is odd. Hence s(2, p) ≤ 3 and the best possible value for f(2, p) = 0.
Next example shows that s(2, p) = 3 and that the best possible value for
e(2, p) is 3.

Example 1. For any given positive integer s we let Zps be the congru-
ence class of the integers modulo ps. We let N(s) = Z

4
ps and we let M(s) be

the subgroup of GL(4, Zps, generated by

X(s) =









1 0 0 0
p 1 0 0
0 0 1 0
0 0 −p 1









, Y (s) =









1 0 0 0
0 1 0 0
p 0 1 0
0 p 0 1









.

Let L(s) = N(s) ⋊ M(s) where M(s) acts on N(s) by multiplication on the
left. Notice that if v1, v2, v3, v4 is the standard basis for the Zps-module N(s)
then

[v1, X] = pv2 [v2, X] = 0 [v3, X] = −pv4 [v4, X] = 0
[v1, Y ] = pv3 [v2, Y ] = pv4 [v3, Y ] = 0 [v4, Y ] = 0.

Notice that L(s) is a finite p-group and that N(s) is powerfully embedded
right 2-Engel subgroup in L(s). Then

[ptv1, X
pt

, Y pt

] = p3t+2v4,

which is non trivial in L(3t + 3). This shows that the best possible value for
e(2, p) is 3. Since [v1, X, Y ] = p2v4,that is non-trivial in L(3), we also see
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that c(2, p) = 3.

It remains to deal with p = 2. Notice that Example 1 in fact shows also
that the best value for e(2, 2) is 3 as we know that [a2, x2, y2, z2] = 1 for
a ∈ H and x, y, z ∈ G. This also shows that the best value for f(2, 2) is at
most 1. The group N(2) is however not powerfully embedded in L(2) so it
remains to deal with s(2, 2) and f(2, 2). The first example shows that the
best possible value of f(2, 2) is 1.

Example 2. For each t ∈ N, we let

R(t) = C2 wr Ct
2 =

∏

g∈Ct
2

〈ag〉 ⋊ Ct
2.

The base group B(t) =
∏

g∈Ct
2
〈ag〉 is then a normal right 2-Engel subgroup.

However if g1, . . . , gt is the standard basis for Ct
2 then

[a, g1, . . . , gt] = a(−1+g1)···(−1+gt) 6= 1.

This shows that the best possible value of f(2, 2) is 1.

It now only remains to deal with s(2, 2). As we have remarked before we
know that [H2,3 G] = {1} for any pair (H, G) where H is a normal right
2-Engel subgroup of G. Thus, if H is a powerfully embedded subgroup of a
finite p-group G, then

[H,4 G] ≤ [H4,3 G] = {1}.

We now show that s(2, 2) = 4, by giving an example that shows that
s(2, 2) > 3.

Example 3. The construction is similar to the one in Example 1. This
time we let N(s) = Z

8
2s and we consider the subgroup of GL (8, Z2s) gener-

ated by the following three matrices
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X(s) =

























1 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −4 0 1 0 0 0
0 0 0 −4 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 4 1

























, Y (s) =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
4 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 4 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 −4 0 0 1 0
0 0 0 0 0 −4 0 1

























and

Z(s) =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
4 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 4 0 0 0 1 0 0
0 0 4 0 0 0 1 0
0 0 0 0 4 0 0 1

























.

We then let L(s) = N(s)⋊M(s), where as before M(s) acts on N(s) by ma-
trix multiplication on the left. The group L(s) is then a finite 2-group where
N(s) is powerfully embedded in L(s). If we let v1, . . . , v8 be the standard
basis for N(s) then

[v1, X] = 4v2, [v2, X] = 0, [v3, X] = −4v5, [v4, X] = −4v6,
[v5, X] = 0, [v6, X] = 0, [v7, X] = 4v8, [v8, X] = 0,
[v1, Y ] = 4v3, [v2, Y ] = 4v5, [v3, Y ] = 0, [v4, Y ] = −4v7,
[v5, Y ] = 0, [v6, Y ] = −4v8, [v7, Y ] = 0, [v8, Y ] = 0
[v1, Z] = 4v4, [v2, Z] = 4v6, [v3, Z] = 4v7, [v4, Z] = 0,
[v5, Z] = 4v8, [v6, Z] = 0 [v7, Z] = 0 [v8, Z] = 0.

Notice that for all v ∈ {v1, . . . , v8} that

[v, X, X] = [v, Y, Y ] = [v, Z, Z] = 0

and

[v, X, Y ] = −[v, Y, X], [v, X, Z] = −[v, Z, X], [v, Y, Z] = −[v, Z, Y ].
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Notice also that

[v, X, [Y, Z]] = [v, Y, [Z, X]] = [v, Z, [X, Y ]] = 2[v, X, Y, Z].

It follows that in L(7), we have [v, X, [Y, Z]] = [v, Y, [Z, X]] = [v, Z, [X, Y ]] =
2[v, X, Y, Z] ∈ 27N(s) = {0} which implies that N(7) is a right 2-Engel
subgroup of L(7). However

[v1, X, Y, Z] = 26v4 6= 0.

This shows that s(2, 2) = 4.
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