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REFINED SOLVABLE PRESENTATIONS FOR POLYCYCLIC GROUPS

R. HARTUNG AND G. TRAUSTASON∗

Communicated by Alireza Abdollahi

Abstract. We describe a new type of presentation that, when consistent, describes a polycyclic

group. This presentation is obtained by refining a series of normal subgroups with abelian sections.

These presentations can be described effectively in computer-algebra-systems like Gap or Magma. We

study these presentations and, in particular, we obtain consistency criteria for them. The consistency

implementation demonstrates that there are situations where the new method is faster than the existing

methods for polycyclic groups.

1. Introduction

A group G is polycyclic if there exists a finite series of subnormal subgroups

G = G1 DG2 D . . .DGm DGm+1 = {1}

so that each section Gi/Gi+1 is cyclic. Polycyclic groups play an important role in group theory as,

for instance, each finite group with odd order is polycyclic. Moreover, polycyclic groups form a special

class of finitely presented groups for which various algorithmic problems are solvable. For instance,

it is well-known that the word problem in a polycyclic group is solvable. More precisely, a polycyclic

group G can be described by a polycyclic presentation. This is a finite presentation with generators

MSC(2010): Primary: 20F05; Secondary: 20F16.

Keywords: Polycyclic, presentation, nilpotent.

Received: 19 December 2011, Accepted: 21 December 2011.

∗Corresponding author.

1



2 R. Hartung and G. Traustason

{a1, . . . , am} and relations of the form

anii = a
αi,i+1

i+1 · · · aαi,mm , i ∈ I
a−1
i ajai = a

βi,j,i+1

i+1 · · · aβi,j,mm , 1 ≤ i < j ≤ m
a−1
i a−1

j ai = a
γi,j,i+1

i+1 · · · aγi,j,mm , 1 ≤ i < j ≤ m, j 6∈ I
aiaja

−1
i = a

δi,j,i+1

i+1 · · · aδi,j,mm , 1 ≤ i < j ≤ m, i 6∈ I
aia
−1
j a−1

i = a
εi,j,i+1

i+1 · · · aεi,j,mm , 1 ≤ i < j ≤ m, i, j 6∈ I

for a subset I ⊆ {1, . . . ,m} and integers αi,`, βi,j,`, γi,j,`, δi,j,`, εi,j,` ∈ Z that satisfy n` a positive integer

and

0 ≤ αi,`, βi,j,`, γi,j,`, δi,j,`, εi,j,` < n`

whenever ` ∈ I holds. For further details on polycyclic presentations we refer to Section 9.4 of [16].

Given any finite presentation of a polycyclic group, the polycyclic quotient algorithm [13,14] allows one

to compute a polycyclic presentation defining the same group. If, additionally, the polycyclic group

is nilpotent, then a finite presentation can be transformed into a polycyclic presentation with the

nilpotent quotient algorithm [15]. We further note that even certain infinite presentations (so-called

finite L-presentations; see [2]) of a nilpotent and polycyclic group can be transformed into a polycyclic

presentation [3]. We may therefore always assume that a polycyclic group is given by a polycyclic

presentation.

In the group G, every element is represented by a word ae11 a
e2
2 · · · aemm with 0 ≤ ei < ni whenever

i ∈ I holds. If this representation is unique, then the polycyclic presentation is consistent and it

yields a normal form for elements in the group. This is a basis for symbolic computations within

polycyclic groups. Various strategies for computing normal forms in a polycyclic group have been

studied so far [12,18,8,1]. The current state of the art algorithm is collection from the left. But it

is known that even ‘collection from the left’ is exponential in the number of generators [12]; see also [1].

In this paper, we concentrate on a certain type of presentations that we call refined solvable presen-

tations. When such a presentation is consistent it defines a polycyclic group with a natural ascending

series of normal subgroups with abelian factors. This ascending series is indicated in the presentation

through a partition of the set X of generators. We describe these presentations in Section 2. Each

weighted nilpotent presentation, as used extensively in the nilpotent quotient algorithms [15,3] and

in [17], is of this type. A solvable presentation can be described effectively by presentation maps

which we define in Section 2. Presentation maps can be considered as the basic data structure to

define a polycyclic group in computer-algebra-systems like Gap or Magma. We obtain consistency

criteria for refined solvable presentations in Section 3. This consistency check has been implemented

in the NQL-package [10]. Our implementation shows that there are situations where the consistency

checks for refined solvable presentations are faster than the general methods for polycyclic groups. We

demonstrate that this is the case when dealing with nilpotent quotients of the Basilica group [9] and
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the Brunner-Sidki-Vieira-Group BSV [5]. We have focused here on nilpotent groups and our hope is

that future investigations involving more general examples may provide further evidence for the new

method.

Fast algorithms for working with presentations of polycyclic groups are of special interest as, for

instance, the algorithm in [11] attempts to find periodicities in the Dwyer quotients of the Schur

multiplier of a group. In order to observe these periodicities, the algorithm needs to compute with

polycyclic presentations with some hundreds of generators and therefore fast algorithms for polycyclic

groups are needed.

2. Refined solvable presentations

Let G be a polycyclic group with a strictly ascending chain of normal subgroups

{1} = G0 < G1 < · · · < Gr = G

where Gi/Gi−1 is abelian for i = 1, . . . , r. Since each subgroup of a polycyclic group is finitely

generated, we can choose a finite generating set X for G which partitions as X = X1 ∪X2 ∪ · · · ∪Xr

such that

Gi/Gi−1 =
⊕
x∈Xi

〈xGi−1〉

for i = 1, . . . , r and where all the direct summands are non-trivial. We can furthermore make our

choice so that for each x ∈ Xi, the order, o(xGi−1), of xGi−1 is either infinite or a power of a prime.

Let P denote the set of all primes. For each p ∈ P, let

Xi(p) = {x ∈ Xi : o(xGi−1) is a power of p}

and let

Xi(∞) = {x ∈ Xi : o(xGi−1) =∞}.

Notice that the Sylow p-subgroup of Gi/Gi−1 is

(Gi/Gi−1)p =
⊕

x∈Xi(p)

〈xGi−1〉.

We order the generators in X such that the generators in Xi precede those in Xj whenever i < j.

Suppose that X = {g1, . . . , gm} with g1 < g2 < . . . < gm. For each x ∈ Xi let n(x) = o(xGi−1). If

n(x) = ∞, let Zx = Z and otherwise let Zx = {0, . . . , n(x) − 1}. Each element g ∈ G has a unique

normal form expression

g = grmm g
rm−1

m−1 · · · g
r1
1

where ri ∈ Zgi .
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We next describe some relations that hold in the generators g1, . . . , gm. If x ∈ Xs(p) then we get

a power relation of the form

(2.1) xn(x) = gαx(m)
m · · · gαx(1)

1

with αx(i) ∈ Zgi and where αx(i) = 0 if gi 6∈ X1 ∪ · · · ∪Xs−1.

For each pair of generators x, y ∈ X with x < y we also get a conjugacy relation

(2.2) xy = g
β(x,y)(m)
m · · · gβ(x,y)(1)

1

where β(x,y)(i) ∈ Zgi .

Remark. There are three types of relations of the form (2).

Type 1. If x, y ∈ Xs then x and y commute modulo Gs−1 and thus we get that β(x,y)(i) = 0 if

gi 6∈ X1 ∪ · · · ∪Xs−1 ∪ {x} and that β(x,y)(i) = 1 if gi = x.

Now suppose that s < t.

Type 2. If x ∈ Xs(p) and y ∈ Xt then xyGs−1 ∈ (Gs/Gs−1)p and thus we get a relation of the

form (2) where β(x,y)(i) = 0 if gi 6∈ X1 ∪ · · · ∪Xs−1 ∪Xs(p).

Type 3. Finally if x ∈ Xs(∞) and y ∈ Xt then xy ∈ Gs and we get a relation of the type (2)

where β(x,y)(i) = 0 if gi 6∈ X1 ∪ · · · ∪Xs.

Remark. By an easy induction on m, one can see that (1) and (2) also give us, for every pair

of generators x, y ∈ X such that x < y, a relation xy
−1

= µ(x, y), where µ(x, y) is a normal form

expression in g1, g2, . . . , gm. Thus using only relations (1) and the three types of relations (2), we have

full information about G and we can calculate inverses and products of elements in normal form and

turn the result into a normal form expression using for example collection from the left.

The claim holds trivially for m = 1. Now suppose that m ≥ 2 and that the claim holds for all

smaller values of m. Consider the subgroup H = 〈g1, . . . , gm−1〉. By the inductive hypothesis, every

element in H can be turned into a normal form expression using only relations (1) and (2). Now (2)

gives us normal form expressions for ggm1 , . . . , ggmm−1 and this determines an automorphism φ ∈ Aut (H)

induced by conjugation by gm. This then gives us φ−1 that gives us in turn normal form expressions

for gg
−1
m

1 , . . . , gg
−1
m
m−1. This finishes the proof of the inductive step.

The point about this is that the relations xy
−1

= µ(x, y) are consequences of (1) and (2). So for

a polycyclic group G we only need (1) and (2) to define it. For practical reasons we need however to
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determine the relations xy
−1

= µ(x, y) first to be able to perform calculations in G. At the end of

Section 3, we describe an efficient method for doing this for the presentations that we are about to

introduce next, refined solvable presentations.

Suppose now conversely that we have a finite alphabet X = {x1, x2, . . . , xm} with an ordering

x1 < x2 < . . . < xm. If X = ∅ we associate to this data the presentation for the trivial group

that has no generators and no relations. Suppose now that X 6= ∅. Partition X into some disjoint

non-empty subsets X1, . . . , Xr such that the elements of Xi precede those in Xj whenever i < j. Then

partition further each Xi as a union of disjoint subsets (most empty of course)

Xi = (
⋃
p∈P

Xi(p)) ∪Xi(∞).

We introduce three maps that we will refer to as presentation maps. The first one is

n : X → N ∪ {∞}

such that n(x) = ∞ if x ∈ Xi(∞) and n(x) is a non-trivial power of p if x ∈ Xi(p). We let Zx = Z
if n(x) = ∞ and otherwise we let Zx = {0, 1, . . . , n(x) − 1}. Let Y = X \ {x ∈ X : n(x) = ∞} and

Z = {(x, y) ∈ X ×X : x < y}. Let F be the free group on X. The second presentation map is

π : Y → F

where, if x ∈ Xs(p), π(x) = x
αx(m)
m · · ·xαx(1)

1 with αx(i) ∈ Zxi and αx(i) = 0 whenever xi 6∈ X1 ∪
· · · ∪Xs−1. Notice that these are the conditions for the right hand side of the power relation (1) with

g1, . . . , gm replaced by x1, . . . , xm. The final presentation map is

δ : Z → F

where δ(x, y) = x
β(x,y)(m)
m · · ·xβ(x,y)(1)

1 and the conditions for the right hand side of (2) above hold as

indicated in the remark that follows it with g1, . . . , gm replaced by x1, . . . , xm. So we have a data

structure that consists of an ordered alphabet X with a partition and three presentation maps. To

this data we associate a presentation with generators x1, . . . , xm, power relations

xn(x) = π(x)

for any x ∈ X such that n(x) 6=∞, and conjugacy relations

xy = δ(x, y)

for each pair (x, y) ∈ X×X such that x < y. We call such a presentation a refined solvable presentation.

Let N be the normal subgroup of the free group F that is generated as a normal subgroup by the rela-

tors of the presentation and let G = F/N . Let gi = xiN for i = 1, . . . ,m and let Gj = 〈X1∪· · ·∪Xj〉N
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for j = 1, . . . , r.

Definition. We say that the refined solvable presentation is consistent if the following two con-

ditions hold:

(1) G1, . . . , Gr EG.

(2) Every element g ∈ G has a unique normal form expression

g = grmm · · · g
r1
1

with ri ∈ Zxi .

Remark. Suppose we have a consistent refined solvable presentation defining a group G. It follows

from the relations that Gi/Gi−1 is abelian. As G1, . . . , Gr are finitely generated normal subgroups of G

it follows that G is polycyclic. Thus every consistent refined solvable presentation defines a polycyclic

group. Conversely we have seen above that every polycyclic group can be defined by a consistent

refined solvable presentation.

Remark. Notice that there are groups with a refined solvable presentation that are not polycyclic.

Take for example two variables x1 < x2 and let X1 = X1(∞) = {x1}, X2 = X2(∞) = {x2}. Here

Y = ∅ and Z = {(x1, x2)}. For the presentation maps n : X → N∪{∞} and π : Y → F , we must have

n(x1) = n(x2) = ∞ and π must be empty. Suppose we choose δ : Z → F such that δ(x1, x2) = x2
1.

Then we get a presentation with two generators x1, x2 and one relation

xx2
1 = x2

1.

The group defined by this presentation is a Baumslag-Solitar group [4] that is not polycyclic. Thus

the presentation is not consistent as can be seen directly from the fact that G1 = 〈x1N〉 is not normal

in G = F/N .

In Section 3 we will describe consistency criteria for refined solvable presentations.

3. The consistency criteria

Before establishing our consistency criteria, we first describe constructions that are central to what

follows. Suppose we have a polycyclic group G defined by a consistent refined solvable presentation as

described in Section 2. Thus G1 < . . . < Gr is the corresponding ascending chain of normal subgroups

with abelian factors. Let φ ∈ Aut (G) such that Gφ1 = G1, . . . , G
φ
r = Gr. Let G ⊆ F be the set of all

normal form expressions in the variables x1, . . . , xm. That is, we take all the normal form expressions

in g1, . . . , gm and in each of these we replace g1, . . . , gm by x1, . . . , xm. As the presentation is consis-

tent, this gives us an identification of G with G that induces a group structure on G such that G ∼= G.

We can thus think of φ as acting on G.



Refined solvable presentations 7

We will consider two situations where we can use this data to get a consistent refined solvable presenta-

tion for a larger polycyclic group G̃. Add a new variable xm+1 and extend our order on X̃ = X∪{xm+1}
such that xm+1 is larger than the elements in X. Let F̃ be the free group on X̃. Let H be the semidi-

rect product of G ∼= G with a infinite cyclic group C∞ = 〈u〉 where the action of C∞ on G is given by

gu = gφ.

For the first situation let G̃ = H. We extend the presentation maps n, π, δ to ñ, π̃, δ̃ so they in-

volve X̃. We do this by letting ñ(xm+1) =∞ and

δ̃(xi, xm+1) = xφi (a normal form expression in x1, . . . , xm)

for i = 1, . . . , xm. Notice that, since ñ(xm+1) =∞, π̃ = π. The refined solvable presentation that we

get using the extended presentation maps has all the relations for G together with m extra relations

x
xm+1

i = δ̃(xi, xm+1) = xφi

for i = 1, . . . ,m. Let Ñ be the normal subgroup of F̃ generated as normal subgroup by all the relators

for the new refined solvable presentation.

We next turn to the partition of X̃ = {x1, . . . , xm+1}. The partition could be into X̃1 = X1, . . . , X̃r =

Xr, X̃r+1 = {xm+1}. If furthermore x−1xφ ∈ 〈X1 ∪ · · · ∪Xr−1〉 for all x ∈ Xr we could instead choose

a partition with X̃1 = X1, . . . , X̃r−1 = Xr−1, X̃r = Xr ∪ {xm+1}.

Let G̃i = 〈X̃1 ∪ · · · ∪ X̃i〉Ñ for i = 1, . . . , r + 1. As Gφ1 = G1, . . . , G
φ
r = Gr, we still have that

G̃1, . . . , G̃r are normal in G̃r+1 = F̃ /Ñ ∼= G̃. For both choices of partition for X̃ we clearly have that

the factors of the ascending series

{1} < G̃1 < . . . < G̃r+1 = F̃ /Ñ

are abelian. Also every element g ∈ G̃ has a unique expression of the form g = uma with m ∈ Z and

a ∈ G. Thus the new refined solvable presentation is consistent as well.

The second situation is a variant of the first. Now suppose furthermore that for some integer e ≥ 2,

that is a power of a prime p, and g ∈ G we have that

ag = aφ
e

(for all a ∈ G)(3.1)

gφ = g.(3.2)

In this case M = 〈g−1xe〉 is a subgroup of the centre of H. Let G̃ = H/M . G embeds naturally into

G̃ and we identify it with its image. We now extend the presentation maps n, π, δ to ñ, π̃, δ̃ as follows.

First we let ñ(xm+1) = e and π̃(xm+1) = g. Notice that, as g ∈ G, g is a normal form expression

in x1, . . . , xm. Finally, as before, let δ̃(xi, xm+1) = xφi which is again in G and thus a normal form
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expression in x1, . . . , xm. The refined solvable presentation with respect to the presentation maps ñ, π̃

and δ̃ is then a presentation with all the relations for G and the extra relations

x
n(xm+1)
m+1 = π̃(xm+1) = g

together with

x
xm+1

i = δ̃(xi, xm+1) = xφi

for 1 ≤ i ≤ m. Similar considerations hold for the partition for X̃ as in the previous situation and one

sees similarly that the new solvable presentation is a consistent refined solvable presentation for the

polycyclic group G̃ = H/M .

We now turn back to our task of finding consistency criteria for refined solvable presentations. Suppose

we have a group G defined by a refined solvable presentation as described above. So we have some

partition of X = {x1, . . . , xm} and presentation maps n, π, δ giving us relations

xn(x) = xαx(m)
m · · ·xαx(1)

1︸ ︷︷ ︸
π(x)

for x ∈ Y and

xy = x
β(x,y)(m)
m · · ·xβ(x,y)(1)

1︸ ︷︷ ︸
δ(x,y)

for x1 ≤ x < y ≤ xm. For k = 0, 1, . . . ,m, let Hk be the group defined by the sub-presentation with

generators x1, . . . , xk and those of the relations involving only x1 ≤ x < y ≤ xk. Notice that H0 is the

trivial group. The idea is to establish inductively criteria for the refined solvable presentation for Hk

to be consistent. The induction basis k = 0 doesn’t need any work. Now suppose 0 ≤ k ≤ m− 1 and

that the sub-presentation for Hk is consistent. Let Hk be the set of all normal form expressions in

x1, . . . , xk. As the sub-presentation for Hk is consistent, we can identify Hk with Hk as above. Using

the presentation map δ we define a function δ(xk+1) : Hk → Hk by first defining the values of the

generators as xδ(xk+1)
i = δ(xi, xk+1) for i = 1, . . . , k. We then extend this to the whole of Hk by letting

δ(xk+1) act on normal form expressions as follows

(xrkk · · ·x
r1
1 )δ(xk+1) = (xδ(xk+1)

k )rk · · · (xδ(xk+1)
1 )r1 .

Notice that δ(x1) = id. Suppose the resulting map δ(xk+1) is an automorphism. If n(xk+1) = ∞,

we have that the sub-presentation defining Hk+1 is a consistent refined solvable presentation for the

semidirect product of Hk with the infinite cyclic group C∞ = 〈u〉 where gu = gδ(xk+1). Now suppose

that n(xk+1) 6= ∞. Using the second construction above and taking into account conditions (3) and

(4), the sub-presentation for Hk+1 is consistent, provided that

π(xk+1)δ(xk+1) = π(xk+1)

x
δ(xk+1)n(xk+1)

i = x
π(xk+1)
i
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for i = 1, . . . , k. It remains to find criteria for δ(xk+1) to be an automorphism. We turn next to this

problem.

Let G be a polycyclic group defined by a consistent solvable presentation as described above. Let

G be the set of all normal form expressions in x1, . . . , xm. As the presentation is consistent, we can

identify G with G. For s = 1, . . . , r let Gs be the subgroup of G generated by X1 ∪ · · · ∪ Xs, Gs(p)
be the subgroup generated by X1 ∪ · · · ∪ Xs−1 ∪ Xs(p) and let τ(Gs) be the subgroup generated by

X1∪· · ·Xs−1∪(
⋃
p∈P Xs(p)). For each x ∈ X choose an element xφ subject to the following conditions:

xφ ∈ Gi if x ∈ Xi(3.3)

xφ ∈ Gi(p) if x ∈ Xi(p).

We extend this to a map φ : G → G by letting φ act on normal form expressions as:

(xrmm · · ·x
r1
1 )φ = (xφm)rm · · · (xφ1 )r1 .

Notice that the condition (5) implies that φ induces maps φs : Gs → Gs, s = 1, . . . , r, where φs = φ|Gs .
It also induces maps φ(s,p) : Gs(p)/Gs−1 → Gs(p)/Gs−1 and maps φ(s,∞) : Gs/τ(Gs)→ Gs/τ(Gs).

Lemma 1. The map φ : G → G is an endomorphism if and only if

(a) π(x)φ = (xφ)n(x) (x1 ≤ x ≤ xm)

and

(b) xyφ = xφy
φ

(x1 ≤ x < y ≤ xm).

We furthermore have that φ is an automorphism if for s = 1, . . . , r we have

det (φ(s,p)) 6= 0 (mod p)(c)

det (φ(s,∞)) = ±1.

Proof. Consider the free group F = 〈x1, . . . , xm〉 and let N be the normal subgroup defined by the

relators of the consistent refined solvable presentation defining G. Thus G = F/N . Let φ̃ : G→ G be

the map corresponding to the map φ : G → G. Consider the homomorphism ψ : F → F induced by

the values xψ = xφ for x1 ≤ x ≤ xm. Then conditions (a) and (b) imply that

(xn(x))ψ = (xψ)n(x) = (xφ)n(x) = π(x)φ = π(x)ψ

and

(xy)ψ = (xψ)y
ψ

= xφy
φ

= (xy)φ = δ(x, y)φ = δ(x, y)ψ.

Thus Nψ ≤ N and ψ induces a endomorphism on G = F/N . This endomorphism is clearly the map

φ̃. Hence φ is an endomorphism.
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The endomorphism φ is bijective if and only if the induced linear maps φ(s,p) and φ(s,∞) are bi-

jective and this happens if and only if condition (c) holds. �

Remark. The condition (a) in the lemma above is of course only relevant when n(x) < ∞. To

avoid making the statement more complicated we can decide that π(x) = 1 and un(x) = 1 for all u ∈ G
in the case when n(x) =∞.

We now turn back again to the problem of establishing criteria for a refined solvable presentation

to be consistent. Let G be a group defined by a refined solvable presentation as described above with

relations

xn(x) = xαx(m)
m · · ·xαx(1)

1︸ ︷︷ ︸
π(x)

(x1 ≤ x ≤ xm)

xy = x
β(x,y)(m)
m · · ·xβ(x,y)(1)

1︸ ︷︷ ︸
δ(x,y)

(x1 ≤ x < y ≤ xm).

We let Hk be the group defined by the sub-presentation with generators x1, . . . , xk and those of the

relations where x1 ≤ x < y ≤ xk. We establish inductively criteria for the sub-presentation for Hk

to be consistent. Suppose this has been achieved for some k where 0 ≤ k ≤ m − 1. We want to add

criteria so that the sub-presentation for Hk+1 is consistent. We let δ(xk+1) : Hk → Hk be the map

induced by the values xδ(xk+1) in Hk as described above. As we pointed out, the presentation for Hk+1

is consistent if and only if the map δ(xk+1) is an automorphism and that we have the extra criteria

that

π(xk+1)δ(xk+1) = π(xk+1)

x
δ(xk+1)n(xk+1)

i = x
π(xk+1)
i .

From Lemma 1 we have criteria for δ(xk+1) to be an automorphism. Suppose that xk+1 ∈ Xs. Then

δ(xk+1) acts trivially on Gs/Gs−1 and so to establish that δ(xk+1) is bijective we only need to show

that δ(xk+1)(t,p) and δ(xk+1)(t,∞) are bijective for 1 ≤ t < s.

For z ∈ X let r(z) be the integer such that z ∈ Xr(z). Adding up for k = 0, . . . ,m − 1, we ob-

tain the ‘if’ part of the following theorem.

Theorem 2. Let G be a group defined by a refined solvable presentation as described above. The

refined solvable presentation is consistent if and only if the following criteria hold. Firstly we must
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have for all x2 ≤ z ≤ xm that

π(z)δ(z) = π(z)(i)

π(x)δ(z) = (xδ(z))n(x) (x1 ≤ x < z)(ii)

xδ(z)
n(z)

= xπ(z) (x1 ≤ x < z)(iii)

xyδ(z) = xδ(z)y
δ(z)

(x1 ≤ x < y < z).(iv)

We also need for 1 ≤ s < r(z) that

det (δ(z)(s,p)) 6= 0 (mod p)(v)

det (δ(z)(s,∞)) = ±1.

Proof It only remains to deal with the ‘only if’ part. Suppose that the presentation is consistent

and let as before G be the set of all normal form expressions in x1, . . . , xm. We know that we can

identify G with G. Furthermore the ascending chain of normal subgroups G1 < . . . < Gr of G induces

a corresponding ascending chain of normal subgroups G1 < . . . < Gr for G. As the factors are abelian

this implies that 〈x1, . . . , xi〉E 〈x1, . . . , xi+1〉 and thus δ(xi+1) is the same as the conjugation by xi+1

on the 〈x1, . . . , xi〉. This map is clearly bijective where δ(xi+1)−1 is induced by the conjugation by

x−1
i+1. As the groups Gs(p) and τ(Gs) are normal in G, we have that it is the conjugation by z that in-

duces the linear operators δ(z)(s,p) on Gs(p)/Gs−1 and δ(z)(s,∞) on Gs/τ(Gs). The linear operators are

bijective with inverses that are induced by the conjugation by z−1. Thus (v) holds. As G satisfies the

relations of the consistent refined solvable presentation we also have π(z)z = (zn(z))z = zn(z) = π(z)

and π(x)z = (xn(x))z = (xz)n(x). Thus (i) and (ii) hold. Then taking the iterated conjugation action

n(z) times by z on x is the same as xz
n

= xπ(z) that establishes (iii). Finally (iv) follows from the

fact that δ(z) is a homomorphism. �

Remarks. (I) Recall that we established the consistency of the sub-presentation defining Hk re-

cursively for k = 0, 1, . . . ,m. So according to the proof we should check (i)-(v) for z = x2, . . . , xm

in ascending order. If z = xk+1 then the consistency of the presentation for Hk+1 follows from the

consistency of the presentation for Hk together with relations (i)-(v) of Theorem 2 where z = xk+1.

So when doing the check for z = xk+1 we can assume that the presentation for Hk is consistent. Using

the definition of δ(z) we first transform all the expressions in (i)-(iv) into expressions in Hk. Then we

turn each side of the equations into normal form in Hk and compare. It is interesting to note that

(provided the check has been positive so far) Hk has a consistent presentation and so the normal form

in each case is independent of how we calculate. We can however do the check in any order we like

(and still sticking to the assumption that Hk has a consistent presentation). The reason for this is

that we will at some point reach the smallest z where the check fails (provided that we haven’t got

a negative result in the mean time). Hence if the presentation is not a consistent this will be recognised.
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(II) How does this approach compare to the existing ones? Our approach is to consider the func-

tion δ(xk+1) defined on Hk. Modulo consistency of the sub-presentation for Hk the conditions (i)-(v)

in Theorem 2 are conditions for the map δ(xk+1) to be an automorphism ((ii), (iv) and (v)) and for

the resulting cyclic extension to have a consistent presentation ((i) and (iii)). The emphasis is thus on

the function δ(xk+1) rather than the group operation (as in [16]). It is our belief that this viewpoint

makes things look a bit clearer.

(III) It should be noted however that our conditions (i)-(iv) have equivalent criteria in the standard

approach. See the list (*) in [16], page 424. The ‘overlaps’ (1),(2),(3) and (5) in that list correspond

to (iv),(ii),(iii) and (i) in Theorem 2. The condition (v) is however new and is a by-product of working

with an ascending normal solvable series. In the standard approach one works with an ascending

subnormal series with cyclic factors. It should also be noted that the idea of obtaining consistency

recursively for Hk, k = 0, . . . ,m, through working with δ(z), is also implicit in [16] but is kept in the

background within the proof. Our conditions (i)-(v) bring this to the surface.

A method for obtaining inverse conjugation relations. For practical checks using these consis-

tency criteria one needs to determine first normal form expressions xz
−1

for x < z < xm (in order to

be able to transform any expression in Hk to an normal form expression). Note however that this is of

course only needed when z is of infinite order. Another advantage of our approach is that it becomes

quite simple and effective to determine these after having produced all the linear maps δ(z)(s,p) and

δ(z)(s,∞), 2 ≤ s < r. Suppose that z ∈ Xs for some 2 ≤ s < r. We now describe how to obtain normal

form expressions for xz
−1

recursively for x < z.

We can suppose that we already know that the sub-presentation for the group G∗ generated by

the generators {x ∈ X : x < z} (using only the relations involving these generators) is consistent.

The presentation for G∗ is built around an ascending normal z-invariant series with each factor either

a finite abelian p-group or a finitely generated torsion-free abelian group.

Now suppose that we are looking at one such factor K/H and that the extra generators needed

to generate K are y1, . . . , ye. We can suppose inductively that we have obtained normal form expres-

sions for all xz
−1

when x is a generator of H. We want to extend this to yz
−1

i for i = 1, . . . , e.

Let v1 = y1H, . . . , ve = yeH be the generators of K/H. Let φ be the automorphism on K/H in-

duced by the conjugation action by z and let ψ be the inverse of φ. Suppose ψ is represented by the

matrix B = (bij). Since φ(ψ(vi)) = vi, we have

beiφ(ve) + · · ·+ b2iφ(v2) + b1iφ(v1) = vi.
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It follows that (using the presentation and calculating in K) we get

(yze)
bei · · · (yz2)b2i(yz1)b1i = yiu

where u is a normal form expression in the generators of H (and we already know how z−1 acts on u.

It follows that

yz
−1

i = ybeie · · · y
b2i
2 yb1i1 u−z

−1
.

Example. To illustrate the method, we will now consider a simple example of a polycyclic group,

E∞, that is non-nilpotent and non-torsion. This is an example from [6] and is the standard wreath

product of the infinite dihedral group by a cyclic group of order 2. That is

E∞ = D∞ o Z2.

Suppose D∞ = 〈a, b : ab = a−1, b2 = 1〉 and Z2 = 〈c〉. Let x1 = a, x2 = ac, x3 = b, x4 = bc and

x5 = c. The group E∞ then has the following refined solvable presentation:

Generators

X1 : x1, x2

X2 : x3, x4

X3 : x5

Relations (We omit relations of the form x
xj
i = xi with i < j)

x2
3 = 1, x2

4 = 1, x2
5 = 1,

xx3
1 = x−1

1 , xx5
1 = x2, x

x4
2 = x−1

2 , xx5
2 = x1, x

x5
3 = x4, x

x5
4 = x3.

We now apply the consistency check described in Theorem 2. We start with condition (v). First

notice that X1 = X1(∞), X2 = X2(2) and X3 = X3(2). We need to calculate the determinants of 4

linear maps. These are δ(x3)(1,∞), δ(x4)(1,∞), δ(x5)(1,∞) and δ(x5)(2,2). These are all easy to calculate

by hand. For example we have that the matrix for δ(x5)(2,2) with respect to the basis x3〈X1〉, x4〈X1〉 is(
0 1

1 0

)
,

that has determinant −1. Similarly all the other determinants satisfy condition (v).

Before moving on to the other four conditions we should determine the normal form for xy
−1

for

all x1 ≤ x < y ≤ x5 using the method described earlier. For this example this is however trivial as we
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only need to consider y ∈ {x3, x4, x5} in which case y is an involution.

Condition (i). We only need to check π(z)δ(z) = π(z) for z ∈ {x3, x4, x5} and this is straightfor-

ward. For example π(x3)δ(x3) = 1δ(x3) = 1 = π(x3).

Condition (ii). We need to check π(x)δ(z) = (xδ(z))n(x) for x1 ≤ x < z where z ∈ {x3, x4, x5}.
Again there are very few checks. For example

π(x3)δ(x5) = 1δ(x5) = 1,

and

(xδ(x5)
3 )n(x3) = x2

4 = 1.

Condition (iii). We need to check xδ(z)
n(z)

= xπ(z) for x1 ≤ x < z where z ∈ {x3, x4, x5}. For example

x
π(x5)
3 = x1

3 = x3,

and

x
δ(x5)n(x5)

3 = x
δ(x5)2

3 = x
δ(x5)
4 = x3.

Condition (iv). Here we will need to check xyδ(z) = xδ(z)y
δ(z)

for x1 ≤ x < y < z. In this example

this can be done quite quickly as one only needs to consider 10 triples (x, y, z) of group elements. For

example

x
x3δ(x5)
1 = (x−1

1 )δ(x5) = x−1
2 ,

and

x
δ(x5)x

δ(x5)
3

1 = xx4
2 = x−1

2 .

4. Implementation and some applications of our consistency checks

We have implemented our consistency check for nilpotent presentations using the NQL package

[10] of the computer-algebra-system Gap; see [7]. In this section, we demonstrate that there are

situations where the method yields a considerable speed-up in checking consistency of large polycyclic

presentations (with some hundreds of generators). For this purpose, we consider nilpotent quotients

of the Basilica group ∆ from [9] and the Brunner-Sidki-Vieira-Group BSV from [5]. Both groups are

two-generated but infinitely presented. The Basilica group admits the following infinite presentation

∆ ∼= 〈{a, b} | [a, ab]σ
i
, i ∈ N0〉

where σ is the endomorphism of the free group over a and b induced by the mapping a 7→ b2 and

b 7→ a; see [9]. The BSV group admits the infinite presentation

BSV ∼= 〈{a, b} | [b, ba]ε
i
, [b, ba

3
]ε
i
, i ∈ N0〉,
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where ε is the endomorphism of the free group over a and b induced by the mapping a 7→ a2 and

b 7→ a2b−1a2. The nilpotent quotient algorithm in [3] computes a weighted nilpotent presentation for

the lower central series quotient G/γc(G) for a group G given by an infinite presentation as above (a

so-called finite L-presentation; see [2]). A weighted nilpotent presentation is a polycyclic presentation

which refines the lower central series of the group. We note that the weighted nilpotent presentations

for the quotients ∆/γc∆ and BSV/γcBSV are refined solvable presentations.

In order to verify consistency of a given polycyclic presentation, the algorithm in [16, p. 424] rewrites

the overlaps of the rewriting rules and compares the result; that is, the algorithm checks the under-

lying rewriting system for local confluence. As even the state of art algorithm ‘collection from the

left’ is exponential [12], the number of overlaps is a central bottleneck here. There are improvements

known which make use of the structure of a polycyclic presentation in order to reduce the number of

overlaps. For instance, for weighted nilpotent presentations, a weight function allows one to reduce

the number of overlaps significantly; see [16, p. 431].

Our method replaces some overlaps by the computation of determinants of integer matrices and it can

easily be combined with the method for weighted nilpotent presentations. This promising approach

yields a considerable speed-up as the following table shows. In the case of BSV the timings were ob-

tained on an AMD Quad Core processor whereas for ∆ we used an Intel Pentium 4 processor. In both

cases the clock-speed was 2.4 GHz. The method Usual denotes our implementation of the algorithm

Quotient #gens Usual Solv Weight Solv+Weight

BSV, class 30 141 0 : 00 : 24 0 : 00 : 21 0 : 00 : 08 0 : 00 : 06

BSV, class 32 155 0 : 00 : 36 0 : 01 : 31 0 : 00 : 13 0 : 00 : 10

BSV, class 34 171 0 : 01 : 32 0 : 01 : 11 0 : 00 : 59 0 : 00 : 43

BSV, class 36 187 0 : 02 : 27 0 : 01 : 46 0 : 01 : 39 0 : 01 : 11

BSV, class 38 203 0 : 03 : 49 0 : 02 : 41 0 : 02 : 39 0 : 01 : 54

BSV, class 40 219 0 : 05 : 33 0 : 03 : 52 0 : 04 : 00 0 : 02 : 53

BSV, class 42 235 0 : 07 : 53 0 : 05 : 30 0 : 05 : 58 0 : 04 : 18

BSV, class 44 251 0 : 11 : 10 0 : 07 : 37 0 : 08 : 35 0 : 06 : 11

BSV, class 46 267 0 : 15 : 21 0 : 10 : 30 0 : 12 : 07 0 : 08 : 44

BSV, class 48 283 0 : 20 : 53 0 : 13 : 56 0 : 16 : 33 0 : 11 : 57

∆, class 35 185 0 : 00 : 31 0 : 00 : 31 0 : 00 : 02 0 : 00 : 02

∆, class 80 609 1 : 19 : 22 1 : 15 : 03 0 : 29 : 48 0 : 27 : 36

∆, class 100 821 8 : 25 : 37 7 : 39 : 54 5 : 45 : 40 5 : 18 : 08

in [16, p. 424] for polycyclic presentations, the method Solv denotes our new method, the method

Weight denotes the method for weighted nilpotent presentation as in [16, p. 431], and the method

Solv+Weight denotes a combination of both of the latter methods. The number #gens denotes the
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number of generators of the considered polycyclic presentation. More information about the lower

central quotients γi(BSV)/γi+1(BSV) and γi(∆)/γi+1(∆) can be found in [2]. In both cases the first

two quotients are free abelian of rank 2 and 1 respectively whereas the remaining quotients are abelian

2-groups. Thus if G is one of the two groups then the refined solvable presentation for G/γn+1(G) has

a generating set X1∪X2∪ · · ·∪Xn where Xn = Xn(∞), Xn−1 = Xn−1(∞) and otherwise Xi = Xi(2).

In summary, our method always yields a noticeable speed-up compared with the standard method

for polycyclic groups. These examples were nilpotent and it is our hope that future investigations

involving more general examples may provide further evidence for the new method.
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