Symplectic alternating nil-algebras

Antonio Tortora and Maria Tota *
Dipartimento di Matematica e Informatica, Università di Salerno
Via Ponte don Melillo, 84084 - Fisciano (SA), Italy
E-mail: antortora@unisa.it, mtota@unisa.it
Gunnar Traustason
Department of Mathematical Sciences, University of Bath
Bath BA2 7AY, UK
Email: gt223@bath.ac.uk

Abstract

In this paper we continue developing the theory of symplectic alternating algebras that was started in [3]. We focus on nilpotency, solubility and nil-algebras. We show in particular that symplectic alternating nil-2 algebras are always nilpotent and classify all nil-algebras of dimension up to 8 .

Keywords: Symplectic; alternating; nilpotent
AMS Subject Classification: 17D99, 08A05, 16N40

1 Introduction

Symplectic alternating algebras have arisen in the study of 2-Engel groups (see [1], [2]) but seem also to be of interest in their own right, with many beautiful properties. Some general theory was developed in [3].

Definition. Let F be a field. A symplectic alternating algebra over F is a triple $L=(V,(),, \cdot)$ where V is a symplectic vector space over F with respect to a non-degenerate alternating form (,) and \cdot is a bilinear and alternating binary operation on V such that

$$
(u \cdot v, w)=(v \cdot w, u)
$$

for all $u, v, w \in V$.

[^0]Notice that $(u \cdot x, v)=(x \cdot v, u)=-(v \cdot x, u)=(u, v \cdot x)$. The multiplication by x from the right is therefore a self-adjoint linear operation with respect to the alternating form. We know that the dimension of a symplectic alternating algebra must be even and we will refer to a basis $x_{1}, y_{1}, \ldots, x_{r}, y_{r}$ with the property that $\left(x_{i}, x_{j}\right)=\left(y_{i}, y_{j}\right)=0$ and $\left(x_{i}, y_{j}\right)=\delta_{i j}$ as a standard basis. We will also adopt the left-normed convention for multiple products. Thus $x_{1} x_{2} \cdots x_{n}$ stands for $\left(\cdots\left(x_{1} x_{2}\right) \cdots\right) x_{n}$. If $x_{1}, x_{2}, \ldots, x_{2 r}$ is a basis for the symplectic vector space, then the alternating product is determined from the values of all triples $\left(x_{i} x_{j}, x_{k}\right)=\left(x_{j} x_{k}, x_{i}\right)=\left(x_{k} x_{i}, x_{j}\right)$ for $1 \leq i<j<k \leq 2 r$.

Given a standard basis $x_{1}, y_{1}, \ldots, x_{r}, y_{r}$ for a symplectic alternating algebra L, we can describe L, as follows. Consider the two isotropic subspaces $F x_{1}+\cdots+F x_{r}$ and $F y_{1}+\cdots+F y_{r}$. It suffices then to write only down the products of $x_{i} x_{j}, y_{i} y_{j}, 1 \leq i<j \leq r$. The reason for this is that having determined these products we have determined $(u v, w)$ for all triples u, v, w of basis vectors, since two of those are either some x_{i}, x_{j} or some y_{i}, y_{j} in which case the triple is determined from $x_{i} x_{j}$ or $y_{i} y_{j}$. The only restraints on the products $x_{i} x_{j}$ and $y_{i} y_{j}$ come from $\left(x_{i} x_{j}, x_{k}\right)=\left(x_{j} x_{k}, x_{i}\right)=\left(x_{k} x_{i}, x_{j}\right)$ and $\left(y_{i} y_{j}, y_{k}\right)=\left(y_{j} y_{k}, y_{i}\right)=\left(y_{k} y_{i}, y_{j}\right)$.

It is clear that the only symplectic alternating algebra of dimension 2 is the abelian one. Furthermore, it is easily seen that up to isomorphism there are two symplectic alternating algebras of dimension 4: one is abelian whereas the other one has the following multiplication table (see [3]).

$$
\begin{aligned}
& x_{1} x_{2}=0 \\
& y_{1} y_{2}=-y_{1} \\
& x_{1} y_{1}=x_{2} \\
& x_{1} y_{2}=-x_{1} \\
& x_{2} y_{1}=0 \\
& x_{2} y_{2}=0 .
\end{aligned}
$$

Of course, the presentation is determined by $x_{1} x_{2}=0$ and $y_{1} y_{2}=-y_{1}$ as the other products are consequences of these two. The symplectic alternating algebras of dimension 6 have been classified in [3], when the field has three elements: there are 31 such algebras of which 15 are simple.

As we said before, some general theory was developed in [3]. In particular it was shown that a symplectic alternating algebra is either semi simple or has an abelian ideal. In this paper we continue developing a structure theory for symplectic alternating algebras and we are motivated by the following question that was posed in [3]:

Question. What can one say about the structure of symplectic alternating nil-algebras? In particular, does a symplectic alternating nil-algebra have to be nilpotent?

If k is a positive integer, we say that a symplectic alternating algebra L is nil-k if $x y^{k}=0$ for all $x, y \in L$. More generally, a symplectic alternating nil-algebra is a symplectic alternating nil- k algebra for some positive integer k. Also, we define $a \in L$ to be a right nil-k element if $a x^{k}=0$ for all $x \in L$ and to be a right nil-element if it is right nil-k for some k. Similarly, $a \in L$ is a left nil-k element when $x a^{k}=0$ for all $x \in L$ and a left nil-element if it is left nil-k for some k.

Furthermore, we say that a symplectic alternating algebra is nilpotent if $x_{1} x_{2} \cdots x_{n}=0$ for all $x_{1}, x_{2}, \ldots, x_{n} \in L$ and for some integer $n \geq 1$. As usual, the nilpotency class of L is the smallest $c \geq 0$ such that $x_{1} x_{2} \cdots x_{c+1}=$ 0 for all $x_{1}, x_{2}, \ldots, x_{c+1} \in L$.

In the following, we first discuss connections between nilpotency and solubility of a symplectic alternating algebra. We will see in particular that every symplectic alternating algebra that is abelian-by-nilpotent is nilpotent. We then move to nil- k elements and to symplectic alternating nil-k algebras. We get a positive answer to the question above for $k=2$ and, when the dimension is ≤ 8, also for $k=3$. We finish with the classification of all nil-algebras of dimension up to 8 .

2 Nilpotency and solubility

For subspaces U, V of a symplectic alternating algebra L, we define $U V$ in the usual way as the subspace consisting of all linear spans of elements of the form $u v$ where $u \in U$ and $v \in V$. We define the lower central series $\left(L^{i}\right)_{i \geq 1}$ inductively by $L^{1}=L$ and $L^{i+1}=L^{i} \cdot L$. Clearly

$$
L^{1} \geq L^{2} \geq \ldots
$$

which implies in particular that every L^{i} is an ideal. We can also define the upper central series $\left(Z^{i}(L)\right)_{i \geq 0}$ naturally by $Z^{0}(L)=\{0\}, Z^{1}(L)=Z(L)=$ $\{a \in L: a x=0$ for all $x \in \bar{L}\}$ and $Z^{i+1}(L)=\left\{a \in L: a x \in Z^{i}(L)\right.$ for all $x \in L\}$. In [3], Lemma 2.2, the author proves that the lower and the upper central series are related as follows:

$$
Z^{i}(L)=\left(L^{i+1}\right)^{\perp}
$$

It follows that $Z^{i}(L)$ is an ideal since, in a symplectic alternating algebra, I^{\perp} is an ideal whenever I is an ideal (see [3], Lemma 2.1); but this also follows directly from $Z^{i+1}(L) \cdot L \leq Z^{i}(L)$. Notice also that the $\operatorname{dim}\left(Z^{i}(L)\right)+$ $\operatorname{dim}\left(L^{i+1}\right)=\operatorname{dim}(L)$. We then have that L is nilpotent of class $c \geq 0$ if and only if c is the smallest integer such that $Z^{c}(L)=L$ or, equivalently, $L^{c+1}=\{0\}$. One more way to characterize the nilpotency in terms of the lower central series is given by the following result.

Proposition 2.1. Let L be a symplectic alternating algebra. Then L is nilpotent if and only if there exists $i \geq 1$ such that L^{i} is isotropic.

Proof. Let L be nilpotent and denote by c its nilpotency class. Then $L=$ $Z^{c}(L)=\left(L^{c+1}\right)^{\perp}$ and hence L^{c+1} is isotropic. Conversely, let L^{i} be isotropic for some $i \geq 1$. Then

$$
\left(u_{1} \cdots u_{i}, v_{1} \cdots v_{i}\right)=0
$$

whenever $u_{1}, \ldots, u_{i}, v_{1}, \ldots, v_{i}$ belong to L. It follows

$$
\left(u_{1}, v_{1} \cdots v_{i} u_{i} \cdots u_{2}\right)=0
$$

and thus L is nilpotent of class at most $2 i-2$ since the symplectic form is non-degenerate.

As usual, the derived series $\left(L^{(i)}\right)_{i \geq 0}$ is defined inductively by $L^{(0)}=L$, $L^{(1)}=L \cdot L=L^{2}$ and $L^{(i+1)}=L^{(i)} \cdot L^{(i)}$. Then

$$
L^{(0)} \geq L^{(1)} \geq \ldots
$$

and we say that a symplectic alternating algebra L is soluble if there exists an integer $n \geq 0$ such that $L^{(n)}=\{0\}$. The smallest n enjoying this property is then referred to as the derived length of L. Thus L has derived length 0 if and only if it has order one. Also, the symplectic alternating algebras with derived length at most 1 are just the abelian ones. A symplectic alternating algebra which is soluble of derived length at most 2 is said to be metabelian.

Lemma 2.2. If L is a symplectic alternating algebra then $L^{(i)} \subseteq L^{i+1}$. In particular, if L is nilpotent of class i then L is soluble of derived length at most i.

Proof. We argue by induction on i. The claim is obviously true when $i=0$ being $L^{(0)}=L=L^{1}$. Assuming $i>0$ and $L^{(i)} \subseteq L^{i+1}$, we get $L^{(i+1)}=$ $L^{(i)} \cdot L^{(i)} \subseteq L^{i+1} \cdot L=L^{i+2}$, as required.

Next result is rather odd and shows that all metabelian symplectic alternating algebras are nilpotent. It also shows that the inclusion in last lemma is not optimal.

Proposition 2.3. Let L be a symplectic alternating algebra. Then L is metabelian if and only if it is nilpotent of class at most 3.

Proof. We have that L is metabelian if and only if $x y(z w)=0$ for all $x, y, z, w \in L$, that is $(x y(z w), t)=0$ for all $t \in L$. This means $0=$ $(x y, z w t)=(x, z w t y)$ and L is nilpotent of class at most 3.

Not all soluble symplectic alternating algebras are however nilpotent as the following example shows.

Example 2.4. Consider

$$
L: \begin{aligned}
& x_{1} x_{2}=0 \\
& y_{1} y_{2}=-y_{1}
\end{aligned}
$$

the only nonabelian symplectic alternating algebra of dimension 4 over a field F. We have

$$
Z(L)=F x_{2} \quad \text { and } \quad L^{2}=Z(L)^{\perp}=F x_{1}+F x_{2}+F y_{1}
$$

Here $L^{(3)}=L^{(2)} \cdot L^{(2)}=F x_{2} \cdot F x_{2}=\{0\}$ and L is soluble of derived length 3 but it is not nilpotent. In fact $y_{1} y_{2}^{n}=(-1)^{n} y_{1}$ for any integer $n \geq 1$.

However, we have the following strong generalisation of Proposition 2.3.
Proposition 2.5. Let L be a symplectic alternating algebra. If L is abelian-by-(nilpotent of class $\leq c)$ then it is nilpotent of class at most $2 c+1$.

Proof. Let I be an abelian ideal of L such that L / I is nilpotent of class at most c. Then $L^{c+1} \subseteq I$ and

$$
\left(x_{1} \cdots x_{c+1} \cdot\left(y_{1} \cdots y_{c+1}\right), z\right)=0
$$

for all $x_{1}, \ldots, x_{c+1}, y_{1}, \ldots, y_{c+1}, z \in L$. Thus

$$
\left(x_{1}, y_{1} \cdots y_{c+1} z x_{c+1} \cdots x_{2}\right)=0
$$

and L is nilpotent of class at most $2 c+1$.

This result fails if we assume that our algebra is nilpotent-by-abelian. The example above still provides a counterexample, for L^{2} is nilpotent and L / L^{2} is abelian.

3 Nil-elements

Let L be a symplectic alternating algebra and x be a left nil-element of L. We say that an element $a \in L$ has nil-x degree m if m is the smallest positive integer such that $a x^{m}=0$. Pick $a \in L$ of maximal nil- x degree k and let

$$
V(a)=\left\langle a, a x, a x^{2}, \ldots, a x^{k-1}\right\rangle
$$

We know that this is an isotropic subspace in L (see [3], Lemma 2.10). Then there exists $b \in L$ such that

$$
(a, b)=(a x, b)=\ldots=\left(a x^{k-2}, b\right)=0 \text { and }\left(a x^{k-1}, b\right)=1
$$

Since $\left(a, b x^{k-1}\right)=\left(a x^{k-1}, b\right)=1$, we have that the nil- x degree of b is k. Notice also that

$$
\left(a x^{r}, b x^{s}\right)=\left(a x^{r+s}, b\right)
$$

which is 1 if $r+s=k-1$ but 0 otherwise. So that the subspace

$$
V(a)+V(b)=V(a) \oplus V(b)=\left\langle a, b x^{k-1}\right\rangle \oplus\left\langle a x, b x^{k-2}\right\rangle \oplus \cdots \oplus\left\langle a x^{k-1}, b\right\rangle
$$

is a perpendicular direct sum of hyperbolic subspaces.
Let $W=W(a, b)=V(a)+V(b)$. The multiplication by x from the right gives us a linear map on L. Then W is invariant under the right multiplication by x and the same is then true for the orthogonal complement W^{\perp} : in fact, for all $y \in W^{\perp}$ and $z \in W$ we have $(y x, z)=-(y, z x)=0$ as $z x \in W$. Now, we can take $c \in W^{\perp}$ of maximal nil- x degree, say m. Then, as before, we get $d \in L$ of nil- x degree m and $W(c, d)=V(c)+V(d)$ is a perpendicular direct sum. Thus we inductively see that L splits up into a perpendicular direct sum

$$
\begin{equation*}
L=W\left(a_{1}, b_{1}\right) \oplus \cdots \oplus W\left(a_{n}, b_{n}\right) \tag{1}
\end{equation*}
$$

We will refer to such a decomposition as a primary decomposition of L with respect to multiplication by x from the right. We will also use the notation

$$
\left(\begin{array}{ll}
a & b x^{k-1} \\
a x & b x^{k-2} \\
\vdots & \vdots \\
a x^{k-1} & b
\end{array}\right)
$$

for the subspace $W(a, b)$.

Proposition 3.1. Let L be a symplectic alternating algebra. If $x \in L$ is a left nil-element, then $C_{L}(x)$ is even dimensional.

Proof. Consider a decomposition as above with respect to right multiplication by x. We have seen that the cyclic subspaces come in pairs, say that

$$
L=V\left(a_{1}\right) \oplus V\left(b_{1}\right) \oplus \cdots \oplus V\left(a_{n}\right) \oplus V\left(b_{n}\right)
$$

The kernel of each of these is one dimensional, hence $C_{L}(x)$ has dimension $2 n$.

For the remainder of this section we focus on right nil-2 elements. In general, a left nil-2 element needs not to be a right nil-2 element. In Example 2.4, y_{1} is a left nil-2 element that is not a right nil-element. However, the converse is always true.

Lemma 3.2. Let L be a symplectic alternating algebra. If a is a right nil-2 element of L, then:
(i) $a y z=-a z y$ for all $y, z \in L$;
(ii) a is left nil-2;
(iii) $C_{L}(a)$ is an ideal;
(iv) La and Fa $+L a$ are abelian ideals and the latter is the smallest ideal containing a.

Proof. (i) We have

$$
0=a(y+z)(y+z)=(a y+a z)(y+z)=a y z+a z y
$$

and $a y z=-a z y$.
(ii) For all $x \in L$, we have $0=-a(a+x)^{2}=x a(a+x)=x a^{2}$.
(iii) Let $x, y \in L$ and $b \in C_{L}(a)$. Then $0=a(x+b)^{2}=a x(x+b)=a x b$ which implies $0=(a x b, y)=(a(b y), x)$. Thus $a(b y)=0$ and $b y \in C_{L}(a)$.
(iv) That $L a$ is an ideal follows immediately from $u a x=-u x a$ and of course it follows then that $F a+L a$ is an ideal, the smallest ideal containing a. As a is left nil-2 and since $a x(y a)=-a(y a) x=0$, it is clear that both the ideals are abelian.

Theorem 3.3. Let X be a set of right nil-2 elements in a symplectic alternating algebra L and denote by $I(X)$ the smallest ideal of L containing X. Then

$$
I(X)=\sum_{a \in X} F a+L a
$$

Furthermore, if $|X|=c$ then $I(X)$ is nilpotent of class at most c.
Proof. Let $a \in X$. By Lemma 3.2 (iv) we know that $I(a)=F a+L a$ is the smallest ideal containing a and that $I(a)$ is abelian. It follows that $I(X)=\sum_{a \in X} I(a)$. Since each of these ideals is abelian it is clear that $I(X)^{c+1}=\{0\}$, here $c=|X|$.

It follows in particular that the ideal generated by all the right nil-2 elements is always a nilpotent ideal.

4 Nil-2 algebras

The results concerning right nil-2 elements lead to the following characterization of symplectic alternating nil-2 algebras.

Theorem 4.1. Let L be a symplectic alternating algebra. Then the following are equivalent:
(i) L is nil-2;
(ii) $C_{L}(x)$ is an ideal for any $x \in L$;
(iii) $I(x)$ is abelian for any $x \in L$;
(iv) the identity $x y z=-x z y$ holds in L;
(v) the identity $x(y z)=x z y$ holds in L.
Proof. First we show that $(\mathrm{i}) \Leftrightarrow(\mathrm{ii}) \Leftrightarrow(\mathrm{iii})$. From Lemma 3.2, we know that (i) implies (ii) and (iii). To see that (iii) implies (i), take any $a, x \in L$. As $I(x)$ is abelian and $a x, x \in I(x)$, it follows that $a x^{2}=0$. Finally to show that (ii) implies (i), notice that $x \in C_{L}(x)$ and as $C_{L}(x)$ is an ideal we also have $a x \in C_{L}(x)$. The latter gives $a x^{2}=0$.

We finish the proof by showing that $(\mathrm{i}) \Rightarrow(\mathrm{iv}) \Rightarrow(\mathrm{v}) \Rightarrow(\mathrm{i})$. The fact that (i) implies (iv) follows from Lemma 3.2. If (iv) holds, then $x(y z)=-y z x=$ $y x z=-x y z=x z y$ that gives us (v). Finally (i) follows from (v) by taking $y=z$.

It follows from Theorem 3.3 that all symplectic alternating nil-2 algebras are nilpotent. We next analyse this in more details.

Theorem 4.2. Let L be a symplectic alternating algebra over a field F of characteristic $\neq 2$. If L is nil-2, then L is nilpotent of class at most 3.

Proof. Let $x, y, z, t \in L$. By Theorem 4.1, $x y(t z)=x y z t$ and $x y(t z)=$ $-x(t z) y=-x z t y=x z y t=-x y z t$. It follows that $2 x y z t=0$ and, since char $F \neq 2$, we conclude that $x y z t=0$.

Moreover, the bound provided is optimal as there exists a nil-2 algebra which is nilpotent of class 3 .

Example 4.3. Let F be any field and L be the linear span of

$$
\begin{array}{ll}
x_{1}=a & y_{1}=t c b \\
x_{2}=b & y_{2}=t a c \\
x_{3}=c & y_{3}=t b a \\
x_{4}=a b & y_{4}=t c \\
x_{5}=c a & y_{5}=t b \\
x_{6}=b c & y_{6}=t a \\
x_{7}=a b c & y_{7}=t .
\end{array}
$$

As a symplectic vector space we let $L=\left(F x_{1}+F y_{1}\right) \oplus \cdots \oplus\left(F x_{7}+F y_{7}\right)$, a perpendicular direct sum of hyperbolic subspaces (where $\left(x_{i}, y_{i}\right)=1$ for $i=$ $1, \ldots, 7)$. We turn this into a symplectic alternating nil-2 algebra by adding an alternating product satisfying condition (iv) of Theorem 4.1. As the identity (iv) is multilinear it suffices that $x y z=-x z y$ whenever x, y, z are generators. The condition implies that the only non-trivial triples $(u v, w)=$ $(v w, u)=(w u, v)$ are

$$
\begin{aligned}
\left(x_{1} x_{2}, y_{4}\right) & =1 \\
\left(x_{3} x_{1}, y_{5}\right) & =1 \\
\left(x_{2} x_{3}, y_{6}\right) & =1 \\
\left(x_{4} x_{3}, y_{7}\right) & =1 \\
\left(x_{5} x_{2}, y_{7}\right) & =1 \\
\left(x_{6} x_{1}, y_{7}\right) & =1 .
\end{aligned}
$$

Conversely one can easily check that this alternating product turns L into a symplectic alternating nil-2 algebra that is nilpotent of class 3 .

Theorem 4.4. Let F be a field of characteristic 2 and let L be a symplectic alternating algebra of dimension $n=2 m$. If L is nil-2, then L is nilpotent of class at most $\left\lfloor\log _{2}(m+1)\right\rfloor$.

Proof. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis of L. If char $F=2$, then L is commutative and, by Theorem 4.1, it is also associative. It follows that

$$
u_{1} \cdots u_{n}=0 \text { for all } u_{1}, \ldots, u_{n} \in L \text { if and only if } x_{1} \cdots x_{n}=0 .
$$

But $\left(x_{1} \cdots x_{n}, x_{i}\right)=0$ for any $i \in\{1, \ldots, n\}$. Hence $x_{1} \cdots x_{n}=0$ and L is nilpotent of class at most $n-1$. So, if we denote by c the nilpotency class of L, then $c<n$. Since the class is c there is a non-zero product $x_{i_{1}} \cdots x_{i_{c}}$ and without loss of generality we can suppose that $x_{1} \cdots x_{c} \neq 0$. Now, let

$$
x_{I}=x_{i_{1}} \cdots x_{i_{r}}
$$

for any $I=\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\{1, \ldots, c\}$ and let

$$
X=\left\{x_{I}: \emptyset \subset I \subseteq\{1, \ldots, c\}\right\} .
$$

We prove that X is a linearly independent subset of L. Assume

$$
\alpha_{1} x_{I_{1}}+\ldots+\alpha_{m} x_{I_{m}}=0
$$

where $m \leq 2^{c}-1$ and $\left|I_{1}\right| \leq \ldots \leq\left|I_{m}\right|$. Let α_{j} be the least non zero coefficient and $J=\{1, \ldots, c\} \backslash I_{j}$. Then, multiplying by $\prod_{k \in J} x_{k}$, we get

$$
\alpha_{j} x_{1} \cdots x_{c}=0
$$

and thus $x_{1} \cdots x_{c}=0$ which is a contradiction. Thus X is linearly independent and $|X|=2^{c}-1$. Hence $2^{c}-1 \leq 2 m$ and $2^{c}<2 m+2$. Then $c<\log _{2}(2(m+1))=1+\log _{2}(m+1)$ and so $c \leq \log _{2}(m+1)$, as we claimed.

Indeed, the bound we have just got is the best possible, as shown in the following construction:

Example 4.5. Let F be the field with 2 elements and let $r>3$. There exists a symplectic alternating nil-2 algebra L over F of dimension $2\left(2^{r-1}-1\right)$ which is nilpotent of class $r-1$. In fact, define L to be the linear span of all monomials in x_{1}, \ldots, x_{r} with no repeated entries and of weight less than r. Then L has dimension $2^{r}-2$ over F. Let

$$
\left(x_{i_{1}} \ldots x_{i_{n}}, x_{j_{1}} \ldots x_{j_{m}}\right)=0
$$

except if $n+m=r$ and $\left\{i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{m}\right\}=\{1, \ldots, r\}$, and 1 otherwise. This gives a symplectic vector space. Let

$$
x_{i_{1}} \ldots x_{i_{n}} \cdot x_{j_{1}} \ldots x_{j_{m}}=x_{i_{1}} \ldots x_{i_{n}} x_{j_{1}} \ldots x_{j_{m}}
$$

if $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{m}$ are distinct and $\left\{i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{m}\right\} \subset\{1, \ldots, r\}$, and 0 otherwise. Then L is a symplectic alternating algebra that is nilpotent of class $r-1$. Since L is commutative and associative, it is also nil- 2 .

5 Nil-3 algebras

In this section we describe some general properties of a symplectic alternating nil-3 algebra L.

Lemma 5.1. For any $x, y_{i}, z \in L$ the following identities hold:
(i) $\sum_{\sigma \in S_{3}} x y_{\sigma(1)} y_{\sigma(2)} y_{\sigma(3)}=0$;
(ii) $\sum_{\sigma \in S_{2}} x y_{\sigma(1)} y_{\sigma(2)} z+x y_{\sigma(1)}\left(z y_{\sigma(2)}\right)+x\left(z y_{\sigma(1)} y_{\sigma(2)}\right)=0$.

Proof. The proof of (i) is straightforward. To see why (ii) holds notice that, for any $u \in L$, from (i) we have

$$
\begin{aligned}
0 & =\left(\sum_{\sigma \in S_{2}} x y_{\sigma(1)} y_{\sigma(2)} u+x y_{\sigma(1)} u y_{\sigma(2)}+x u y_{\sigma(1)} y_{\sigma(2)}, z\right) \\
& =\sum_{\sigma \in S_{2}}\left(x y_{\sigma(1)} y_{\sigma(2)}, z u\right)+\left(x y_{\sigma(1)}, z y_{\sigma(2)} u\right)+\left(x, z y_{\sigma(2)} y_{\sigma(1)} u\right) \\
& =-\left(\sum_{\sigma \in S_{2}} x y_{\sigma(1)} y_{\sigma(2)} z+x y_{\sigma(1)}\left(z y_{\sigma(2)}\right)+x\left(z y_{\sigma(2)} y_{\sigma(1)}\right), u\right) .
\end{aligned}
$$

In the following we will use the notation

$$
x\left\{y_{1}, y_{2}, y_{3}\right\}
$$

for the first sum in Lemma 5.1 and similarly

$$
x\left\{y_{1}, y_{2}\right\}=x y_{1} y_{2}+x y_{2} y_{1} .
$$

Lemma 5.2. For any $x, y, z \in L$ the following hold:
(i) $y x^{2} y=-y x y x \in L x$;
(ii) if $z x^{2} y=0$ then $y x^{2} z \in L x$;
(iii) $y x^{2}\left(z x^{2}\right) \in L x \cap C_{L}(x)$;
(iv) if $y x^{2}\left(z x^{2}\right)=0$ then $y x^{2}(z x) \in L x \cap C_{L}(x)$.

Proof. (i) First we have

$$
0=y(x+y)^{3}=y x(x+y)^{2}=\left(y x^{2}+y x y\right)(x+y)=y x^{2} y+y x y x .
$$

(ii) Assume $z x^{2} y=0$. Then we get

$$
\begin{aligned}
0 & =x\{x, y, z\} \\
& =x y\{x, z\}+x z\{x, y\} \\
& =x y x z+x y z x+x z y x
\end{aligned}
$$

that gives $y x^{2} z \in L x$.
(iii) We see that

$$
0=-x\left\{x, y x, z x^{2}\right\}=y x^{2}\left\{x, z x^{2}\right\}=y x^{2}\left(z x^{2}\right) x .
$$

Then also

$$
\begin{aligned}
0 & =x\left\{x, y, z x^{2}\right\} \\
& =x y\left\{x, z x^{2}\right\} \\
& =x y x\left(z x^{2}\right)+x y\left(z x^{2}\right) x
\end{aligned}
$$

that implies $y x^{2}\left(z x^{2}\right) \in L x \cap C_{L}(x)$.
(iv) Let $y x^{2}\left(z x^{2}\right)=0$. Since

$$
0=x\left\{x, y x^{2}, z\right\}=x z\left(y x^{2}\right) x,
$$

it follows

$$
y x^{2}(z x) x=0 .
$$

Notice also

$$
\begin{aligned}
0 & =x\{x, y, z x\} \\
& =x y\{x, z x\}+x(z x)\{x, y\} \\
& =x y x(z x)+x y(z x) x+x(z x) y x .
\end{aligned}
$$

Thus $y x^{2}(z x) \in L x \cap C_{L}(x)$.

6 Classification of nil-algebras of dimension ≤ 8

Before embarking on the classification of the symplectic alternating nilalgebras of dimension ≤ 8, we prove the following result.
Proposition 6.1. If L is a symplectic alternating nil-k algebra, then $\operatorname{dim}(L)$ $\geq 2(k+1)$.
Proof. Suppose by contradiction $\operatorname{dim}(L)=2 k$ and take $x \in L$ which is not left nil- $(k-1)$. By (1), there is only one possible primary decomposition for the multiplication by x from the right. This is

$$
\left(\begin{array}{ll}
a & b x^{k-1} \\
a x & b x^{k-2} \\
\vdots & \vdots \\
a x^{k-1} & b
\end{array}\right)
$$

It is easy to see that $x=c x^{k-1}$ for some $c \in L$. Then $0=x\left(-c x^{k-2}\right)^{k}=x$, which is impossible.

As a consequence, all the nonabelian nil-algebras of dimension ≤ 8 are the nil- 2 algebras of dimension either 6 or 8 and the nil- 3 of dimension 8 .

6.1 Nil-2 algebras of dimension 6

Let L be a symplectic alternating nil- 2 algebra of dimension 6 over a field F. Assume that L is not abelian and let $x \in L \backslash Z(L)$. Because of (1), we have that the only primary decomposition of L with respect to multiplication by x from the right is

$$
\left(\begin{array}{ll}
a & b x \\
a x & b
\end{array}\right) \oplus\left(\begin{array}{ll}
c & d
\end{array}\right)
$$

where $c x=d x=0$.
By Theorem 4.1, $a x c=-x a c=x c a=0$ and similarly $a x$ commutes with $d, a, a x, b x$. As $C_{L}(a x)$ is even dimensional, it follows that $a x$ commutes also with b and thus $a x \in Z(L)$. Similarly $b x \in Z(L)$ and $L x \subseteq Z(L)$. Of course this is also true if $x \in Z(L)$. We have thus shown that $L y \subseteq Z(L)$ for all $y \in L$ and thus L is nilpotent of class 2 .
Now we have

$$
x=\alpha a x+\beta b x+u
$$

for some $\alpha, \beta \in F$ and $u \in F c+F d$. As $x \notin L x$ we must have that u is nontrivial. Also $a u=a x$ and $b u=b x$. We can thus, without loss of generality, replace x by u and suppose that x is orthogonal to $a, a x, b, b x$. Next we turn to $a b$. Notice that $a b$ is orthogonal to $a, b, a x, b x$ and $(x, a b)=$ $(-b x, a)=(a, b x)=1$. Hence we have the primary decomposition

$$
\left(\begin{array}{ll}
a & b x \\
a x & b
\end{array}\right) \oplus\left(\begin{array}{ll}
x & a b
\end{array}\right)
$$

with respect to multiplication by x from the right. The structure is now completely determined. So there is just one nonabelian nil-2 algebra of dimension 6 .

6.2 Nil-2 algebras of dimension 8

Let L be a symplectic alternating nil- 2 algebra of dimension 8 over a field F. Assume that L is not abelian and let $x \in L \backslash Z(L)$. We cannot have $x \in L x$ as this would imply that $x=x z$ for some $z \in L$ and then $x=x z^{2}=0$. By (1), this implies that there is only one possible primary decomposition of L with respect to multiplication by x from the right. This is

$$
\left(\begin{array}{ll}
a & b x \\
a x & b
\end{array}\right) \oplus\left(\begin{array}{ll}
c & d
\end{array}\right) \oplus\left(\begin{array}{ll}
e & f
\end{array}\right)
$$

where $c x=d x=e x=f x=0$.
By Theorem 4.1, $a x c=-x a c=x c a=0$ and similarly we see that $a x$ commutes with $d, e, f, b x$ as well as, of course, with a and $a x$. Since $C_{L}(a x)$ is even dimensional, it follows that $a x$ commutes also with b and $a x \in Z(L)$. The same argument shows that $b x \in Z(L)$. So $L x \subseteq Z(L)$ and obviously
this is also true if $x \in Z(L)$. We have thus shown that $L y \subseteq Z(L)$ for all $y \in L$ and L is nilpotent of class 2 . Now we have that

$$
x=\alpha a x+\beta b x+u
$$

for some $\alpha, \beta \in F$ and for $u \in F c+F d+F e+F f$. As x cannot be in $L x$ we must have that u is nontrivial. Now $a u=a x$ and $b u=b x$ so we can, without loss of generality, replace x by u and so we can suppose that x is orthogonal to $a, b, a x, b x$. Next consider the element $a b$. We have that $a b$ is orthogonal to a, b and as $a b \in Z(L)$, we also have that $a b$ is orthogonal to $a x$ and $b x$. Furthermore $(x, a b)=(-b x, a)=(a, b x)=1$. So we have a primary decomposition

$$
\left(\begin{array}{ll}
a & b x \tag{2}\\
a x & b
\end{array}\right) \oplus\left(\begin{array}{ll}
x & a b
\end{array}\right) \oplus\left(\begin{array}{ll}
c & d
\end{array}\right)
$$

with $c x=d x=0$. But now $F a+F a x+F b x+F b+F x+F a b$ is invariant under multiplication by a and b. It follows that its orthogonal complement, $F c+$ $F d$, is also invariant under multiplication by a and b. The only possibility then is that $c a=d a=c b=d b=0$. Notice, finally, that $c d$ is orthogonal to $a, a x, b, b x, x, a b$ as well as to c, d and thus $c d=0$. The structure of L is thus determined. All triples $(u v, w)$ involving $a x, b x, a b, c, d$ are trivial and $(a x, b)=(x b, a)=(b a, x)=1$. So there is only one nonabelian nil-2 algebra of dimension 8 .

6.3 Nil-3 algebras of dimension 8

Let L be a symplectic alternating nil-3 algebra of dimension 8 over a field F. Suppose that $x \in L$ is not left nil-2. By (1), there is only one possible primary decomposition for the multiplication by x from the right. This is

$$
L=\left(\begin{array}{ll}
a & b x^{2} \\
a x & b x \\
a x^{2} & b
\end{array}\right) \oplus\left(\begin{array}{ll}
u & t
\end{array}\right)
$$

where $u x=t x=0$.
Lemma 6.2. The following properties hold:
(i) $L x^{2}$ is abelian;
(ii) $L x^{2}(L x) \subseteq L x^{2}$;
(iii) $a x^{2}(a x)=-a x^{2} a x$ and $b x^{2}(b x)=-b x^{2} b x$;
(iv) if $b x^{2}(a x)=0$ then $a x^{2}(a x)=r b x^{2}$ for some $r \in F$;
(v) if $a x^{2}(b x)=0$ then $b x^{2}(b x)=$ sax x^{2} for some $s \in F$.

Proof. (i) As $L x \cap C_{L}(x)=L x^{2}$, it follows from Lemma 5.2 (iii) that $a x^{2}\left(b x^{2}\right) \in L x^{2}=F a x^{2} \oplus F b x^{2}$. Suppose

$$
a x^{2}\left(b x^{2}\right)=\alpha a x^{2}+\beta b x^{2}
$$

for some $\alpha, \beta \in F$. Then

$$
0=a x^{2}\left(b x^{2}\right)^{3}=\alpha^{3} a x^{2}+\alpha^{2} \beta b x^{2}
$$

implies $\alpha=0$ and

$$
0=b x^{2}\left(a x^{2}\right)^{3}=-\beta^{3} b x^{2}
$$

gives $\beta=0$. Thus $a x^{2}\left(b x^{2}\right)=0$ and $L x^{2}$ is abelian.
(ii) This follows by (i) and Lemma 5.2 (iv), since $L x \cap C_{L}(x)=L x^{2}$.
(iii) We have

$$
0=-x\{a, x, a x\}=a x\{x, a x\}+a x^{2}\{a, x\}=a x^{2}(a x)+a x^{2} a x
$$

and similarly $0=b x^{2}(b x)+b x^{2} b x$.
(iv) By (ii), we know that

$$
a x^{2}(a x)=s a x^{2}+r b x^{2}
$$

for some $r, s \in F$. Then

$$
0=-x(a x)^{3}=a x^{2}(a x)^{2}=s^{2} a x^{2}+s r b x^{2}
$$

implies $s=0$ and hence $a x^{2}(a x)=r b x^{2}$.
We get (v) in the same manner.
Notice that the following result holds with the roles of a and b interchanged.

Lemma 6.3. If $a x^{2}(a x)=r b x^{2}$ for some $r \in F$, then $a x^{2}(b x)=0$. Furthermore, $a x^{2} \in Z(L)$ when $r=0$.

Proof. By (i) of Lemma 5.2, $a x^{2} a \in L x$. As $\left(a x^{2} a, a\right)=0$ and

$$
\left(a x^{2} a, a x\right)=-\left(a x^{2}(a x), a\right)=r
$$

we have

$$
a x^{2} a=\alpha a x+\beta a x^{2}-r b x
$$

for some $\alpha, \beta \in F$. Then

$$
a x^{2} a x=\alpha a x^{2}-r b x^{2}
$$

But $a x^{2} a x=-a x^{2}(a x)=-r b x^{2}$ by Lemma 6.2 (iii), thus $\alpha a x^{2}=0$. It follows that $\alpha=0$ and

$$
a x^{2} a=\beta a x^{2}-r b x
$$

so that $a x^{2} a$ is orthogonal to $b x$ and thus $a x^{2}(b x)$ is orthogonal to a. However, $a x^{2}(b x) \in L x^{2}$ by (ii) of Lemma 6.2, hence

$$
a x^{2}(b x)=\gamma a x^{2}
$$

for some $\gamma \in F$. Moreover $0=a x^{2}(b x)^{3}=\gamma^{3} a x^{2}$, hence $\gamma=0$ and $a x^{2}(b x)=$ 0.

Now assume $r=0$. Then

$$
a x^{2} a=\beta a x^{2}
$$

and we have

$$
0=a x^{2} a^{3}=\beta^{3} a x^{2}
$$

which gives $\beta=0$ and

$$
a x^{2} a=0
$$

We now turn to $a x^{2} u$ and $a x^{2} t$. They both lie in $L x$ by (ii) of Lemma 5.2 and are orthogonal to $a, a x, b x$. If $\beta=\left(a x^{2} u, b\right)$ and $\gamma=\left(a x^{2} t, b\right)$, we have

$$
a x^{2} u=\beta a x^{2} \quad \text { and } \quad a x^{2} t=\gamma a x^{2}
$$

Then, as before, we get $\beta=\gamma=0$. We have thus seen that $a x^{2}$ commutes with $a, a x, a x^{2}, b x, b x^{2}, u, t$ and, as the dimension of $C_{L}\left(a x^{2}\right)$ is even, it follows that $a x^{2} b=0$ and $a x^{2} \in Z(L)$.

Corollary 6.4. Let $y, z \in L$. If $y z^{2}(y z)=0$ then $y z^{2} \in Z(L)$.
Proof. If $y z^{2}=0$, this is obvious. Otherwise this follows from Lemma 6.3 with y in the role of a and z in the role of x.

Remark 6.5. In particular if $y z^{2}(y z)=0$ for all $y, z \in L$, then $L z^{2} \subseteq Z(L)$.
Furthermore, we have:
Lemma 6.6. $Z(L) \cap L x^{2} \neq\{0\}$.
Proof. If $a x^{2}(a x)=0$, then $a x^{2} \in Z(L)$ by the previous lemma. So we may assume $a x^{2}(a x) \neq 0$. By Lemma 6.2 (ii), the multiplication by $a x$ from the right gives us a linear operator on $L x^{2}$ that is a nil operator and so with a nontrivial kernel. This means that we have

$$
(b+\alpha a) x^{2}(a x)=0
$$

for some $\alpha \in F$. Without loss of generality we can replace b by $b+\alpha a$ and thus assume that

$$
b x^{2}(a x)=0
$$

By Lemma 6.2 (iv) we have $a x^{2}(a x)=r b x^{2}$ for some $r \in F \backslash\{0\}$ and hence $a x^{2}(b x)=0$ by Lemma 6.3. Then (v) of Lemma 6.2 gives that there exists $s \in F$ such that $b x^{2}(b x)=s a x^{2}$. This implies

$$
0=b x^{2}(a x+b x)^{3}=r s^{2} a x^{2}
$$

and we get $s=0$. It follows $b x^{2}(b x)=0$ and $b x^{2} \in Z(L)$ again applying Lemma 6.3.

We now turn to the structure of L. This is determined by the value of all triples $(v z, w)=(z w, v)=(w v, z)$ where v, z, w are pairwise distinct basis vectors. As any such triples has either two vectors from $\left\{a, a x, a x^{2}, b, b x, b x^{2}\right\}$ or two vectors from $\{u, t\}$, we only need to determine $u t$ and the products of any two elements from $\left\{a, a x, a x^{2}, b, b x, b x^{2}\right\}$.

According with Lemma 6.6, we will assume

$$
\begin{equation*}
b x^{2} \in Z(L) \tag{3}
\end{equation*}
$$

Then we also have

$$
\begin{equation*}
a x^{2}(a x)=r b x^{2} \quad \text { and } \quad a x^{2}(b x)=0 \tag{4}
\end{equation*}
$$

by Lemma 6.2 (iv) and Lemma 6.3, respectively.
Step 1. We can assume that $a x^{2} b=0$ and $a x^{2} a=-r b x$.
Proof. By Lemma 5.2, (ii) and (i), $a x^{2} b$ and $a x^{2} a$ are in $L x$. Also $a x^{2} b$ is orthogonal to $a x, b, b x$ and

$$
a x^{2} b=\alpha b x^{2}
$$

for $\alpha=-\left(a x^{2} b, a\right)$. If $r=0$, then Lemma 6.3 implies $a x^{2} \in Z(L)$ and so $a x^{2} b=0$. Let $r \neq 0$, then $a x^{2}\left(b-\frac{\alpha}{r} a x\right)=0$. Replacing b by $b-\frac{\alpha}{r} a x$, we can assume that $a x^{2} b=0$. One can check that (3) and (4) still hold.

Next, we have that $a x^{2} a$ is orthogonal to $a, b, b x$ and

$$
\left(a x^{2} a, a x\right)=-\left(a x^{2}(a x), a\right)=-r\left(b x^{2}, a\right)=r
$$

Thus $a x^{2} a=-r b x$.
Suppose now that $x=y+z$ with $y \in\left\langle a, a x, a x^{2}, b, b x, b x^{2}\right\rangle$ and $z \in\langle u, t\rangle$. Then $0=y x$ and thus $y \in L x^{2}$. Notice that $z \neq 0$ since otherwise $x=y=$ $c x^{2}$ for some $c \in L$ and $0=x(-c x)^{3}=x$. Without loss of generality, we can suppose that $z=u$. Hence

$$
x=u+\alpha a x^{2}+\beta b x^{2}
$$

for some $\alpha, \beta \in F$.

Let us calculate the effect of multiplying with

$$
u=x-\alpha a x^{2}-\beta b x^{2}
$$

Firstly, we have

$$
u t=x t-\alpha a x^{2} t .
$$

However, $a x^{2} t \in L x$ by Lemma 5.2 (ii) and is orthogonal to $a, a x, b, b x$. Thus $a x^{2} t=0$ and

$$
u t=x t .
$$

Recall that $b x^{2} \in Z(L)$ and that $a x^{2} b=a x^{2}(b x)=0$, whereas $a x^{2} a=$ $-r b x$ and $a x^{2}(a x)=r b x^{2}$. Using this, we see that

$$
a u=a x+\alpha a x^{2} a=a x-\alpha r b x
$$

and

$$
\begin{aligned}
a u^{2} & =(a x-\alpha r b x)\left(x-\alpha a x^{2}-\beta b x^{2}\right) \\
& =a x^{2}+\alpha a x^{2}(a x)-\alpha r b x^{2} \\
& =a x^{2}+\alpha r b x^{2}-\alpha r b x^{2} \\
& =a x^{2}
\end{aligned}
$$

One also sees that $b u=b x$ and $b u^{2}=b x^{2}$. Replacing x by u and $a, a x, a x^{2}$, $b, b x, b x^{2}$ by $a, a u, a u^{2}, b, b u, b u^{2}$, we still have a decomposition into hyperbolic subspaces. One can now check that (3), (4) and Step 1 are still valid with x replaced by u. So without loss of generality we can assume that $u=x$. We thus have a primary decomposition

$$
L=\left(\begin{array}{ll}
a & b x^{2} \\
a x & b x \\
a x^{2} & b
\end{array}\right) \oplus\left(\begin{array}{ll}
x & t
\end{array}\right)
$$

where

$$
\begin{equation*}
x t=0 . \tag{5}
\end{equation*}
$$

Step 2. $a x(b x)=0$.
Proof. From $a x^{2} b=0$, we get

$$
\begin{equation*}
0=-x\{a, b, x\}=a x\{b, x\}+b x\{a, x\}=a x b x+b x a x \tag{6}
\end{equation*}
$$

Since the values

$$
(a x b, b),(a x b, a x),\left(a x b, a x^{2}\right),\left(a x b, b x^{2}\right)
$$

and

$$
(b x a, a),(b x a, b x),\left(b x a, a x^{2}\right),\left(b x a, b x^{2}\right)
$$

are all trivial, we have

$$
\begin{equation*}
a x b=\alpha a x+y, \quad y \in F b x^{2}+F x+F t \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
b x a=\beta b x+z, \quad z \in F a x^{2}+F x+F t \tag{8}
\end{equation*}
$$

respectively. By (6), (7) and (8), it follows that

$$
\alpha a x^{2}=a x b x=-b x a x=-\beta b x^{2}
$$

which implies $\alpha=\beta=0$. Hence $(a x b, b x)=(b x a, a x)=0$ and thus

$$
(a x(b x), a)=(a x(b x), b)=0
$$

Clearly, $a x(b x)$ is also orthogonal to $a x, b x, a x^{2}, b x^{2}, x$ and thus

$$
a x(b x)=\alpha x
$$

for some $\alpha \in F$. But we have

$$
\begin{aligned}
0 & =-x\{a, a x, b x\} \\
& =a x\{a x, b x\}+a x^{2}\{a, b x\}+b x^{2}\{a, a x\} \\
& =a x(b x)(a x)+a x^{2} a(b x) \\
& =a x(b x)(a x)-r(b x)^{2} \\
& =a x(b x)(a x)
\end{aligned}
$$

Then

$$
0=a x(b x)(a x)=\alpha x(a x)=-\alpha a x^{2}
$$

and $\alpha=0$.
Step 3. We can assume that $b x b=0$ and $a x a=r b$.
Proof. Let us first consider $b x b$. It is orthogonal to $a x, a x^{2}, b, b x, b x^{2}, x$. We then have

$$
b x b=\alpha b x^{2}+\beta x
$$

where $\alpha=-(b x b, a)$ and $\beta=(b x b, t)$. Since

$$
0=x b^{3}=-\beta x b
$$

we get $\beta=0$. It follows that

$$
0=b x(b-\alpha x)
$$

Replacing b by $b-\alpha x$ and t by $t-\alpha a x^{2}$ respectively, (3), (4), (5) and the previous steps still hold. Thus we can assume $b x b=0$.

We turn to $a x a$. It is clear that $a x a$ is orthogonal to $a, a x, b x, b x^{2}, x$ and that

$$
\left(a x a, a x^{2}\right)=\left(a x^{2}, a(a x)\right)=\left(a x^{2}(a x), a\right)=r\left(b x^{2}, a\right)=-r .
$$

Suppose $(a x a, b)=\alpha$ and $(a x a, t)=\beta$. Then

$$
\begin{equation*}
a x a=\alpha a x^{2}+r b+\beta x . \tag{9}
\end{equation*}
$$

We next show that $a x a(b x) \in L x$ and in order to do this we prove that $a(b x) x=0$. That this is sufficient follows from

$$
0=a\{a, x, b x\}=a x\{a, b x\}+a(b x)\{a, x\}=a x a(b x)+a(b x) a x+a(b x) x a .
$$

As $a x(b x)=0$, by (8) we know that $a(b x) \in F a x^{2}+F x+F t$. But

$$
(a(b x), b)=0 \quad \text { and } \quad(a(b x), x)=-1
$$

and thus

$$
\begin{equation*}
a(b x)=\gamma x+t \quad \text { and } \quad a(b x) x=0 . \tag{10}
\end{equation*}
$$

Let $a x a(b x)=\alpha_{1} a x+\alpha_{2} a x^{2}+\beta_{1} b x+\beta_{2} b x^{2}$. Since

$$
(a x a(b x), a)=(a x a(b x), b)=(a x a(b x), a x)=(a x a(b x), b x)=0
$$

$a x a(b x)$ is trivial and, by (9), we get

$$
0=a x a(b x)=-\beta b x^{2} .
$$

Thus $\beta=0$ and $a x(a-\alpha x)=r b$. If we replace a by $a-\alpha x$ and t by $t+\alpha b x^{2}$, then (3), (4), (5) and all the previous steps hold. So we can assume that $a x a=r b$.

Step 4. $a x b=t$ and $b x a=-t$.
Proof. We first consider axt which is clearly orthogonal to x and t. As the product of $a x$ with $a, a x, a x^{2}, b x, b x^{2}$ is orthogonal to $t, a x t$ is also orthogonal to $a, a x, a x^{2}, b x, b x^{2}$. Hence, for some $\alpha \in F$,

$$
a x t=\alpha a x^{2} \quad \text { and } \quad a x(t-\alpha x)=0 .
$$

Replacing t by $t-\alpha x$ we can assume that

$$
a x t=0 .
$$

It follows that $(a x b, t)=0$, thus $a x b$ is orthogonal to t. As the products of $a x$ with $a, a x, b x, a x^{2}, b x^{2}$ are orthogonal to b, we have that $a x b$ is orthogonal to $t, a, a x, b x, a x^{2}, b x^{2}, b$. Also $(a x b, x)=-1$ and so

$$
a x b=t .
$$

We now turn to bxa. By (10), we know that

$$
b x a=-t-\gamma x .
$$

Since

$$
\begin{aligned}
0 & =-x(a+b)^{3} \\
& =(a x+b x)(a+b)^{2} \\
& =(a x a+a x b+b x a)(a+b) \\
& =(r b+t-t-\gamma x)(a+b) \\
& =-r a b+\gamma a x+\gamma b x,
\end{aligned}
$$

we get

$$
0=(-r a b+\gamma a x+\gamma b x, b x)=\gamma .
$$

Thus $b x a=-t$.
Step 5. We can assume that $a b=0$.
Proof. Clearly, $a b$ is orthogonal to a, b and, since $a x^{2}, b x, b x^{2}$ commute with b, we have that $a b$ is also orthogonal to $a x^{2}, b x, b x^{2}$. As $b x$ is orthogonal to a we also have $a b$ orthogonal to x. Then

$$
(a b, a x)=-(b, a x a)=-(b, r b)=0
$$

and the only generator left is t. Hence

$$
a b=\alpha x
$$

for some $\alpha \in F$.
We consider two cases. Suppose first that $y z^{2}(y z)=0$ for all $y, z \in L$. Then $r=0$ and by Remark 6.5

$$
\alpha x b=a b^{2} \in Z(L)
$$

which is absurd except if $\alpha=0$. Hence $a b=0$ in this case.
If the identity $y z^{2}(y z)=0$ does not hold for all $y, z \in L$, without loss of generality we can assume $a x^{2}(a x)=r b x^{2}$ with $r \neq 0$. Thus

$$
0=b a^{3}=\alpha a x a=\alpha r b
$$

implies $\alpha=0$ and hence $a b=0$ also in this case.
As candidates for our examples we thus have a one parameter family of symplectic alternating algebras

$$
L(r)=\left(\begin{array}{ll}
a & b x^{2} \\
a x & b x \\
a x^{2} & b
\end{array}\right) \oplus\left(\begin{array}{ll}
x & t
\end{array}\right) .
$$

Notice that $t \in Z(L(r))$ since $v t$ is orthogonal to x, t and $(v t, w)=-(v w, t)$ $=0$ for all $v, w \in\left\{a, a x, a x^{2}, b, b x, b x^{2}\right\}$: the only nontrivial products not involving x are

$$
\begin{aligned}
a x a & =r b \\
a x^{2} a & =-r b x \\
a x^{2}(a x) & =r b x^{2} \\
a x b & =t \\
b x a & =-t .
\end{aligned}
$$

It remains to check that $L(r)$ is nil-3.
Proposition 6.7. $L(r)$ is a nil-3 algebra for all $r \in F$.
Proof. Let $z=\alpha_{1} a+\alpha_{2} a x+\alpha_{3} a x^{2}+\beta_{1} b+\beta_{2} b x+\gamma x$. It suffices to show that $y z^{3}=0$ for the basis elements $a, a x, a x^{2}, b, b x, x$. Using the description of $L(r)$, we have $b x z^{2}=\left(-\alpha_{1} t+\gamma b x^{2}\right) z=0$ and then:

$$
\begin{aligned}
& a z^{3}=\left(-\alpha_{2} r b+\alpha_{3} r b x+\beta_{2} t+\gamma a x\right) z^{2} \\
& =\left(-\alpha_{2} r b+\gamma a x\right) z^{2} \\
& =\left(\alpha_{2}^{2} r t-\alpha_{2} \gamma r b x+\gamma \alpha_{1} r b-\gamma \alpha_{3} r b x^{2}+\gamma \beta_{1} t+\gamma^{2} a x^{2}\right) z \\
& =\left(-\alpha_{2} \gamma r b x+\gamma \alpha_{1} r b+\gamma^{2} a x^{2}\right) z \\
& =\alpha_{2} \gamma \alpha_{1} r t-\alpha_{2} \gamma^{2} r b x^{2}-\gamma \alpha_{1} \alpha_{2} r t+ \\
& +\gamma^{2} \alpha_{1} r b x-\gamma^{2} \alpha_{1} r b x+\gamma^{2} \alpha_{2} r b x^{2} \\
& =0 \text {; } \\
& a x z^{3}=\left(\alpha_{1} r b-\alpha_{3} r b x^{2}+\beta_{1} t+\gamma a x^{2}\right) z^{2} \\
& =\left(\alpha_{1} r b+\gamma a x^{2}\right) z^{2} \\
& =\left(-\alpha_{1} \alpha_{2} r t+\alpha_{1} \gamma r b x-\gamma \alpha_{1} r b x+\gamma \alpha_{2} r b x^{2}\right) z \\
& =0 \text {; } \\
& a x^{2} z^{3}=\left(-\alpha_{1} r b x+\alpha_{2} r b x^{2}\right) z^{2}=0 ; \\
& b z^{3}=\left(-\alpha_{2} t+\gamma b x\right) z^{2}=0 ; \\
& b x z^{3}=\left(-\alpha_{1} t+\gamma b x^{2}\right) z^{2}=0 ;
\end{aligned}
$$

$$
\begin{aligned}
x z^{3}= & \left(-\alpha_{1} a x-\alpha_{2} a x^{2}-\beta_{1} b x-\beta_{2} b x^{2}\right) z^{2} \\
= & \left(-\alpha_{1} a x-\alpha_{2} a x^{2}\right) z^{2} \\
= & \left(-\alpha_{1}^{2} r b+\alpha_{1} \alpha_{3} r b x^{2}-\alpha_{1} \beta_{1} t+\right. \\
& \left.-\alpha_{1} \gamma a x^{2}+\alpha_{2} \alpha_{1} r b x-\alpha_{2}^{2} r b x^{2}\right) z \\
= & \left(-\alpha_{1}^{2} r b-\alpha_{1} \gamma a x^{2}+\alpha_{2} \alpha_{1} r b x\right) z \\
= & \alpha_{1}^{2} \alpha_{2} r t-\alpha_{1}^{2} \gamma r b x+\alpha_{1}^{2} \gamma r b x+ \\
& -\alpha_{1} \gamma \alpha_{2} r b x^{2}-\alpha_{2} \alpha_{1}^{2} r t+\alpha_{2} \alpha_{1} \gamma r b x^{2} \\
= & 0 .
\end{aligned}
$$

We finally prove the nilpotency of $L(r)$.
Theorem 6.8. $L(r)$ is nilpotent of class 3 if $r=0$ and of class 5 if $r \neq 0$.
Proof. Let $r=0$. Then $Z(L)=F a x^{2}+F b x^{2}+F t$ by Lemma 6.3. Moreover

$$
L^{2}=L x+F t \quad \text { and } \quad L^{3}=L x^{2}+F t=Z(L)
$$

so that $L(0)$ is nilpotent of class 3 .
Assume $r \neq 0$. Then

$$
\begin{gathered}
L^{2}=\left\langle b, a x, b x, a x^{2}, b x^{2}, t\right\rangle, \quad L^{3}=\left\langle b, b x, a x^{2}, b x^{2}, t\right\rangle \\
L^{4}=\left\langle b x, b x^{2}, t\right\rangle, \quad L^{5}=\left\langle b x^{2}, t\right\rangle, \quad L^{6}=\{0\} .
\end{gathered}
$$

This proves that $L(r)$ is nilpotent of class 5 .
The parameter $r \in F$ is not unique. Recall that $r=\left(a, a x^{2}(a x)\right)$. Now $Z_{3}(L)=\left(L^{4}\right)^{\perp}=\left\langle b, b x, a x^{2}, b x^{2}, t\right\rangle$. Let

$$
\bar{a}=\alpha_{1} a+\beta_{1} a x+\gamma x+u \quad \text { and } \quad \bar{x}=\alpha_{2} a+\beta_{2} a x+\delta x+v
$$

with $u, v \in Z_{3}(L)$. Tedious but direct calculations show that

$$
\left(\bar{a}, \bar{a} \bar{x}^{2}(\bar{a} \bar{x})\right)=\left(\alpha_{1} \delta-\alpha_{2} \gamma\right)^{3} r .
$$

This implies that for $r, s \neq 0$ we have that $L(r) \cong L(s)$ if and only if r and s are in the same coset of the abelian group $F^{*} /\left(F^{*}\right)^{3}$ (where $F^{*}=F \backslash\{0\}$). Adding $L(0)$, we see that there are up to isomorphism exactly $\left|F^{*} /\left(F^{*}\right)^{3}\right|+1$ symplectic alternating algebras of dimension 8 that are nil-3 but not nil-2. If F is algebraically closed then this number is 2 . As $\left(\mathbb{R}^{*}\right)^{3}=\mathbb{R}$, this is also true when the underlying field is the field of real numbers. On the other hand, $\mathbb{Q}^{*} /\left(\mathbb{Q}^{*}\right)^{3}$ is infinite so over the rational field we have an infinite number of examples. If F is finite then F^{*} is cyclic and thus $\left|F^{*} /\left(F^{*}\right)^{3}\right|$ is 1 or 3 depending on whether 3 divides $|F|-1$ or not.

References

[1] P. Moravec and G. Traustason, Powerful 2-Engel groups, Comm. Algebra, 36 (2008), no. 11, 4096-4119.
[2] G. Traustason, Powerful 2-Engel groups II, J. Algebra 319 (2008), no. 8, 3301-3323.
[3] G. Traustason, Symplectic Alternating Algebras, Internat. J. Algebra Comput. 18 (2008), no. 4, 719-757.

[^0]: ${ }^{*}$ This paper was written while the first two authors were visiting the University of Bath. They wish to thank the Department of Mathematical Sciences for its excellent hospitality.

