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It is still an open question whether a left 3-Engel element of a group G

is always contained in the Hirsch-Plotkin radical of G. In this paper

we begin a systematic study of this problem. The problem is first

rephrased as saying that a certain type of groups are locally nilpotent.

We refer to these groups as sandwich groups as they can be seen as the

analogs of sandwich algebras in the context of Lie algebras. We show

that any 3-generator sandwich group is nilpotent and obtain a power-

conjugation presentation for the free 3-generator sandwich group. As

an application we show that the left 3-Engel elements in any group G

of exponent 5 are in the Hirsch-Plotkin radical of G.

1 Introduction

Let G be a group. An element a ∈ G is a left Engel element in G, if for each
x ∈ G there exists a non-negative integer n(x) such that

[[[x, a], a], . . . , a]
︸ ︷︷ ︸

n(x)

= 1.

If n(x) is bounded above by n then we say that a is a left n-Engel element in
G. It is straightforward to see that any element of the Hirsch-Plotkin radical
HP (G) of G is a left Engel element and the converse is known to be true
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for some classes of groups, including solvable groups and finite groups (more
generally groups satisfying the maximal condition on subgroups) [3,6]. The
converse is however not true in general and this is the case even for bounded
left Engel elements. In fact whereas one sees readily that a left 2-Engel ele-
ment is always in the Hirsch-Plotkin radical this is still an open question for
left 3-Engel elements. There is some substantial progress by A. Abdollahi in
[1] where he proves in particular that for any left 3-Engel p-element a in a
group G one has that ap is in HP (G) (in fact he proves the stronger result
that ap is in the Baer radical), and that the subgroup generated by two left
3-Engel elements is nilpotent of class at most 4. See also [2] for some results
about left 4-Engel elements.

Groups of prime power exponent are known to satisfy some Engel type condi-
tions and the solution to the restricted Burnside problem in particular makes
use of the fact that the associated Lie ring satisfies certain Engel type iden-
tities [12,13]. Considering left Engel elements, it was observed by William
Burnside [4] that every element in a group of exponent 3, is a left 2-Engel
element and so the fact that every left 2-Engel element lies in the Hirsch-
Plotkin radical can be seen as the underlying reason why groups of exponent
3 are locally finite. For groups of 2-power exponent there is a close link with
left Engel elements. Let G be a finitely generated group of exponent 2n and
a an element in G of order 2, then

[[[x, a], a], . . . , a
︸ ︷︷ ︸

n+1

] = [x, a](−2)n

= 1.

Thus a is a left (n + 1)-Engel element of G. It follows from this that if
G/G2n−1

is finite and the left (n + 1)-Engel elements of G are in the Hirsch-
Plotkin radical, then G is finite. As we know that for sufficiently large n the
variety of groups of exponent 2n is not locally finite [8,9], it follows that for
sufficently large n there are left n-Engel elements that are not contained in
the Hirsch-Plotkin radical. Notice also that if all left 4-Engel elements of a
group G of exponent 8 are in HP (G), then G is locally finite.

In this paper we focus on left 3-Engel elements. We first make the observa-
tion that an element a ∈ G is a left 3-Engel element if and only if 〈a, ax〉 is
nilpotent of class at most 2 for all x ∈ G [1]. We next introduce a related
class of groups.
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Definition. A sandwich group is a group G generated by a set X of el-
ements such that 〈x, yg〉 is nilpotent of class at most 2 for all x, y ∈ X and
all g ∈ G.

If a ∈ G is a left 3-Engel element then H = 〈a〉G is a sandwich group
and it is clear that the following statements are equivalent:

(1) For every pair (G, a) where a is a left 3-Engel element in the group
G we have that a is in the locally nilpotent radical of G.

(2) Every sandwich group is locally nilpotent.

It is also clear that to prove (2), it suffices to show that every finitely gen-
erated sandwich group is nilpotent. We will show in next section that every
3-generator sandwich group is nilpotent and obtain a power-conjugation pre-
sentation for the free 3-generator sandwich group.

2 3-generator sandwich groups

The follwing definition will be useful [5].

Definition We say that a 3-generator group 〈a, b, c〉 is of type (r, s, t) if
〈a, b〉, 〈a, c〉 and 〈b, c〉 are nilpotent of class r, s and t respectively.

Notice that any 3-generator sandwich group is of type (2, 2, 2).

2.1 Groups of type (1, 2, 2)

In this section we will work with groups 〈a, b, c〉 of type (1, 2, 2). In [5] it was
shown that these groups are solvable. Here we will provide more detailed
analysis. We show that these groups are polycyclic and obtain a poly-cyclic
presentation for the largest such group. We will also deal with the specical
case when c is furthermore a left 3-Engel element and when the group is a
sandwich group.
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2.1.1 The free group of type (1, 2, 2)

Let F = 〈a, b, c〉 be the largest group of type (1, 2, 2). As 〈c〉〈a〉 is abelian
and 1 = [c, a, a], we have

ca2

= c2ac−1.

Conjugating on both side by a−1 it follows as well that

ca−1

= c2c−a.

Notice also that as c commutes with ca, cb, it follows that cab commutes with
ca, cb. Using [c, cb] = 1, it follows that

1 = [ca2b, ca2

]

= [c2abc−b, c2ac−1]

= [c2ab, c2ac−1]c
−b

[c−b, c2ac−1]

= [c2ab, c−1]c
−b

[c−b, c2a]c
−1

= [c2ab, c−1][c−b, c2a]

and hence
[c−1, c2ab] = [c−b, c2a].

The right hand side commutes with c, cab and the left hand side commutes
with ca, cb. Thus the common element is in the center of

〈c〉F = 〈c, ca, cb, cab〉.

It follows that

[c2ab, c] = [c−1, c2ab]c = [c−b, c2a]c
b

= [c2a, cb].

Conjugating on both sides with a−1 gives [c2b, ca−1

] = [c2, ca−1b] or [c2b, c2c−a] =
[c2, c2bc−ab] which implies that [c2b, ca] = [c2, cab]. Notice also that as c2ab =
c2ba we have by symmetry that [c2a, cb] = [c2b, ca]. The conclusion is that

[c2, cab] = [c2b, ca] = [c2a, cb] = [c2ab, c]. (1)

From this one sees as well that

[c2, c2ab] = [c2, cab]2 = [c2ab, c]2 = [c2ab, c2] = [c2, c2ab]−1
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and therefore [c2, cab]4 = [c2, c2ab]2 = 1. We will see later that the order of
[c2, cab] is in fact 2. Notice first that

[c2, cab]b = [c2b, c−ac2ab] = [c2b, ca]−1 = [c2, cab]−1.

By symmetry we also have that [c2, cab]a = [c2, cab]−1. It follows from this
and the previous relations that 〈c2, c2a, c2b, c2ab, [c2, cab]〉 is normalised by
a, b, c, a−1, b−1, c−1 and thus

〈c2〉F = 〈c2, c2a, c2b, c2ab, [c2, cab]〉.

The relations above also imply that

〈c4〉F = 〈c4, c4a, c4b, c4ab, [c2, cab]2〉.

Notice that we also have that all the elements in 〈c4〉F commute with the
elments of 〈c2〉F . The next step is to show that [c2, cab] commutes with b and
this will imply that [c2, cab]2 = 1. Notice first that

a2c = a2[a2, c] = a2[a, c2] = a2c2c−2a

a2c−1

= a2[a2, c−1] = a2[a, c−2] = a2c−2c2a.

Thus

(a2)abc

= a2c−1bc

= (a2c−2c2a)bc

= (a2c2abc−2b)c

= a2c2c−2ac2abc−2b[c2ab, c]

= a2c2c2abc−2ac−2b[c2, cab].

Both a and bc commute with b and in order to show that [c2, cab] commutes
with b it thus suffices to show that c2c2abc−2ac−2b commutes with b. But this
follows from the following calculations. We will there be using the fact that
〈c4〉F ≤ Z(〈c2〉F ). We have

(c2c2abc−2ac−2b)b = c2bc−2ac4abc−2abc2c−4b = c2c2abc−2ac−2b[c−2ab, c2][c2b, c−2a]
= c2c2abc−2ac−2b[c2, c2ab]2 = c2c2abc−2ac−2b.

By symmetry the element u = [c2, cab] commutes also with a and is therefore
in Z(F ). As u2 = 1 it also follows that 〈c2〉F is abelian.
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Now calculating modulo 〈c2〉F . We have seen that a2 commutes with abc

and of course a2 commutes with b2 and acb. It is also clear that abc and acb
commute. Notice that (b2)c = b2[b2, c] = b2[b, c2] and thus modulo (c2)F we
have (b2)acb = b2c−1acb = b2. Thus the group

〈b2, a2, acb, abc〉 〈c2〉F/〈c2〉F

is abelian. We next show that this is normal in F/〈c2〉F . As b2, a2, acb, abc

commute with a2, b2, c2 modulo 〈c2〉F . It suffices to show that ua, ub, uc ∈
〈b2, a2, acb, abc〉 〈c2〉F for all u ∈ {b2, a2, acb, abc}. The only such conjugates
that remain to be checked are (calulating modulo (c2)F )

(acb)b = b−1acb2 = b−1a−ca2cb2 = (acb)−1a2b2,

(acb)c = ac2bc = abc,

(abc)a = bca = b2cb−ca−1a2 = b2(abc)−1a2

and (abc)c = acb.

Let H = 〈a2, b2, acb, abc〉 〈c2〉F . Modulo H we have ac = (acb)b−1 = b−1

and bc = a−1(abc) = a−1 and thus if K = 〈a, b〉H then K/H is an abelian
normal subgroup of F/H . Finally F/K = 〈cK〉 and thus we have seen that
F is a polycyclic group.

Remark. Our way of writing polycyclic presentations in this paper follows
[7]. It reflects a polycyclic series

〈x1〉 � 〈x1, x2〉 � · · · � 〈x1, . . . , xm〉 = G.

We also partion the set of generators into subsets X1, . . . , Xr where 〈X1〉 ≤
〈X1∪X2〉 ≤ · · · ≤ 〈X1∪· · ·∪Xr〉 = G is a normal series with abelian factors.

We will be obtaining such a presentation for a number of groups in this pa-
per and the main difficulty is to prove that these are nilpotent or polycyclic.
When this has been achieved it is a routine matter to obtain a polycyclic pre-
sentation for these. This can be done with the aid of a computer although
this has been done by hand here. Although the presentations given in this
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paper are confluent, this fact is not needed for the main results. We only
need to know that the groups satisfy the set of relations as indicated.

Routine calculations show that we get the following polycyclic presentation
of F . We only write down the conjugation relations that are non-trivial.

Generators

X1 : x1 = [c2, cab], x2 = c−2c−2abc2ac2b, x3 = c−2c2a, x4 = c−2c2b, x5 = c2

X2 : x6 = b2, x7 = a2, x8 = acb, x9 = abc

X3 : x10 = b, x11 = a
X4 : x12 = c.

Relations

x2
1 = 1, x2

10 = x6, x2
11 = x7, x2

12 = x5

xx12

2 = x2x1,
xx6

3 = x3x
−2
2 , xx8

3 = x3x
−1
2 , xx9

3 = x3x
−1
2 x1, xx10

3 = x3x
−1
2 ,

xx7

4 = x4x
−2
2 , xx8

4 = x4x
−1
2 x1, xx9

4 = x4x
−1
2 , xx11

4 = x4x
−1
2 ,

xx6

5 = x5x
2
4, xx7

5 = x5x
2
3, xx8

5 = x5x4x3x
−1
2 , xx9

5 = x5x4x3x
−1
2 x1, xx10

5 = x5x4,
xx11

5 = x5x3,

xx8

6 = x6x
−1
2 x1, xx12

6 = x6x
−1
4 , xx9

7 = x7x
−1
2 x1, xx12

7 = x7x
−1
3

xx10

8 = x−1
8 x7x6x

−1
3 x2

2, xx12

8 = x9x
−1
3 x2x1, xx11

9 = x−1
9 x7x6x

−1
4 x2, xx12

9 = x8x
−1
4

xx12

10 = x11x9x
−1
7 x2x1, xx12

11 = x10x
−1
8 x7x

−1
3 .

2.1.2 Groups 〈a, b, c〉 of type (1, 2, 2) where c is a left 3-Engel ele-

ment

In this section, we will first determine the structure of the free 3-generator
group G = 〈a, b, c〉 of type (1, 2, 2) of which c is a left 3-Engel element. We
know that G is a quotient of F .
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Lemma 2.1 〈c〉G is nilpotent of class at most 2.

Proof As c is a left 3-Engel element we have that [cab, c] commutes with
c, cab and as [c, cab] commutes also with ca, cb it follows that [c, cab] ∈ Z(〈c〉G).
Conjugating with a gives that [ca, c2abc−b] = [ca, c−b] is in Z(〈c〉G) as well.
Hence the generators c, ca, cb, cab of 〈c〉G commute modulo the center and 〈c〉G

is nilpotent of class at most 2. 2.

Remark. The proof above reveals that it suffices that 〈c, cab〉 is nilpotent of
class at most 2. In fact it suffices that [cab, c] commutes with c. The reason
is that then 1 = [cab, c, c]a

−1b−1

= [c, cab, cab].

It turns out that this extra condition is sufficient to obtain the free 3-
generator group of type (1, 2, 2) with c left 3-Engel. Previously we have
seen that [c2, cab] = [c2a, cb] and [c2, cab]2 = 1. Hence

[c, cab]2 = [ca, cb]2, [c, cab]4 = 1.

We also know that c, cab commute with ca, cb. Armed with this information
one derives the following polycyclic presentation of G.

Generators

X1 : x1 = [c, cab][ca, cb], x2 = [c, cab], x3 = c−1c−abcacb,
X2 : x4 = c−1ca, x5 = c−1cb, x6 = c,
X3 : x7 = a, x8 = b.

Relations

x2
1 = 1, x4

2 = 1

xx7

2 = x2x1, xx8

2 = x3
2x1,

xx4

3 = x3x1, xx5

3 = x3x
2
2x1, xx6

3 = x3x2, xx8

3 = x3x
2
2x1,

xx5

4 = x4x
3
2x1, xx8

4 = x4x
−1
3 x1,

xx7

5 = x5x
−1
3 x2,

xx7

6 = x6x4, xx8

6 = x6x5.
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One can read from the presentation that γ3(〈c〉
G) = {1}. Thus c is indeed a

left 3-Engel element. From the presentation one can also read that

[G, G] = 〈x1, x2, x3, x4, x5〉,
γ3(G) = 〈x1, x2, x3〉,
γ4(G) = 〈x1, x2〉,
γ5(G) = 〈x1, x

2
2〉.

So the group G is nilpotent of class 5.

Remark. If G has no element of order 2 then G is nilpotent of class at
most 3.

2.1.3 The free 3-generator sandwich group of type (1, 2, 2)

Consider the free sandwich group H = 〈a, b, c〉 of type (1, 2, 2). This group
is a quotient of G. Let us use the same notation above where x1, . . . , x8 are
defined as before but that now we are working with the stronger assumption
that the group is a sandwich group. We will obtain some new relations.
Notice first that

1 = [a, bc, a]

= [x7, x8[x8, x6], x7]

= [x7, x8x
−1
5 , x7]

= [x7, x
−1
5 , x7]

= [x7, x5, x7]
−1

= [x3x
−1
2 , x7]

= [x2, x7]
−1

= x1.

Also

1 = [b, ac, b]

= [x8, x7[x7, x6], x8]

= [x8, x7x
−1
4 , x8]

= [x8, x4, x8]
−1

= [x3x1, x8]

= x2
2x1
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It follows that x1 = x2
2 = 1. That is we have [c, cab]2 = 1 and [ca, cb] = [c, cab].

We thus obtain a group H with the following presentation.

Generators

X1 : x1 = [c, cab], x2 = c−1c−abcacb,
X2 : x3 = c−1ca, x4 = c−1cb, x5 = c,
X3 : x6 = a, x7 = b.

Relations

x2
1 = 1,

xx5

2 = x2x1, xx4

3 = x3x1, xx7

3 = x3x
−1
2 ,

xx6

4 = x4x
−1
2 x1, xx6

5 = x5x3, xx7

5 = x5x4,

From the presentation we read that H is nilpotent of class 4. One can also
check that the group is a sandwich group.

2.2 Certain groups 〈a, b, c〉 of type (1, 2, 3) where c is a

left 3-Engel element

In this section G = 〈a, b, c〉 is a group of type (1, 2, 3) with the further prop-
erty that [b, c, c] = 1 and that c is a left 3-Engel element. We show that
〈a, b, c〉 is polycyclic and obtain a presentation for the group. Groups of sim-
ilar kind were studied in [10]. There it was however assumed that there were
no elements of order of order 2 or 3.

Notice that 1 = [c, a, a] gives ca2

= c2a−1 and ca−1

= c2c−a. Also 1 =
[c, b, b, b] = 1 gives cb3 = c3b2−3b+1 and cb−1

= cb2c−3bc3. Thus

〈c〉G = 〈c, ca, cb, cb2, cab, cab2〉.

As c is left 3-Engel we have that 〈c, cg〉 is nilpotent of class at most 2 for all
g ∈ G. Furthermore 〈c, ca〉 and 〈c, cb, cb2〉 are abelian. It follows then as well
that carbs

commutes with carbt

and catbs

for all integers r, s, t. In particular
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we have

[c, cab] and [cb, ca] commute with c, ca, cb, cab

[c, cab2 ] and [cb2 , ca] commute with c, ca, cb2 , cab2

[cb, cab2 ] and [cb2 , cab] commute with cb, cb2 , cab, cab2

Now

1 = [ca2br

, ca2

]

= [c2abr

c−br

, c2ac−1]

= [c2abr

, c2ac−1]c
−b

r

[c−br

, c2ac−1]

= [c2abr

, c−1][c−br

, c2a].

It follows that [c, cabr

]2 = [cbr

, ca]2 and in particular

[c, cab]2 = [cb, ca]2

[c, cab2 ]2 = [cb2 , ca]2 (2)

[cb, cab2 ]2 = [cb2 , cab]2.

Proposition 2.2 G is solvable.

We establish that G is solvable in few steps.

Step 1. c2 ∈ Z3(〈c〉
G)

Let ã = cab, b̃ = cab2 and c̃ = c. We then have that 〈ã, b̃, c̃〉 is a sandwich
group of type (1, 2, 2) and thus we can use the presentation from section 2.1.3
to see that

[c2, cab, cab2 ] = [c̃2, ã, b̃] = x2(ã, b̃, c̃)−2 ∈ Z(〈ã, b̃, c̃〉)

and
[c2, cab2 , cab] = [c̃2, b̃, ã] = x2(ã, b̃, c̃)−2 ∈ Z(〈ã, b̃, c̃).
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Thus [c2, cab, cab2 ] = [c2, cab2 , cab] commutes with c, cab, cab2 and obviously also
with ca. This argument shows that

[c2, cab, cab2 ] = [c2, cab2 , cab] commutes with c, cab, cab2 , ca

[c2ab2 , cb, c] = [c2ab2 , c, cb] commutes with cab2 , cb, c, cb2

[c2ab, cb2 , c] = [c2ab, c, cb2] commutes with cab, cb2, c, cb

[c2b2 , ca, cab] = [c2b2 , cab, ca] commutes with cb2 , ca, cab, cab2

[c2b, cab2 , ca] = [c2b, ca, cab2 ] commutes with cb, cab2 , ca, cab

[c2a, cb, cb2 ] = [c2a, cb2 , cb] commutes with ca, cb, cb2, c.

But we can do better than this. Using (2) we have

[c2, cab, cab2 ] = [c2b, ca, cab2 ]

and
[c2, cab2 , cab] = [c2b2 , ca, cab].

Thus

[c2, cab, cab2 ] = [c2, cab2 , cab]

= [c2b, ca, cab2 ]

= [c2b, cab2 , ca] (3)

= [c2b2 , ca, cab]

= [c2b2 , cab, ca]

and as this common value commutes with c, cab, cab2 , cb, ca, cb2, we have that
it lies in Z(〈c〉G). Similarly

[c2ab2 , cb, c] = [c2ab2 , c, cb]

= [c2ab, cb2 , c]

= [c2ab, c, cb2] (4)

= [c2a, cb, cb2]

= [c2a, cb2, cb]

and the common value is again in Z(〈c〉G). Now consider the group 〈ã, b̃, c̃〉
where ã = c, b̃ = cb2 and c̃ = cab. This is a sandwich group of type (1, 2, 2)
and the presentation in section 2.1.3 gives

[c2, cab, cb2] = [ã2, c̃, b̃] = [c̃2, ã, b̃]−1 = [c2ab, c, cb2]−1.
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Thus [c2, cab, cab2 ] and [c2, cab, cb2] are in Z(〈c〉G) and thus [c2, cab] ∈ Z2(〈c〉
G).

Similarly it follows from (3) and (4) that [c2, cab2 ] ∈ Z2(〈c〉
G). Hence c2 ∈

Z3(〈c〉
G) and thus in particular 〈c2〉G is nilpotent.

Step 2. 〈c〉G is nilpotent of class at most 3.

Let u = [c, b2, a, [c, b2]]. First notice that

u = [[c, b2]a, [c, b2]]

= [c−acab2 , c−1cb2 ]

= [c−a, c−1cb2 ]c
ab

2

[cab2 , cb2c−1]

= [c−a, cb2 ]c
ab

2

[cab2 , c−1]

= [cb2 , ca] · [c, cab2 ].

We next calculate the action of b on u. Let

v = [c, b2, b] = [c2, b, b] = c2c−4bc2b2 .

We have,

ub = [v[c, b2], a, v[c, b2]]

= [[v, a][c,b
2][c, b2, a], v[c, b2]]

= [v−1va, v[c, b2]][c,b
2][c,b2,a][c, b2, a, v[c, b2]]

= [va, [c, b2]b][c,b
2]a[c, b2, a, [c, b2]] · [c, b2, a, v][c,b

2]

(∗)
= u · [va, [c, b2]b][c,b

2]a [[c, b2]a, v][c,b
2]

= u · [va, c−bcb3 ]c
−acab

2

· [c−acab2 , v]c
−1cb

2

= u · [c2ac−4abc2ab2 , cc−4bc3b2 ]c
−acab

2

· [c−acab2 , c2c−4bc2b2 ]c
−1cb

2

where in (*) we have used the fact that c2 ∈ Z3(〈c〉
G). This shows in partic-

ular that u commutes with b modulo 〈c2〉G. As we are seeking a polycyclic
presentation for G, we will work out the right hand side. This is equal to uw
where

w = [c2a, c−4bc3b2 ]c
−ac−4abc3ab

2

[c−4ab, cc3b2 ]c
−ac3ab

2

[c2ab2 , cc−4b]c
−acab

2

[c−a, c−4bc2b2 ]c
−1cb

2
cab

2

[cab2 , c2c−4b]c
−1cb

2
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= [c2a, cb2 ]3c−4ab

[c2a, cb]−4c3b
2
c3ab

2

[c2ab, cb2 ]−6c−a

[c2ab, c]−2c3b
2
c3ab

2

[c2ab2 , cb]−4c−a

[c2ab2 , c]c
−4b

[ca, c2b2 ]−1[ca, c2b]2c3b
2
cab

2

[cab2 , c2b]−2c−1

[cab2 , c2]c
−4b

(2)
= [c2, cab2 ]−3c−4ab

[c2, cab]4c3b
2
c3ab

2

[c2b, cab2 ]6c−a

[c2, cab]2c3b
2
c3ab

2

[c2b, cab2 ]4c−a

[c2, cab2 ]−c−4b

[c2, cab2 ][c2, cab]−2c3b
2
cab

2

[c2b, cab2 ]2c−1

[c2, cab2 ]−c−4b

= [c2, cab]4c3b
2
c3ab

2

[c2, cab]2c3b
2
c3ab

2

[c2, cab]−2c3b
2
cab

2

[c2, cab2 ]−3c−4ab

[c2, cab2 ]−c−4b

[c2, cab2 ][c2, cab2 ]−c−4b

[c2b, cab2 ]6c−a

[c2b, cab2 ]4c−a

[c2b, cab2 ]2c−1

= [c2, cab]4[c2, cab2 ]−4[c2b, cab2 ]12

[c2, cab, cb2 ]12[c2, cab, cab2 ]16[c2, cab2 , cab]12

[c2, cab2 , cb]8[c2b, cab2 , ca]−10[c2b, cab2 , c]−2

= [c2, cab]4[c2, cab2 ]−4[c2b, cab2 ]12

[c2ab, c, cb2]−12[c2ab2 , c, cb]−8[c2ab2 , cb, c]2

[c2, cab, cab2 ]16[c2, cab2 , cab]12[c2b, cab2 , ca]−10

= [c2, cab]4[c2, cab2 ]−4[c2b, cab2 ]12[c2, cab, cab2 ]18[c2ab2 , c, cb]−18.

Now let
x = [c, cab2 ][ca, cb2] = u[c2a, cb2 ] = u[c2, cab2 ]−1.

We have by (2) that x2 = 1. We also have that x commutes with c and a.
Then

xb = ub[c2ab, cb3 ]

= u[c2ab, cb3]w

= x[c2, cab2 ][c2ab, cb3 ]w

= x[c2, cab2 ][c2ab, c3b2c]w (5)

= x[c2, cab2 ][c2, cab]−1[c2b, cab2 ]−3[c2ab, cb2 , c]3w

= x[c2, cab]3[c2, cab2 ]−3[c2b, cab2 ]9[c2, cab, cab2 ]18[c2ab2 , c, cb]−15.
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Now x commutes with c, cb2 , ca, cab2 and thus xb commutes with cb and cab.
The formula above for xb gives then

[x, cb] = [c2, cab2 , cb]3 = [c2ab2 , c, cb]−3 (6)

[x, cab] = [c2, cab2 , cab]3.

In particular x ∈ Z2(〈c〉
G). Next we use

1 = [cb3 , cab3 ]

= [c3b2c−3bc, c3ab2c−3abca]

= [c3b2c−3b, c3ab2c−3abca]c[c, c3ab2c−3abca]

= [c3b2c−3b, ca]c[c3b2c−3b, c3ab2c−3ab]c
ac[c, c3ab2c−3a].

This gives

[c3b2c−3b, c3ab2c−3ab]c
ac = [ca, c3b2c−3b][c, c3ab2c−3a]−1 = [ca, cb3 ][c, cab3 ]−1.

Notice that the right hand side commutes with ca, c and thus we get

[c3b2c−3b, c3ab2c−3ab] = [ca, cb3 ][cab3 , c].

Now we work with the left hand side. We have

[c3b2c−3b, c3ab2c−3ab] = [c3b2 , c3ab2c−3ab]c
−3b

[c−3b, c−3abc3ab2 ]

= [c3b2 , c−3ab][c−3b, c3ab2 ].

Hence
[cb2 , cab]−9[cb, cab2 ]−9 = [ca, cb3 ][cab3 , c]. (7)

The left hand side commutes with cb, cab, cb2 , cab2 , whereas the right hand side
commutes with c, ca. Hence, the common value is in Z(〈c〉G). Let

y = [cb2 , cab][cab2 , cb].

Then y2 = 1 and y commutes with cb, cb2 , cab, cab2 . Furthermore (7) gives us
that

y = [cb2 , cab]10[cb, cab2 ]8[ca, cb3 ][cab3 , c]

= [cb, cab2 ]18[ca, cb3 ][cab3 , c].
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It follows from this that

[y, c] = [c2ab2 , cb, c]−9 (8)

[y, ca] = [c2b, cab2 , ca]9
(3)
= [c2, cab2 , cab]9.

In particular y ∈ Z2(〈c〉
G).

Conjugating equation (7) by b−1 gives

[cb, ca]−9[c, cab]−9 = [cab−1

, cb2 ][cab2 , cb−1

].

The common value is again in the centre of 〈c〉G. Now let

z = [c, cab][ca, cb].

By (2), z2 = 1 and z commutes clearly with c, cb, ca, cab. Furthermore

z = [c, cab]18[cab−1

, cb2][cab2 , cb−1

]

which gives

[z, cb2 ] = [c2ab, c, cb2 ]−9 (4)
= [c2ab2 , c, cb]−9 (9)

[z, cab2 ] = [c2, cab, cab2 ]9.

In particular z ∈ Z2(〈c〉
G).

We have seen that [ca, cb3][cab3 , c] ∈ Z(〈c〉G). Expanding this gives

[ca, cb3 ][cab3 , c] = [ca, c3b2c−3b][c3ab2c−3ab, c]

= [ca, cb]−3[ca, cb2 ]3c−3b

[cab2 , c]3c−3ab

[cab, c]−3

= [ca, cb]−3[[ca, cb2 ]3[[ca, cb2 ]3, c−3b]

[cab2 , c]3[[cab2 , c]3, c−3ab][cab, c]−3.

Letting c̃ = c, ã = cab and b̃ = cab2 , we have a sandwich group 〈ã, b̃, c̃〉 of type
(1, 2, 2). From the presentation of these in 2.1.3, we read that

[[cab2 , c]3, c−3ab] = [c, cab2 , cab]9
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that commutes with [cab2 , c]. Similarly

[[ca, cb2 ]3, c−3b] = [ca, cb2 , cb]−9.

We thus get that

[cab2 , c]3[cab, c]−3[ca, cb]−3[ca, cb2]3[ca, cb2 , cb]−9[c, cab2 , cab]9

is in Z(〈c〉G).

It follows from the presentation in 2.1.3, applied on 〈ã, b̃, c̃〉 with ã = cab, b̃ =
cab2 and c̃ = c, that 1 = [[c, cab2 , cab]9, c] = [c, cab2 , cab, c]9 = [c, cab2 , cab, c].
Similarly [ca, cb2 , cb, ca] = 1. Thus

1 = [c, cab2 , cab, c]

1 = [ca, cb2 , cb, ca].

Conjugating this by b and b2 gives then also

[cb, ca, cab2 , cb] = 1

[cb2 , cab, ca, cb2] = 1

[cab, c, cb2 , cab] = 1

[cab2 , cb, c, cab2 ] = 1.

Now consider again the sandwich group 〈ã, b̃, c̃〉 where ã = cab, b̃ = cab2

and c̃ = c. The presentation for 〈ã, b̃, c̃〉 then gives, using 1 = [c̃, b̃, ã, c̃] =
x1(ã, b̃, c̃), that

[c, cab2 , cab] = [c, cab, cab2 ]

and similarly one sees that

[c, cab2 , cab] = [c, cab, cab2 ]

[ca, cb2 , cb] = [ca, cb, cb2]

[cb, ca, cab2 ] = [cb, cab2 , ca] (10)

[cb2 , ca, cab] = [cb2 , cab, ca]

[cab, c, cb2] = [cab, cb2, c]

[cab2 , c, cb] = [cab2 , cb, c].
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We have now enough material to show that 〈c〉G is nilpotent of class at most
3. We first calculate modulo Z(〈c〉G). We see that

[c, cab, cab2 ] = [[cb, ca]z, cab2 ] = [cb, ca, cab2 ]

and
[c, cab2 , cab] = [[cb2 , ca]x, cab] = [cb2 , ca, cab].

Thus modulo Z(〈c〉G) we have

[c, cab, cab2 ] = [c, cab2 , cab]

= [cb, ca, cab2 ]

= [cb, cab2 , ca]

= [cb2 , ca, cab]

= [cb2 , cab, ca].

But [c, cab, cab2 ] commutes with c, cab, cab2 whereas [cb, ca, cab2 ] commutes with
cb, ca. As [cb2 , ca, cab] commutes with cb2 , it is now clear that all these ele-
ments that are equal modulo Z(〈c〉G) are in fact all in Z(〈c〉G).

Similarly we have that [cab2 , c, cb] = [cab2 , cb, c], [cab, cb2 , c] = [cab, c, cb2] and
[ca, cb, cb2] = [ca, cb2 , cb] are all in Z(〈c〉G).

Now [c, cab] commutes with c, ca, cb, cab and as we have just seen that [c, cab, cab2 ]
and [c, cab, cb2 ] are in Z(〈c〉G), it follows that [c, cab] ∈ Z2(〈c〉

G). Similarly one
sees that [c, cab2 ] ∈ Z2(〈c〉

G). As c commutes with c, cb, cb2 , ca, it now follows
that c ∈ Z3(〈c〉

G). Hence 〈c〉G is nilpotent of class at most 3.

Step 3. G is solvable.

As G/〈c〉G is abelian it is now clear that G is solvable. 2

The group G is in fact poly-cyclic. The next aim is to establish this and
to obtain a poly-cyclic presentation for G. First we look into the structure
of γ3(G). We have seen that x2 = 1, where x = [c, cab2 ][ca, cb2]. Using this
and (6), it follows that

1 = [x2, cab] = [x, cab]2 = [c, cab2 , cab]12
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and
1 = [x2, cb] = [x, cb]2 = [cab2 , c, cb]−12.

In fact we shall now see that 12 can be replaced by 6. To see this notice first
that by our previous work, (6),(8) and (9), we have

[x, cb] = [cab2 , c, cb]6

[y, c] = [cab2 , c, cb]6

[z, cb2 ] = [cab2 , c, cb]6

[x, cab] = [c, cab, cab2 ]6

[y, ca] = [c, cab, cab2 ]6

[z, cab2 ] = [c, cab, cab2 ]6.

Using these we see that

[ca, cb2, cb] = [[cab2 , c]x, cb] = [cab2 , c, cb]7,

[cab, cb2 , c] = [[cab2 , cb]y, c] = [cab2 , cb, c]7,

[cb2 , ca, cab] = [[c, cab2 ]x, cab] = [c, cab2 , cab]7,

and
[cb, ca, cab2 ] = [[c, cab]z, cab2 ] = [c, cab, cab2 ]7.

Thus

[cab2 , c, cb]6 = [z, cb2 ]

= [c, cab, cb2 ][ca, cb, cb2]

= [cab, c, cb2 ]−1[ca, cb, cb2]

= [cab2 , c, cb]−7[cab2 , c, cb]7

= 1,

and

[c, cab, cab2 ]6 = [y, ca]

= [cb2 , cab, ca][cab2 , cb, ca]

= [cb2 , cab, ca][cb, cab2 , ca]−1

= [c, cab, cab2 ]7[c, cab, cab2 ]−7

= 1.
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Hence, using (10) and the calculations above, we have

([c, cab, cab2 ][cab2 , c, cb])6 = 1

[c, cab, cab2 ]6 = 1

[c, cab2 , cab] = [c, cab, cab2 ]

[cb, ca, cab2 ] = [c, cab, cab2 ]

[cb, cab2 , ca] = [c, cab, cab2 ]

[cb2 , ca, cab] = [c, cab, cab2 ]

[cb2 , cab, ca] = [c, cab, cab2 ]

[cab2 , cb, c] = [cab2 , c, cb]

[cab, cb2 , c] = [cab2 , c, cb]

[cab, c, cb2 ] = [cab2 , c, cb]

[ca, cb2 , cb] = [cab2 , c, cb]

[ca, cb, cb2 ] = [cab2 , c, cb].

Next we sort out the action of a, b on γ3(〈c〉
G). First we have

([c, cab, cab2 ][cab2 , c, cb])a = [ca, c−b, c2ab2c−b2][c−b2 , ca, cab]

= [ca, cb, cb2 ][cb, ca, cab2 ]2[cb2 , ca, cab]−1

= [c, cab, cab2 ][cab2 , c, cb].

Then

([c, cab, cab2 ][cab2 , c, cb]b = [cb, cab2 , cab3 ][cab3 , cb, cb2 ]

= [cb, cab2 , ca][ca, cb, cb2]

= [c, cab, cab2 ][cab2 , c, cb]

and thus [c, cab, cab2 ][cab2 , c, cb] is in Z(G). Next

[c, cab, cab2 ]a = [ca, c−b, c2ab2c−b2 ]

= [ca, cb, cb2][cb, ca, cab2 ]2

= [c, cab, cab2 ]([c, cab, cab2 ][cab2 , c, cb]),
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and

[c, cab, cab2 ]b = [cb, cab2 , ca]

= [c, cab, cab2 ]

We next consider the action of a and b on γ2(〈c〉
G). As before we let x =

[c, cab2 ][ca, cb2 ], y = [cb, cab2 ][cab, cb2] and z = [c, cab][ca, cb]. From (2) we know
that that x2 = y2 = z2 = 1 and one can easily check that they commute with
a. Then

xb = [cb, c3ab2ca][cab, c3b2c]

= [cb, ca][cab, c] · [cb, cab2 ]3[cab, cb2]3 · [cb, cab2 , ca]3[cab, cb2 , c]3

= zy([c, cab, cab2 ][cab2 , c, cb])3,

yb = [cb2 , c−3abca][cab2 , c−3bc]

= [cb2 , ca][cab2 , c] · [cb2 , cab]−3[cab2 , cb]−3[cb2 , cab, ca]−3[cab2 , cb, c]−3

= xy([c, cab, cab2 ][cab2 , c, cb])3,

and
zb = [cb, cab2 ][cab, cb2] = y.

This together with the fact that x, y, z ∈ Z(〈c〉G) sorts out the action of G on
〈x, y, z〉. We next consider the action of a and b on the remaining generators
of γ2(〈c〉

G), [c, cab], [c, cab2 ] and [cb, cab2 ]. We have

[c, cab]a = [ca, cb]−1 = [c, cab]z−1 = [c, cab]z,

[c, cab2 ]a = [ca, cb2 ]−1 = [c, cab2 ]x

and
[cb, cab2 ]a = [cab, cb2 ]−1 = [cb, cab2 ]y.

Also
[c, cab]b = [cb, cab2 ],

[c, cab2 ]b = [cb, c3ab2ca]

= [cb, ca][cb, cab2 ]3[cb, cab2 , ca]3

= [c, cab]z[cb, cab2 ]3[c, cab, cab2 ]3

= [c, cab][cb, cab2 ]3z[c, cab, cab2 ]3,
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and

[cb, cab2 ]b = [cb2 , c−3abca]

= [cb2 , ca][cb2 , cab]−3[cb2 , cab, ca]−3

= [c, cab2 ]x[cb, cab2 ]−3y3[c, cab, cab2 ]3

= [c, cab2 ][cb, cab2 ]−3xy[c, cab, cab2 ]3.

We will next find some relations that hold in these generators. In the follow-
ing we will use the fact that γ3(〈c〉

G)6 = 1. Notice that

ca2b3 = (c2ac−1)b3 = c2ab3c−b3 = c6ab2c−6abc2ac−3b2c3bc−1. (11)

This is the same as

cb3a2

= (c3b2c−3bc)a2

= c3a2b2c−3a2bca2

= c6ab2c−3b2c−6abc3bc2ac−1

= c6ab2c−6abc−3b2 [cb2 , cab]18c2ac3b[cb, ca]6c−1 (12)

= c6ab2c−6abc−3b2c2ac3bc−1[cb2 , cab]18[cb, ca]6

= c6ab2c−6abc2ac−3b2 [cb2 , ca]−6c3bc−1[cb2 , cab]18[cb, ca]6

= c6ab2c−6abc2ac−3b2c3bc−1[cb, ca]6[cb2 , ca]−6[cb2 , cab]18

Comparing (11) and (12) and using also (2), we get

1 = [cb, ca]6[cb2 , ca]−6[cb2 , cab]18 = [c, cab]6[c, cab2 ]−6[cb, cab2 ]18. (13)

Conjugating this by b, gives

1 = [cb, cab2 ]6 · [c, cab]−6[cb, cab2 ]−18[c, cab2 ]18[cb, cab2 ]−54

= [c, cab]−6[c, cab2 ]18[cb, cab2 ]−66.

Multiplying this with (13) gives

[c, cab2 ]12[cb, cab2 ]−48 = 1. (14)

We saw earlier that

xb = zy([c, cab, cab2 ][cab2 , c, cb])3.
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But from (5) and (13) we also have

xb = x[c, cab]6[c, cab2 ]−6[cb, cab2 ]18 = x.

These two equations give

y = zx([c, cab, cab2 ][cab2 , c, cb])3 (15)

Thinking about the Sylow structure of γ2(〈c〉)
G). We choose our generating

set for the poly-cyclic presentation to be

x1 = [(c, cab, cab2 ][cab2 , c, cb])2, x2 = ([c, cab, cab2 ][cab2 , c, cb])3,

x3 = [c, cab, cab2 ]2 x4 = [c, cab, cab2 ]3,

X1 : x5 = [c, cab][ca, cb], x6 = [c, cab2 ][ca, cb2 ], x7 = [c, cab2 ]4[cb, cab2 ]−16,

x8 = [c, cab2 ]3[cb, cab2 ]−12, x9 = [c, cab]4[c, cab2 ]−4[cb, cab2 ]12,

x10 = [c, cab]3[c, cab2 ]−3[cb, cab2 ]9, x11 = [cb, cab2 ]

X2 : x12 = c, x13 = cb, x14 = cb2 , x15 = ca, x16 = cab, x17 = cab2

X3 : x18 = a, x19 = b

We have seen that the following power relations hold for these.

x3
1 = 1, x2

2 = 1, x3
3 = 1, x2

4 = 1, x2
5 = 1, x2

6 = 1, x3
7 = 1, x4

8 = 1, x3
9 = 1, x2

10 = 1.

Then we have the following (non-trivial) conjugation relations:

xx18

3 = x3x1, xx18

4 = x4x2, xx19

5 = x6x5x2,
xx12

7 = x7x3x
2
1, xx13

7 = x7x
2
3x1, xx15

7 = x7x3, xx16

7 = x7x
2
3, xx19

7 = x9

xx13

8 = x8x4x2, xx16

8 = x8x4, xx18

8 = x8x6, xx19

8 = x10x8x5x4,
xx13

9 = x9x3x
2
1, xx14

9 = x9x
2
3x1, xx16

9 = x9x3, xx17

9 = x9x
2
3, xx19

9 = x2
9x

2
7,

xx12

10 = x10x4x2, xx13

10 = x10x4x2, xx14

10 = x10x4x2, xx15

10 = x10x4, xx16

10 = x10x4,
xx17

10 = x10x4, xx18

10 = x10x2, xx19

10 = x10x
2
8x2,

xx12

11 = x11x4x
2
3x2x1, xx15

11 = x11x4x
2
3, xx18

11 = x11x6x5x2, xx19

11 = x11x
3
8x7x5x4x2,

xx16

12 = x12x11x10x9x
3
8x7, xx17

12 = x12x
4
11x

3
8x7, xx18

12 = x15, xx19

12 = x13,
xx15

13 = x13x11x10x9x
3
8x7x5, xx17

13 = x13x11, xx18

13 = x16, xx19

13 = x14,
xx15

14 = x14x
4
11x

3
8x7x6, xx16

14 = x14x11x6x5x2, xx18

14 = x17, xx19

14 = x3
14x

−3
13 x12,

xx18

15 = x2
15x

−1
12 , xx19

15 = x16, xx18

16 = x2
16x

−1
13 , xx19

16 = x17, xx18

17 = x2
17x

−1
14 , xx19

17 =
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x3
17x

−3
16 x15.

A confluence check was carried out to see that this presentation is consistent.
For the next result we look at the special case when the group is of exponent 5.

Proposition 2.3 Let G = 〈a, b, c〉 be a group of exponent 5 that is of type

(1, 2, 3), where [b, c, c] = 1 and where c is a left 3-Engel element in G. We

have that G is nilpotent of class at most 4.

Proof We have seen above that G is nilpotent. To see that the class is at
most 4 we can without loss of generality assume that γ6(G) = {1}. We know
that

γ2(〈a, b〉) = γ3(〈a, c〉) = γ4(〈b, c〉) = {1}. (16)

We need to show that any commutator of weight 5 in a, b, c is trivial. By (16)
it is clear that we only need to deal with the multiweights (1, 1, 3), (1, 2, 2),
(1, 3, 1), (3, 1, 1), (2, 1, 2) and (2, 2, 1) in a, b, c. The only commutators of
these multiweights that we need to consider are

Weight (1, 1, 3) : [a, c, b, c, c]
Weight (1, 3, 1) : [a, c, b, b, b]
Weight (1, 2, 2) : [a, c, b, b, c], [a, c, b, c, b]
Weight (3, 1, 1) : [b, c, a, a, a]
Weight (2, 1, 2) : [b, c, c, a, a], [b, c, a, c, a], [b, c, a, a, c]
Weight (2, 2, 1) : [c, a, a, b, b]

The following calculations, show that these are all trivial. Firstly it follows
from (16) that

1 = [a, [b, c, c, c]] = [a, c, b, c, c]−3

and thus [a, c, b, c, c] = 1. Next using (16) again

1 = [a, [c, b, b, b]] = [a, c, b, b, b].

Having dealt with weights (1, 1, 3) and (1, 3, 1), we turn to weight (1, 2, 2).
Firstly

1 = [a, [b, c, c, b]] = [a, [b, c, c], b] = [a, c, b, c, b]−2,
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that gives [a, c, b, c, b] = 1. We next use the well known fact that in groups
of exponent 5 we have that

∏

σ∈S4
[y, xσ(1), xσ(2), xσ(3), xσ(4)] is in γ6(G) for all

y, x1, x2, x3, x4 ∈ G. This gives us the ‘linearlised 4-Engel identity’

1 =
∏

σ∈S4

[y, xσ(1), xσ(2), xσ(3), xσ(4)].

We will be making some use of this. Firstly let y = a, x1 = x2 = b and
x3 = x4 = c to obtain 1 = [a, c, b, b, c]4. Hence [a, c, b, b, c] = 1. For weight
(3, 1, 1) simply notice that

1 = [b, [c, a, a], a] = [b, c, a, a, a].

For weight (2, 1, 2), we need to deal with three commutators. First notice
that

1 = [b, [c, a, a], c] = [b, c, a, a, c]

and using this we furthermore have

1 = [b, c, [c, a, a]] = [b, c, c, a, a][b, c, a, c, a]−2.

Using again the linearlised 4-Engel identity for y = b, x1 = x2 = a and
x3 = x4 = c, we get

1 = [b, c, c, a, a]4[b, c, a, c, a]4

From this and the last identity it follows that [b, c, a, c, a]3 = 1 that gives us
[b, c, a, c, a] = 1 and then also [b, c, c, a, a] = 1. It now only remains to deal
with weight (2, 2, 1). We apply once again the lineralised 4-Engel identity,
this time with y = c, x1 = x2 = a and x3 = x4 = b. This gives

1 = [c, a, a, b, b]4! = [c, a, a, b, b]3·8.

It follows that [c, a, a, b, b] = 1. We have thus shown that G is nilpotent of
class at most 4. 2

2.3 The free 3-generator sandwich group

In this section we will show that the any 3-generator sandwich group is nilpo-
tent and we will determine a presentation for the free 3-generator sandwich
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group.

Notice that any such group is of type (2,2,2). Let R = 〈x, y, z〉 be the
free sandwich group of rank 3.

Theorem 2.4 R is nilpotent of class at most 5.

Proof We proceed in few steps.

Step 1. 〈[z, x], y〉 is nilpotent of class at most 3.

Let a = z, b = zx and c = y. We have that 〈a, b, c〉 is a sandwich group
of type (1, 2, 2) and thus a homomorphic image of H from Section 2.1.3. So
it satisfies the presentation given for H and we will use the letters x1, . . . , x7

as in there. Notice in particular that 〈a, b, c〉 is nilpotent of class at most 4.
Now

[z, x, y] = [a−1b, c]

= [x−1
6 x7, x5]

= (x−1
5 )x−1

6
x7x5

= (x−1
5 x3)

x7x5

= x−1
5 x−1

4 x3x
−1
2 x5

= x−1
4 x3x

−1
2 x1.

Therefore

[z, x, y, [z, x]] = [a−1b, c, a−1b]

= [x−1
4 x3x

−1
2 x1, x

−1
6 x7]

= x−1
3 x2x1x4(x

−1
4 x3x

−1
2 x1)

x−1

6
x7

= x−1
3 x2x1x4(x

−1
4 x−1

2 x1x3x
−1
2 x1)

x7

= x−1
3 x2x1x4(x

−1
4 x3x

−2
2 )x7

= x−1
3 x2x1x4x

−1
4 x3x

−1
2 x−2

2

= x−2
2 x1.

But as x1 and x2
2 are in the center of 〈z, zx, y〉, it follows that [z, x, y, [z, x]]

commutes with y and [z, x]. As y is a left 3-Engel element we also have
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[z, x, y, y, y] = 1 and thus the class of 〈[z, x], y〉 is nilpotent of class at most
3.

Step 2. γ3(〈[z, x], y〉) ≤ Z(R) and γ4(〈z, z
x, y〉) ≤ Z(R).

We let x1, . . . , x7 be as before. In Step 1 we saw that [z, x, y, [z, x]] = x−2
2 x1.

We also have that the element [z, x, y, y] equals

[x−1
4 x3x

−1
2 x1, x5] = x−1

3 x2x1x4(x
−1
4 x3x

−1
2 x1)

x5 = x−1
3 x2x1x4x

−1
4 x3x

−1
2 x2

1 = x1.

Thus γ3(〈[z, x], y〉) = 〈x1, x
2
2〉 ≤ Z(〈z, zx, y〉). In partcular all the elments in

γ3(〈[z, x], y〉) commute with z and y. But as γ3(〈[z, x], y〉) = γ3(〈[x, z], y〉) we
have that these elements also commute with x. Hence we get the first part
of Step 2. The latter part follows from the fact that γ4(〈z, z

x, y〉) = 〈x1〉 ≤
γ3(〈[z, x], y〉).

From now on we calculate modulo Z(R). We have seen that x1, x
2
2 ∈ Z(R).

Let a = z, b = zx and c = y and let z2, . . . , z7 be the images of x2, . . . , x7 in
〈z, zx, y〉Z(R)/Z(R). We have that 〈z, zx, y〉 satisfies the following presenta-
tion (not necessarily confluent).

Generators

X1 : z2 = c−1c−abcacb, z3 = c−1ca,
X2 : z4 = c−1cb, z5 = c,
X3 : z6 = a, z7 = b.

Relations

z2
2 = 1, zz7

3 = z3z2, zz6

4 = z4z2, zz6

5 = z5z3, zz7

5 = z5z4.

Step 3. [zx, zy] ∈ Z2(R).

We have,

[zx, zy] = [a−1b, [a, c]] = [z−1
6 z7, [z6, z5]] = [z−1

6 z7, z
−1
3 ] = z2

which is in the center of 〈z, zx, y〉Z(R)/Z(R). By symmetry [zy, zx] =
[zx, zy]−1 is in the centre of 〈z, zy , x〉Z(R)/Z(R). Hence [zx, zy] commutes
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with x, y and z modulo Z(R). This finishes the proof of Step 3.

Step 4. [z, x, y] ∈ Z3(R).

We can now calculate modulo Z2(R). Using the presentation for 〈z2, . . . , z7〉
above, using the fact established above that z2Z(R) ∈ Z2(R)/Z(R), one can
read that 〈z, zx, y〉Z2(R)/Z2(R) is nilpotent of class at most 2. In particular

[z, x, y] = [z−1zx, y]

commutes with z and y modulo Z2(R). But as modulo Z2(R) we have
[z, x, y] = [x, z, y]−1 (using step 2) we have by symmetry that [z, x, y] also
commutes with x modulo Z2(R) Hence [z, x, y] ∈ Z3(G).

We now finish the proof by showing that the R is nilpotent of class at most
5. As all the subgroups generated by two of the generators x, y, z are nilpo-
tent of class at most 2. It suffices to show that any commutator of weight 3
involving all the generators is in Z3(R). But this was done in Step 4. 2

We want to obtain a presentation for R. For this we need more detailed
analysis of R. We first see that the normal closure of each of z, x and y is
nilpotent of class at most 2. By symmetry it suffices to deal with z. As any
subgroup generated by two of z, x, y is nilpotent of class at most 2 it suffices
to show that any commutator of weight 5 with three entries of z, one of x and
one of y is trivial. But these are all generated by [z, x, y, z, z] and [z, y, x, z, z]
and it suffices to show that [z, x, y, z, z] = 1. We calculate in 〈z, zx, y〉 and
we let e1, . . . , e7 be the images of x1, . . . , x7 of H in 〈z, zx, y〉. we see that

[z, x, y, z, z] = [e−1
6 e7, e5, e6, e6] = [e−1

4 e3e
−1
2 e1, e6, e6] = 1.

Before going further we introduce some notation. For each ordered triple
(r, s, t) such that {r, s, t} = {x, y, z} we consider the group 〈r, rs, t〉. Let
a = r, b = rs and c = t, we let e1 = e1(r, r

s, t), . . . , e7 = e7(r, r
s, t) be the

images of x1, . . . , x7 in 〈r, rs, t〉. First notice that by the calculations above
we have [z, x, y, y] = e1(z, z

x, y). But as 〈[z, x], y〉 is nilpotent of class at most
3 it follows that

e1(x, xz, y) = [x, z, y, y] = [z, x, y, y]−1 = e1(z, z
x, y).
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Hence

e1(x, xz , y) = e1(z, z
x, y)

e1(y, yx, z) = e1(x, xy, z) (17)

e1(z, z
y, x) = e1(y, yz, x).

We next deal with the e2’s. Calculating in 〈z, zx, y〉 we see that

[z, x, y, [z, x]] = e2(z, z
x, y)−2e1(z, z

x, y).

Now notice that [z, x, y, z, x] = [z, x, [y, z], x] ∈ 〈z, zy , x〉 and calculations
show that this is e1(z, z

y, x). By symmetry [x, z, y, x, z] = e1(x, xy, z). As
[z, x, y, [z, x]] = [z, x, y, z, x][x, z, y, x, z], it follows from this and (16) that

e2(z, z
x, y)2 = e1(z, z

x, y) · e1(y, yz, x) · e1(x, xy, z). (18)

By symmetry and (16), we see that e2(r, r
s, t)2 takes the same value for all

ordered triples (r, s, t) with {r, s, t} = {x, y, z}. In particular it follows that
e2(r, r

s, t)4 = 1.

By the calculations above we have that any non-trivial commutator of weight
5 in x, y, z must involve one of the generators once and the other two twice.
If the commutator that occurs once is z then any such non-trivial commu-
tator of weight 5 is generated by [z, x, y, x, y] and [z, y, x, y, x] that are in
γ4(〈x, xz, y〉) = 〈e1(x, xz, y)〉 and γ4(〈y, yz, x〉) = 〈e1(y, yz, x)〉 respectively.
Hence

γ5(R) = 〈e1(x, xy, z), e1(y, yz, x), e1(z, z
x, y)〉.

Next we turn to commutators of weight 4. Every such commutator is gener-
ated modulo γ5(R) by commutators of the form [z, y, x, y] and [z, x, y, y]. We
have that the latter one is in γ5(R) and, modulo γ5(R), the former is equal
to [z, y, [x, y]] = [yz, yx] = e2(y, yx, x)−1. Thus

γ4(R) = 〈[z, x, [z, y]], [x, y, [x, z]], [y, z, [y, x]]〉 · γ5(R).

Then of course γ3(R) = 〈[z, x, y], [z, y, x]〉·γ4(R), γ2(R) = 〈[z, x], [z, y], [y, x]〉·
γ3(R) and R = 〈z, x, y〉 · γ2(G). We can now easily come up with the follow-
ing presentation using the generators above.
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Generators

X1 : x1 = e1(z, z
x, y), x2 = e1(x, xy, z), x3 = e1(y, yz, x)

X2 : x4 = [z, x, [z, y]], x5 = [x, y, [x, z]], x6 = [y, z, [y, x]],
x7 = [z, x, y], x8 = [z, y, x]

X3 : x9 = [z, x], x10 = [z, y], x11 = [x, y]

X4 : x12 = x, x13 = y, x14 = z.

Relations

x2
1 = x2

2 = x2
3 = 1, x2

4 = x2
5 = x2

6 = x3x2x1

xx12

4 = x4x3, xx13

4 = x4x1, xx13

5 = x5x1, xx14

5 = x5x2,
xx12

6 = x6x3, xx14

6 = x6x2,
xx9

7 = x7x2x3, xx10

7 = x7x1, xx11

7 = x7x1, xx12

7 = x7x5x3x2,
xx13

7 = x7x1, xx14

7 = x7x4x3x2,
xx9

8 = x8x3, xx10

8 = x8x2x1, xx11

8 = x8x3, xx12

8 = x8x3,
xx13

8 = x8x6x3, xx14

8 = x8x4x3,
xx10

9 = x9x4, xx11

9 = x9x5, xx13

9 = x9x7, xx11

10 = x10x6, xx12

10 = x10x8,
xx14

11 = x11x8x
−1
7 x6x5x4x3, xx13

12 = x12x11, xx14

12 = x12x
−1
9 , xx14

13 = x13x
−1
10 .

Remark. If there are no elements of order 2, the class is at most 3.

3 Left 3-Engel elements in groups of expo-

nent 5

In this section we show that the left 3-Engel groups of any group G of expo-
nent 5 are contained in the Hirsch-Plotkin radical of G. The proof uses the
main results of sections 2.2 and 2.3 and follows in outline the proof of the
corresponding result on 4-Engel groups [11].

Theorem 3.1 Let G be a group of exponent 5 and let a ∈ G be a left 3-Engel

element in G. We then have that a is in the Hirsch-Plotkin radical of G.
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Proof Let a1, . . . , ak be conjugates of a, and let H = 〈a1, . . . , ak〉. We will
show by induction that H is nilpotent of class at most k and that the normal
closure of ai in H is abelian for i = 1, . . . , k.

The case k = 2 holds by the asummption that a is a left 3-Engel ele-
ment and the case k = 3 follows from Theorem 2.4 (see the remark after
the proof). Now suppose that k ≥ 3. Let u = [a1, a2, . . . , ak−2] then the
subgroup 〈ak−1, a

u
k−1, ak〉 is generated by three conjugates of a and is thus

nilpotent of class at most 3. By this and the fact that any two conjugates
generate a subgroup of class at most 2, it follows that

[a1, a2, . . . , ak−1, ak, ak] = [a−u
k−1ak−1, ak, ak] = 1

and
[ak,3 [a1, a2, . . . , ak−1]] = [ak,3 a−u

k−1ak−1] = 1.

We thus have the following identities which hold for any conjugates a1, a2, . . . , ak

of a and for any k ≥ 3.

[a1, a2, . . . , ak−1, ak, ak] = 1,

[ak, [a1, a2, . . . , ak−1], [a1, a2, . . . , ak−1], [a1, a2, . . . , ak−1]] = 1. (19)

We now proceed with the induction step. Let k ≥ 4 and suppose that the
result is true for all smaller values of k. We first show that if 1 ≤ r ≤ k, then

[[a1, a2, . . . , ar], [a1, ak, ak−1, . . . , ar+1]] = [a1, a2, . . . , ak, a1]
(−1)k−r

. (20)

This is obvious when r = k. Now consider the case r = k − 1. Let u =
[a1, . . . , ak−1]. By the induction hypothesis and (19) we have that 〈a1, u, ak〉
is of type (1, 2, 3) and satisfies all the criteria for the group in Section 2.2.
It is thus nilpotent of class at most 4 by Proposition 2.3. Using the fact
that u commutes with a1 and the first identity in (19) one sees easily that all
commutators of weight (2, 1, 1) and (1, 1, 2) in a1, u, ak are trivial. The only
commutators that one needs to consider are [u, ak, a1, a1] and [u, ak, a1, ak]
but as [u, [ak, a1, a1]] = [u, [a1, ak, ak]] = 1 we get by expanding these that

1 = [u, ak, a1, a1],

1 = [u, ak, a1, ak].
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From this one sees that [[u, [a1, ak]] = [u, ak, a1]
−1 that gives us the identity

(20) when r = k − 1. This argument also tells us that

[[a1, ak, . . . , a3], [a1, a2]] = [a1, ak, . . . , a2, a1]
−1

and thus
[a1, [a1, ak, . . . , a2]] = [[a1, a2], [a1, ak, . . . , a3]]

−1

that shows that the case r = 1 follows it is holds for r = 2. To establish (20)
it is thus sufficient to show that if 2 ≤ r ≤ k − 2, then

[[a1, a2, . . . , ar], [a1, ak, . . . , ar+1]] = [[a1, a2, . . . , ar+1], [a1, ak, . . . , ar+2]]
−1.

Let u = [a1, a2, . . . , ar] and v = [a1, ak, . . . , ar+2]. By the induction hypothe-
sis we have that u and v commute and that 〈u, ar+1〉, 〈v, ar+1〉 are nilpotent
of class at most 2. Thus 〈u, v, ar+1〉 is of type (1, 2, 2) and thus nilpotent
of class at most 3 by section 2.1.2. Thus [u, [v, ar+1]] = [u, ar+1, v]−1 as was
required. This establishes (20).

We want to show that H is nilpotent of class at most k. We arrive at this in
two steps. First we show that H is nilpotent (of class at most k+1) and then
that γk(H) ≤ γk+1(H). We turn to the first step. Consider a commutator
c = [b1, b2, . . . , bk+1] where b1, . . . , bk+1 lie in {a1, . . . , ak}. We want to show
that c ∈ Z(H). By induction c = 1 unless {b1, . . . , bk} = {a1, . . . , ak}. Also
by (19) we have that c = 1 if bk = bk+1. So there is no loss of generality in
assuming that bk+1 = a1, bk = ak and that {b1, . . . , bk−1} = {a1, . . . , ak−1}.
Then, using the inductive hypothesis, we see that [b1, b2, . . . , bk−1] can be
expressed as a product u1u2 · · ·ur where each ui is a commutator of the form
[a1, aσ(2), aσ(3), · · · , aσ(k−1)] for some permutation σ of {2, 3, . . . , k − 1}. So

c = [b1, . . . , bk+1] = [u1 · · ·ur, ak, a1] = [
r∏

i=1

[ui, ak]
ui+1ui+2···ur , a1].

Now the inductive hypothesis implies that u1, u2, . . . , ur commute with a1. So
c is the product of conjugates of the commutators [u1, ak, a1], . . . , [ur, ak, a1].
To show that c ∈ Z(H) it thus clearly suffices to show that [a1, a2, . . . , ak, a1] ∈
Z(H).

So consider d = [a1, a2, . . . , ak, a1, ai], where 1 ≤ i ≤ k. If i = 1 then
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d = 1 by (19). If i = k, let u = [a1, a2, . . . , ak−1]. Then, using the induction
hypothesis, 〈a1, u, ak〉 is of type (1, 2, 3) and satisfies the criteria for the group
in Section 2.2. It is thus nilpotent of class at most 4. Thus

1 = [u, [a1, ak, ak]] = [u, ak, a1, ak]
−2.

This implies that [u, ak, a1, ak] = 1 and thus d = 1 when i = k.

Now let 1 < i < k. To show that d = 1, it suffices by (20) to show that
[u, ai, v, ai] = 1 where u = [a1, a2, . . . , ai−1] and v = [a1, ak, ak−1, . . . , ai+1].
Now by the induction hypothesis 〈u, v, ai〉 is of type (1, 2, 3) and satisfies the
criteria from Section 2.2. Thus it is nilpotent of class at most 4. Hence again

1 = [u, [v, ai, ai]] = [u, ai, v, ai]
−2

that implies that [a1, a2, . . . , ak, a1] commutes with ai. This finishes the proof
that H is nilpotent of class at most k + 1. To show that the class is actually
k it suffices to show that [a1, a2, . . . , ak, a1] = 1 since by the argument above,
this will imply that [b1, b2, . . . , bk+1] = 1 for all b1, . . . , bk+1 ∈ {a1, . . . , ak}.

In order to achieve this we will first show that

[a1, a2, . . . , ak−3, aσ(k−2), aσ(k−1), aσ(k), a1] = [a1, a2, . . . , ak, a1]

for all permutations σ of {k − 2, k − 1, k}. By the induction hypothe-
sis we have that [a1, a2, . . . , ak−3, a

−1
k−2, a

ak−1

k−2 ] = 1 and that the elements
[a1, a2, . . . , ak−3, a

−1
k−2] and [a1, a2, . . . , ak−3, a

ak−1

k−2 ] commute with [ak, a1]. Thus

[a1, a2, . . . , ak−3, [ak−2, ak−1], ak, a1] = [a1, a2, . . . , ak−3, a
−1
k−2a

ak−1

k−2 , [ak, a1]] = 1.

Similarly, we have that [a1, a2, . . . , ak−3, ak], [a1, a2, . . . , ak−3, a
−[ak−2,ak−2]
k ] and

[a1, a2, . . . , ak−3, a
−[ak−2,ak−1]
k , ak] commute with a1 by the induction hypothe-

sis, and thus that

1 = [a1, a2, . . . , ak−3, [ak−2, ak−1, ak], a1]

= [a1, . . . , ak−3, [ak−2, ak−1], ak, a1][a2, . . . , ak−3, ak, [ak−1, ak−2], a1]
−1.

By the previous part this implies that [a1, . . . , ak−3, ak, [ak−1, ak−2], a1] = 1.
This gives us that [a1, . . . , ak−3, aσ(k−2), aσ(k−1), aσ(k), a1] is equal to the ele-
ment [a1, a2, . . . , ak, a1] for all the permutations σ of {k − 2, k − 1, k} as we
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wished to show.

Now using the linearised 4-Engel identity we have

∏

σ

[a1, a2, . . . , ak−3, aσ(k−2), aσ(k−1), aσ(k), aσ(1)] = 1,

where the product ranges over all permutations of {k − 2, k − 1, k, 1}. By
the induction hypothesis all the factors where σ(1) 6= 1 are trival and by
the analysis above we know that all the remaining six factors are equal to
[a1, . . . , ak, a1]. Hence 1 = [a1, . . . , ak, a1]

6 = [a1, . . . , ak, a1] as required. This
finishes the proof of the inductive hypothesis and thus of the Theorem. 2.

Theorem 3.2 Let G be a group of exponent 5. Then G is locally finite if

and only if it satisfies the law

[z, [y, x, x, x], [y, x, x, x], [y, x, x, x]]

Proof. It is known (see for example Lemma 15 in [11]) that if G is a finite
group of exponent 5 and x ∈ G, then 〈x〉G is nilpotent of class at most 6.
Thus every finite group of exponent 5 satisfies the identity

[z, [y, x, x, x], [y, x, x, x], [y, x, x, x]] = 1.

Conversely suppose G is any group of exponent 5 and let let N = HP (G)
be the Hirsch-Plotkin radical of G (that is the locally finite radical of G).
Then the Hirsch-Plotkin radical of G/N is trivial. We want to show that
N = G, that is G/N = {1}. Without loss of generality we can thus assume
that HP (G) = {1} and we wish to show that G = {1}. Let a ∈ G. As the
identity holds we have that [b, a, a, a] is a left 3-Engel element in G for all
b ∈ G and hence [b, a, a, a] ∈ HP (G) = {1} for all b ∈ G. Thus a is a left
3-Engel element of G and thus trival. This shows that G = {1} and we have
finished the proof. 2

Remark. This gives us a new proof of a fact that was originally proved
in [11] that a group of exponent 5 is locally finite if and only if all the 3-
generator subgroups are finite.
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