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Let G be a finitely generated compact Hausdorff topological group and

let H be a closed normal subgroup consisting of right Engel elements.

We show that H belongs to some term of the upper central series of

G.

1 Introduction

Let G be a group. An element a ∈ G is said to be a right Engel element in
G if for each x ∈ G there exists a positive integer n = n(x) such that

[a,n x] = [[[a, x], · · ·x], x
︸ ︷︷ ︸

n

] = 1.

The group G is said to be an Engel group if all its elements are right Engel
elements. According to a classical result of Zorn, every finite Engel group
is nilpotent [13] and more generally the right Engel elements of any group
G, satisfying the maximal condition, belong to some common term of the
upper central series of G [1]. Even when a group is finitely generated the
situation is much more complicated in general as one can see from the well
known examples of Golod [5], where we have an infinite 3-generator p-group
all of whose 2-generator subgroups are finite. The situation is however well
understood for a number of classes that include, apart from groups satisfying
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the maximal condition, the class of finitely generated solvable groups [2,6].

In [8] Medvedev proved a strong generalisation of Zorn’s Theorem. His result
can be expressed as saying that any compact Hausdorff Engel group that is
finitely generated, as a topological group, is nilpotent. This generalised a
theorem of Wilson and Zel’manov that proved this for profinite groups [11].
Recall that a compact Hausdorff group is profinite if the open subgroups
form a base for the neighbourhood of identity.

In this paper we will prove the following generalisation of Medvedev’s re-
sult.

Theorem. Let G be a finitely generated compact Hausdorff group and let H
be a closed normal subgroup of G consisting of right Engel elements. Then
H belongs to some term of the upper central series of G.

This is a paper by an algebraist and is written with algebraists in mind.
The approach, that is modelled on Medvedev’s paper, uses some topologial
arguments that are mostly quite elementary. We end this section by sum-
marising some topological properties that we will be using later on.

For a subset A of a topological space we will denote by A, the topological clo-
sure of A. Let φ : G → H be a continuous map between two compact Haus-
dorff groups. Then for any subset A of G, we have that φ(A) = φ(A). In par-

ticular if H is a subgroup of G then H ·H = H · H = H and H
−1

= H−1 = H .
This shows that H is also a subgroup of G. Like Medvedev, we will be mak-
ing use of Baire Category Theorem. We state here the version for compact
spaces.

Baire Category Theorem. Let X be a compact Hausdorff space and sup-
pose that (An) is a countable collection of closed subsets of X such that

⋃
An

has non-empty interior. Then for some n ∈ N we have that An has a non-
empty interior.

For a proof see for example [9, Theorem 7.2, page 294]. The only topo-
logical fact that we will be using and is not elementary is the fact that every
compact Hausdorff group is a subcartesian product of closed subgroups of
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unitary matrix groups [7, Corollary 22.14, p. 345]. This fact uses a highly de-
veloped representation theory of compact Hausdorff groups. As every finitely
generated linear group is residually finite, and as the property of being resid-
ually finite is inherited when taking cartesian products and subgroups, it
follows that any finitely generated subgroup of a compact Hausdorff group
is residually finite.

Although our proof is modelled on [8], it differs in many respects as we
are aiming for a more general result. Like in that proof we make use of Lie
ring methods as well as topological arguments and we will use a deep result
of Zel’manov on Lie rings. In order to apply Zel’manov’s result to our more
general setting we will use a construction from [3,4].

2 Proof of the Theorem

Let G = 〈x1, x2, . . . , xr〉 be a finitely generated compact Hausdorff topological
group and let H be a closed normal subgroup of G consisting of right Engel
elements in G. The aim is to show that H ≤ Zm(G) for some positive integer
m. As a first step we show that it suffices to show that H is hypercentral in
G, that is to say that each element in H belong to some term of the upper
central series of G.

Lemma 2.1 Suppose that for each h ∈ H there exists a positive integer
m(h) such that h ∈ Zm(h)(G). Then there exists a positive integer m such
that H ≤ Zm(G).

Proof For each n-tuple (g1, . . . , gn) ∈ G × · · · × G
︸ ︷︷ ︸

n

we consider the contin-

uous map f(g1,...,gn) : H → H, h 7→ [h, g1, . . . , gn]. Let Hn = H ∩ Zn(G).
Notice that Hn is the intersection of the closed subsets f−1

(g1,...,gn)(1), where

(g1, . . . , gn) runs through G × · · · × G
︸ ︷︷ ︸

n

, and thus a closed subgroup of H . By

our assumptions we know that

H =

∞⋃

i=1

Hi.

It thus follows from the Baire Category Theorem that, for some positive in-
teger n, Hn contains an open subset of the form hU where U is an open
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neighbourhood in H around 1. In particular h ∈ Hn and as Hn is a subgroup
we get that U = h−1 · hU ⊆ Hn. Now H =

⋃

a∈H Ua and as H is compact
we have H = Ua1 ∪ · · ·∪Ual for some finitely many elements a1, . . . , al ∈ H .
It follows that H = Hna1 ∪ · · · ∪ Hnal and thus [H : H ∩ Zn(G)] = l. Hence
H = H ∩ Zn+l(G) and thus H ≤ Zn+l(G). �

Our problem has thus been reduced to the local problem of showing that
h is in some term of the upper central series of G for all h ∈ H .

Let D = 〈x1, . . . , xr〉. By adding h as a generator, we can assume without
loss of generality that h ∈ D. We let E = 〈h〉D. As the map φ : G × G →
G, (a, b) 7→ [a, b] is a continuous map between compact Hausdorff spaces, it
follows that φ(E, G) = φ(E, D) = φ(E, D) ≤ E. Hence E is normal in G.
Thus E is the smallest closed subgroup of H that contains h and is normal
in G. The function

φ : E × G × · · ·G
︸ ︷︷ ︸

m

→ E

that maps (h, g1, . . . , gm) to [h, g1, . . . , gm] is a continuous map between com-
pact Hausdorff spaces. Thus

φ(E, G, . . . , G
︸ ︷︷ ︸

m

) = φ(E, D, . . . , D
︸ ︷︷ ︸

m

).

It follows that E ≤ Zm(G) if and only if E ≤ Zm(D).

As we said in the introduction, the compact group G is a subcartesian prod-
uct of linear groups. As every finitely generated linear group is residually
finite, it follows that D is residually finite.

Consider now the chains (Ei)
∞
i=0 and (Di)

∞
i=0 where Ei = [E,i D] and Di =

γi(D). We use these chains to construct an associated Lie ring like was done
[3,4]. First we consider the abelian groups

A = A0 ⊕ A1 ⊕ · · · and L = L1 ⊕ L2 ⊕ · · ·

where Ai = Ei/Ei+1 and Li = Di/Di+1. We let L be the associated Lie ring
of D and consider A as an abelian Lie ring. We furthermore define an action
from L on A as follows. First, for ā = aEi+1 ∈ Ai and d̄ = dDj+1 ∈ Lj , we
let

ā · d̄ = [a, d]Ei+j+1 ∈ Ai+j+1.
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Then we extend linearly to get a semidirect product T = A ⋉ L. The aim
is now to show that ALm = 0 for some non-negative integer m. This would
imply that [E,m D] = [E,m+1 D]. Let us see why this is sufficient. Let N be
a normal subgroup of D that is of finite index. In finite groups we know that
the right Engel elements belong to some term of the upper central series and
thus by what we have said above it would follow that [E,m D] ≤ N . As D is
residually finite, it follows then that [E,m D] = 1.

The main tool for proving the Lie ring claim will be a deep result of Zel’manov
[12]. This result is a stronger version of a key result for his solution to the
Restricted Burnside Problem and is stated in a quantitative form as Propo-
sition 2 in [12].

Theorem (Zel’manov). Let F = 〈f1, . . . , fr〉 be a multigraded Lie ring
and suppose the following conditions hold. Firstly suppose there is some pos-
itive integer l where

(a)
∑

σ∈Sl

yyσ(1) · · · yσ(l) = 0 for all y, y1, . . . , yl ∈ F.

Secondly, for each simple product f in f1, . . . , fr, there exists a positive inte-
ger k = k(f) such that

(b) yfk = 0 for all y ∈ F .

Then F is nilpotent.

It is not difficult to see that any multigraded Lie ring satisfying condition
(b) has the radical property. This result is also used in [8] but stated there
without a proof. As a proof doesn’t seem to exist in the literature, we in-
clude one here for a completion. The proof is standard and very similar for
example to the proof of a corresponding statement for (p−1)-Engel Lie rings
of characteristic p (see Corollary 1.1.13 in [10]).

Proposition 2.2 Let F = 〈f1, . . . , fr〉 be a multigraded Lie ring where for
each simple product f in f1, . . . , fr, there exists an integer k = k(f) such that
yfk(f) = 0 for all y ∈ F . Suppose that I and J are multigraded ideals where
I ⊆ J and where I, J/I are locally nilpotent. Then J is locally nilpotent.
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Proof Let M be a finitely generated subalgebra of J . Without loss of
generality, we can suppose that M is multigraded. Now M/M ∩I ≃ M +I/I
is a finitely generated subgroup of J/I and thus nilpotent. It follows that we
get a central chain in M

M ∩ I = M0 < M1 < · · · < Ms = M

where Mi = Mi−1 + Zyi for some simple Lie products y1, . . . , ys in f1, . . . , fr.
We show by induction that Mi is locally nilpotent for i = 1, . . . , s. As
M0 ≤ I, this is clear for i = 0. Now let 1 ≤ i ≤ s and suppose Mi−1 is locally
nilpotent. To show that Mi is locally nilpotent, it suffices to show that if
c1, . . . , cp ∈ Mi−1 then N = 〈yi, c1, . . . , cp〉 is nilpotent. Suppose k(yi) = k
and consider

P = 〈cjy
l
i : j = 1, . . . , p, l = 0, . . . , k − 1〉.

Then P ≤ Mi−1 and P E N . By the induction hypothesis P is nilpotent of
class say q. Now every product of weight qk + 1 in yi, c1, . . . , cp must have at
least q+1 occurrences from {c1, . . . , cp} if we are to avoid k consecutive occur-
rences of yi. As P is nilpotent of class q, it then follows that all such products
are 0 and thus N is nilpotent of class at most qk. This finishes the proof
of the inductive step and thus M is locally nilpotent. As M is finitely gen-
erated it is then nilpotent. We have thus shown that J is locally nilpotent. �

Remark. It follows that for any graded Lie ring L, satisfying the condi-
tions of the Proposition, we have a unique maximal locally nilpotent ideal
R(L) and L/R(L) has no non-trivial locally nilpotent ideal.

If V is an open neighbourhood of 1 in a topological group, then V ∩ V −1

is an open neighbourhood that is closed under taking inverses. Throughout
the paper all neighbourhoods of 1 will be assumed to be chosen such that
they are closed under taking inverses.

Then next elementary lemma is a variant of a corresponding lemma from
[8], with essentially the same proof.

Lemma 2.3 Corresponding to each neighbourhood V of 1 ∈ E, there exists
a positive integer t = t(V ) such that for each pair of elements (a, d) ∈ E×D,
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there exist integers 0 ≤ k < m ≤ t such that

[a,k d] = v[a,m d]

for some v ∈ V .

Proof Pick a neighbourhood V (2) of 1 in E such that V (2)2 ⊆ V . As E is
compact, one sees readily that there exist finitely many elements h1, . . . , ht ∈
E such that

E =
t⋃

i=1

V (2)hi.

Thus there must be some two elements among a, [a, d], . . . , [a,t d] that belong
to the same open set V (2)hi, say [a,k d] = v1hi and [a,m d] = v2hi for some
0 ≤ k < m ≤ t. Hence [a,k k] = v1v

−1
2 [a,m d]. Where v = v1v

−1
2 ∈ V (2)2 ⊆ V .

�

The next proposition is also a variant of a similar result from [8].

Proposition 2.4 Consider the Lie ring L. For each simple Lie product d̄
in x̄1, . . . , x̄r, we have that there exists a positive integer k1(d̄) such that
ad̄k1(d̄) = 0 for all a ∈ A.

Proof Let u ∈ D and consider the closed subsets

Ti(u) = {x ∈ E : [x,i u] = 1}.

As E consists of right Engel elements, we get

E =

∞⋃

i=1

Ti(u)

and by the Baire Category Theorem, one of these, say Ts, contains an open
neighbourhood in E. As E is dense in E, we have that Ts contains an open
neighbourhood of the form V e where e ∈ E and V is a neighbourhood of 1
in E. Thus

[ve,s u] = 1 (1)

for all v ∈ V . In particular [e,s u] = 1 and then expanding (1), we get

1 = [v,s u]c1(v, u, e) for all v ∈ V (2)
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where c1(v, u, e) is a product of simple commutators in v, u, e that are of
higher multiweight than [v,s u]. Now use Lemma 2.3 for some z ∈ E and
d ∈ D. Thus there exist integers k, m such that 0 ≤ k < m ≤ t = t(V ) such
that

v = [z,k d][z,m d]−1 ∈ V.

Thus from this and (2) we see that

1 = [z,t+s d]c2(z, d, e) (3)

where c2(z, d, e) is a product of simple commutators in z, d, e of higher mul-
tiweight than [z,t+s d]. Let z be any commutator of the form [h, xi1 , . . . , xil ]
with i1, i2, . . . , il ∈ {1, . . . , r}, and let d be any simple commutator in x1, . . . , xr.
We now see from (3) that

1 = [h, xi1 , . . . , xil ,t+s d]c(h, x1, . . . , xr)

where c(h, x1, . . . , xr) is a product of simple commutators in h, x1, . . . , xr of
higher multiweight than [h, xi1 , . . . , xil,t+s d]. Now let d be the Lie product in
x1, . . . , xr that corresponds to d and a be the element in A that corresponds
to [h, xi1 , . . . , xil ]. We see that if follows from the previous discussion that
ad̄t+s = 0. Thus ad̄k1 = 0 for all a ∈ A where k1 = t + s. Notice that t, s
only depend on d̄ and not a. �

Let T̃ = A ⋊ L/CL(A). With a slight abuse of notation we will use also
x̄1, . . . , x̄r to denote their images in L/CL(A).

Corollary 2.5 Consider the Lie ring T̃ . For each simple product ū in
x̄1, . . . , x̄r, h̄ we have that there exists a positive integer k(ū) such that yūk(ū) =
0 for all y ∈ T̃ .

Proof If ū involves h̄, then clearly yū2 = 0 for all y ∈ T̄ . Now suppose ū
is a Lie product in x̄1, . . . , x̄r. By Proposition 2.4 we know that there exists
k1 = k1(ū) such aūk1(ū) = 0 for all a ∈ A. Now let y ∈ L/CL(A). For all
a ∈ A, we have

a(yū2k1(ū)−1) = 0.

We thus see that yūk(ū) = 0 for all y ∈ T̄ , where k(ū) = max {2, k1(ū), 2k1(ū)−
1}. �
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Remark. Thus T̄ satisfies the conditions of Proposition 2.2 and we know
that T̄ has a locally nilpotent radical R(T̄ ) where T̄ /R(T̄ ) has no non-trivial
normal locally nilpotent ideal.

We now turn to showing that ALm = 0 for some m. Again we are going
to make use of the Baire category Theorem.

Consider the closed sets

Tn = {(x, y) ∈ Ē × G : [x,n y] = 1},

n = 1, 2, . . .. As Ē consists of right Engel elements we have

E × G =

∞⋃

n=1

Tn.

By the Baire category Theorem, at least one of the closed subsets, say Tm1
,

contains an open neighbourhood. As E × D is dense in Ē × G, we get such
a neighbourhood of the form Ue × V d with e ∈ E and d ∈ D. Thus

1 = [xe,m1
yd]

for all x ∈ U and y ∈ V . Let W be a neighbour hood of 1 in G such that
W m1 ⊆ V . By replacing V by V ∩ W ∩ U we then have for all v0 ∈ V ∩ E
and v1, . . . , vm1

∈ V that

1 = [v0e,m1
v1 · · · vm1

d].

Using the fact that [x,m1
d] = 1 and expanding using Hall’s collection process,

we get

1 =
∏

σ∈Sm1

[v0, vσ(1), . . . , vσ(m1)]c (4)

where c is a product of simple commutators in v0, . . . , vm1
, e, d of higher multi-

weight than
∏

σ∈Sm1

[v0, vσ(1), . . . , vσ(m1)]. As a preparation for a consequence

of this result we let m2 = 2m1 − 1 and we pick a neighbourhood U(m2)
around 1 in G such that U(m2)

4m2 ≤ V . We then replace V by V ∩ U(m2).

We now turn to the consequence of (4). We first need to introduce some
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notation. For any positive integer n we let Cn = {1, 2, . . . , n} and we let
P(Cn) be the powerset of Cn. Then we let

Rn = {(S, T ) ∈ P(Cn) × P(Cn) : S ∪ T = {1, . . . , n} and S ∩ T = ∅}.

We will use the following well known formula.

[z, [y, x1, . . . , xn]] = (
∏

(S,T )∈Rn

[z, xT , y, xS](−1)|T |

) · c

where c is of higher multiweight than (1, 1, . . . , 1) in z, y, x1, . . . , xn and
where, for S = {i1, . . . , ik}, i1 < i2 < . . . < ik, and T = {j1, . . . , jm}, j1 <
j2 < . . . < jm, we let

[z, x̄T , y, xS] = [z, xjk
, xjk−1

, . . . , xj1, y, xi1, xi2 , . . . , xim ].

For each σ ∈ Sn we also use [z, x̄T , y, xS]σ for

[z, xσ(jk), xσ(jk−1), . . . , xσ(j1), y, xσ(i1), . . . , xσ(im)].

We then have
∏

σ∈Sm2

[v0, [v, vσ(1), · · · , vσ(m2)]] = (
∏

(S,T )∈Rm2

∏

σ∈Sm2

[v0, v̄T , v, vS]σ(−1)|T |

) · c1

where c1 is a product of commutators of higher multiweight than (1, 1, . . . , 1)
in v0, v, v1, . . . , vm2

. As either |T | or |S| is greater than or equal to m1 it then
follows from (4) and our choice of V that

∏

σ∈Sm2

[v0, [v, vσ(1), · · · , vσ(m2)]] = c2 (5)

for all v0 ∈ V ∩Ē and all v, v1, . . . , vm2
∈ V and where c2 is a product of com-

mutators of higher multiweight than (1, 1, . . . , 1, 0, 0) in v0, v1, . . . , vm2
, e, d.

Before stating next result, we will need some extra notion and for that we
first need the following elementary lemma.

Lemma 2.6 There exist finitely many d1, . . . , dt ∈ D such that

G =

t⋃

i=1

V di.
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Proof. Let V (2) be an open neighbourhood of 1 in G such that V (2)2 ⊆ V .
As G is compact we have

G =
t⋃

i=1

V (2)gi

for some g1, . . . , gt ∈ G. Since D is dense in G we get in fact di ∈ V (2)gi ∩D
for i = 1, . . . , t. Hence

V (2)gi ⊆ V (2)V (2)−1di ⊆ V di

and G =
⋃t

i=1 V di. �

For each g ∈ G we can thus choose an element d(g) ∈ {d1, . . . , dt} such
that g ∈ V d(g). Let then

∆(g) = {d([g, xi1, . . . , xis ]) : i1, . . . , is ∈ {1, . . . , r} and s ≥ 0} ⊆ {d1, . . . , dt}.

For each [h, xi1 , . . . , xis], we let [h, xi1 , . . . , xis ] be the corresponding Lie ele-
ment of T̃ in h̄, x̄i1 , . . . , x̄is . Let

Ij = 〈[h, xi1 , . . . , xis] : |∆([h, xi1 , . . . , xis ])| ≤ j〉.

This gives us an ascending sequence of multigraded ideals in T̃

{0} = I0 ≤ I1 ≤ · · · ≤ It = A.

We will show that there exists a positive integer m3 such that

IjL
m3 ≤ Ij−1, j = 1, . . . , t.

From this it then follows that ALm = {0} where m = tm3.

We now consider the Lie ring

Tq = Iq/Iq−1 ⋊ L/CL(Iq/Iq−1)

where the action from L on Iq/Iq−1 is the natural induced action. The aim
is now to show that Tq is nilpotent of class m3 where m3 only depends on E
and D.

From now on we will be working in Tq and with a slight abuse of notation, in
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order to make it not overcomplicated, we will also use x̄1, . . . , x̄r for the im-
ages of these elements in L/CL(Iq/Iq−1). For every commutator [xi1 , . . . , xis ]

we will use the notation [xi1 , . . . , xis ] to denote the corresponding simple Lie
product x̄i1 · · · x̄is in Tq. For each integer i such that 1 ≤ i ≤ t, we let

Xi = 〈[xi1 , . . . , xis] : |∆([xi1 , . . . , xis])| ≤ i〉.

Let I = Iq/Iq−1. We then have a chain of ideals

{0} ≤ I + X1 ≤ I + X2 ≤ · · · ≤ I + Xt = Tq

in Tq.

Lemma 2.7 For i = 2, . . . , t we have that the Lie ring Mi = (I + Xi)/(I +
Xi−1) satisfies the linearised identity

∑

σ∈Sm2

yyσ(1) · · ·yσ(m2) = 0

for all y, y1, . . . , ym2
∈ Mi.

Proof Let a = [h, xi1 , . . . , xis ] ∈ Iq and y, y1, . . . , ym2
be simple commutators

in x1, . . . , xr such that |∆(y)| ≤ i and |∆(yj)| ≤ i for j = 1, . . . , m2. Consider
the corresponding Lie elements ā, ȳ, ȳ1, . . . , ȳm2

∈ Mi. It suffices to show that

∑

σ∈Sm2

ā(ȳȳσ(1) · · · ȳσ(m2)) = 0. (6)

Notice first that if ∆([a, x1]), . . . , ∆([a, xr]) ≤ q−1 then āx̄1 = . . . = āx̄r = 0
and (6) clearly holds. We thus can assume that ∆([a, xj ]) = ∆(a) for some
1 ≤ j ≤ r. This means that d(a) = d(b) for some b = [a, xj , xj1 , . . . , xjs

]
where j1, . . . , js are some elements in {1, . . . , r}. In particular ab−1 ∈ V
and b is of higher multiweight in h, x1, . . . , xr than a. Similarly if we have
∆([yj, x1]), . . . , ∆([yj, xr]) ≤ i − 1, then ȳjx̄1 = . . . = ȳjx̄r = 0 and thus
clearly

∑

σ∈Sm2

ȳȳσ(1) · · · ȳσ(m2) = 0.

Thus by the same argument as above we can assume that we have a sim-
ple commutator zj of higher multiweight than yj in x1, . . . , xr such that
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yjz
−1
j ∈ V . Similarly we can assume that there exists a simple commutator

z of higher multiweight than y such that yz−1 ∈ V . We can now apply (5)
for v0 = ab−1, v = yz−1, v1 = y1z

−1
1 , . . . , vm2

= ym2
z−1

m2
to see that (6) holds.

�

Now let m3 be the largest of the integers m2, m1, 3m1 − 1.

Lemma 2.8 The algebra M1 = I + X1 satisfies the identity

∑

σ(m)

yyσ(1) · · · yσ(m) = 0

for all y, y1, . . . , ym ∈ M1

Proof The proof is similar to the proof of Lemma 2.7. We let a = [h, xi1 , . . . , xis ]
be such that ā ∈ Iq and we let y1, . . . , ym1

be simple commutators in x1, . . . , xr

such that |∆(yj)| = 1 for j = 1, . . . , m1. We first show that

∑

σ∈Sm1

āȳσ(1) · · · ȳσ(m1) = 0. (7)

As in the proof of Lemma 2.7 we can assume that there exists a simple
commutator b of multiweight higher than a such that ab−1 ∈ V . For each
j = 1, . . . , m1 we have ∆([yj, x1] = ∆(yj) (the value of ∆ is this time minimal)
and thus as before we get zj of higher multiweight than yj such that yjz

−1
j ∈

V . We now apply (4) for v0 = ab−1, v1 = y1z
−1
1 , . . . , vm1

= ym1
z−1

m1
and we

see that (7) holds. From this we can now finish the proof. Notice first that
it follows from (7) that (recall that m2 = 2m1 = 1)

∑

σ∈Sm2

z(yyσ(1) · · · yσ(m2)) = 0

for all z ∈ I and y1, . . . , ym2
∈ L1. Thus

∑

σ∈Sm2

yyσ(1) · · · yσ(m2) = 0

for all y, y1, . . . , ym2
∈ X1. Finally suppose that we take some y ∈ X1 and

y1, . . . , y3m1−1 be b, z1, . . . , z3n−2 where b ∈ I and z1, . . . , z3n−2 ∈ X1. Then
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notice that for m3 = 3m1 − 1 we have

∑

σ∈Sm3

yyσ(1) · · · yσ(m3) =

3m1−2∑

k=0

∑

σ∈S3m1−2

yzσ(1) · · · zσ(k)bzσ(k+1) · · · zσ(3m1−2).

Notice that this is zero as in each summand either k ≥ m2 = 2m1 − 1 or
(3m1 − 2) − k ≥ m1. This deals with all possible situations and thus the
lemma follows. �

Take now some arbitrary ā ∈ I and consider the subring M = 〈ā, x̄1, . . . , x̄r〉
of Tq. Notice that M satisfies condition (b) of Zel’manov’s Theorem where
k(ū) is like in Corollary 2.5. The reader will readily convince himself that
the same values of k that worked for T̃ work in Tq. Replacing I by the ideal
in M generated by ā, notice also that sections M1, . . . , Mt of M satisfy the
linearised m3-Engel identity. It thus follows by Zelmanov’s Theorem that
M1, . . . , Mt are nilpotent. By Proposition 2.2 we then have that M is nilpo-
tent. Notice also that m3 and the values of k do not depend on ā but only E
and D. Furthermore what the ideals I +Xj, j = 1, . . . , t, thought of as ideals
consisting of elements in variables ā, x̄1, . . . , x̄r, are does also only depend on
E and D. Thus we see that the class of M only depends on E and D. If this
class is m4 then we get in particular that āLm4 = 0 that implies that

IqL
m4 ≤ Iq−1

as we wanted to see. Thus ALm = 0 where m = tm4. This finishes the proof
of our Theorem.
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