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We develop a structure theory for nilpotent symplectic alternating

algebras.

1 Introduction

Symplectic alternating algebras have arisen from the study of 2-Engel groups
(see [2],[4]) but seem also to be of interest in their own right, with many beau-
tiful properties. Some general theory was developed in [3] and [5].

Definition. Let F be a field. A symplectic alternating algebra over F is
a triple (L, ( , ), ·) where L is a symplectic vector space over F with respect
to a non-degenerate alternating form ( , ) and · is a bilinear and alternating
binary operation on L such that

(u · v, w) = (v · w, u)

for all u, v, w ∈ L.

Notice that (u ·x, v) = (x ·v, u) = −(v ·x, u) = (u, v ·x) and thus the multipli-
cation from the right by x is self-adjoint with respect to the alternating form.
As the alternating form is non-degenerate, L is of even dimension and we can
pick a basis x1, y1, . . . , xn, yn with the property that (xi, xj) = (yi, yj) = 0
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and (xi, yj) = δij for 1 ≤ i ≤ j ≤ n. We refer to a basis of this type as a
standard basis.

Suppose we have any basis u1, . . . , u2n for L. The structure of L is then
determined from

(uiuj, uk) = γijk, 1 ≤ i < j < k ≤ 2n.

The map L3 → F, (u, v, w) 7→ (u · v, w) is an alternating ternary form and
each alternating ternary form on a given symplectic vector space, with a non-
degenerate alternating form, defines a unique symplectic alternating algebra.
Classifying symplectic alternating algebras of dimension 2n over a field F is
then equivalent to finding all the Sp (V )-orbits of (∧3V )∗ under the natural
action, where V is a symplectic vector space of dimension 2n with a non-
degenerate alternating form. Suppose that F is a finite field and suppose

that the disjoint Sp (V )-orbits of (
∧3 V )∗ are u

Sp(V )
1 , . . ., u

Sp(V )
m . Then

m ≤ |F |(
2n

3 ) = |(∧3 V )∗| ≤ m|Sp(V )| ≤ m|F |(
2n+1

2 ).

It follows that m = |F |
4n

3

3
+O(n2). Because of the sheer growth, a general

classification of symplectic alternating algebras seems impossible. There is a
close connection between symplectic alternating algebras over the field GF(3)
of three elements and a certain class of 2-Engel groups and in [5] the sym-
plectic alternating algebras over GF(3) of dimension up to 6 were classified.
There are 31 such algebras of dimension 6 of which 15 are simple. We would
like to mention here also the work of Atkinson [1] who in his thesis looked
at alternating ternary forms over GF (3) in order to study a certain class of
groups of exponent 3.

As we said before, some general theory was developed in [3] and [5]. In
particular a well-known dichotomy property for Lie algebras also holds for
symplectic alternating algebras. Thus a symplectic alternating algebra is ei-
ther semi-simple or has a non-trivial abelian ideal. Another interesting prop-
erty is that any symplectic alternating algebra that is nilpotent-by-abelian
must be nilpotent.

In this paper and its sequel we study nilpotent symplectic alternating al-
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gebras. This paper deals with the structure theory and also gives the clas-
sification of nilpotent symplectic alternating algebras of dimension up to 8
over any field. The sequel will be mostly about extending the classification
of algebras to dimension 10 that is far more involved than the algebras of
lower dimension. Turning back to this paper, we will in Section 2 describe
some general results that in particular lead to specific type of presentations
that we call nilpotent presentations. All algebras with a nilpotent presenta-
tion are nilpotent and conversely any nilpotent algebra will have a nilpotent
presentation. In Section 3 we will focus on the algebras that are of maximal
class and we will see that their structure is very rigid. Finally to illustrate
the theory we will in Section 4 classify the nilpotent symplectic alternating
algebras of dimension up to 8 over an arbitrary field F .

In this paper we will adopt the left-normed convention for products. Thus
u1u2 . . . un stands for (. . . (u1u2) · · ·)un. Also U ≤ V stands for ‘U is a sub-
space of V ’.

Many of the terms that we use in this paper are analogous to the corre-
sponding terms for related structures. Thus a subspace I of a symplectic
alternating algebra L is an ideal if IL ≤ I. From [5] we know that I⊥ is
an ideal whenever I is an ideal. The definition of a nilpotent symplectic
alternating algebra causes no problem either.

Definition A symplectic alternating algebra L is nilpotent if there exists
an ascending chain of ideals I0, . . . , In such that

{0} = I0 ≤ I1 ≤ · · · ≤ In = L

and IsL ≤ Is−1 for s = 1, . . . , n. The smallest possible n is then called the
nilpotence class of L.

Definition. More generally, if I0 ≤ I1 ≤ . . . ≤ In is any chain of ideals
of L then we say that this chain is central in L if IsL ≤ Is−1 for s = 1, . . . , n.

We define the lower and upper central series in an analogous way to re-
lated structures like associative algebras and Lie algebras. Thus we define
the lower central series recursively by L1 = L and Ln+1 = LnL, and the
upper central series by Z0(L) = {0} and Zn+1(L) = {x ∈ L : xL ⊆ Zn(L)}.
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It is readily seen that the terms of the lower and the upper central series are
all ideals of L. The following beautiful property was proved in [5] and will
be used frequently

Zn(L) = (Ln+1)⊥. (1)

Remark. Notice however that the lack of the Jacobi identity means that
many properties that hold for Lie algebras do not hold for symplectic alter-
nating algebras. As the following example shows, it is not true in general
that the product of two ideals is an ideal. That example also shows that the
formula LiLj ≤ Li+j does not hold in general.

Example. Consider the 12-dimensional symplectic alternating algebra which
has a standard basis x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6 where

(x3y5, y6) = (x2y4, y6) = (x1y4, y5) = (y1y2, y3) = 1

and (uv, w) = 0 if u, v, w are basis elements where {u, v, w} 6∈ {{x3, y5, y6} ,
{x2, y4, y6}, {x1, y4, y5}, {y1, y2, y3}}. Notice that this implies that

x3y5 = x6, x1y4 = x5, y2y3 = x1,
x3y6 = −x5, x1y5 = −x4, y4y5 = −y1,
x2y4 = x6, y1y2 = x3, y4y6 = −y2,
x2y6 = −x4, y1y3 = −x2, y5y6 = −y3.

From this one sees that

L2 = Fx6 + Fx5 + · · ·+ Fx1 + Fy1 + Fy2 + Fy3,

L3 = Fx6 + Fx5 + · · ·+ Fx1,

L4 = Fx6 + Fx5 + Fx4,

L5 = 0,

L2L2 = Fx3 + Fx2 + Fx1.

In particular L is nilpotent of class 4, L2L2 is not an ideal and L2L2 6≤ L4.

This example indicates that symplectic alternating algebras do differ from
Lie algebras. We are going to see in the following sections that there are some
shared properties but the next lemma underlines the difference by showing
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that the two classes of algebras do not have many algebras in common when
the characteristic is not 2. In fact only the symplectic alternating algebras
that are obviously Lie algebras are there, namely those of class at most 2.

Lemma 1.1 Let L be a symplectic alternating algebra where charL 6= 2 and

L is either associative or a Lie algebra. Then L3 = {0}.

Proof. Let us first assume that L is associative. We then have

0 = (xyz − x(yz), t) = (x, tzy − t(yz)) = (x, tzy − tyz)

for all x, y, z, t ∈ L. It follows that tzy = tyz = −ytz for all t, z, y ∈ L. Using
this last property repeatedly we get that

xyz = −zxy = yzx = −xyz

and thus 2xyz = 0 for all x, y, z ∈ L. As char L 6= 2, it follows that L3 = 0.

Now suppose L is a Lie algebra. We then have

0 = (xyz + yzx + zxy, t) = (x, tzy − t(yz) − tyz) = 2(x, tzy − tyz).

As char L 6= 2, it follows again that tzy = tyz for all t, z, y ∈ L and this
implies again that L3 = {0}. 2.

One handicap that the symplectic alternating algebras have is that when
I is an ideal then L/I is in general only an alternating algebra as there is no
natural way of inducing an alternating form on this quotient. For example
simply for the reason that the quotient can have odd dimension. There is
however a weaker form of a quotient structure that we can associate to any
ideal I of L that works. Thus for any ideal I we have that (I⊥+I)/I is a well
defined symplectic alternating algebra with the natural induced multiplciaton
and where the induced alternating form is given by (u + I, v + I) = (u, v) for
u, v ∈ I⊥. The reader can easily convince himself that this is well defined and
that ((I⊥ + I)/I)⊥ = 0. This algebra is also isomorphic to I⊥/(I ∩ I⊥) that
has a similar naturally induced structure as a symplectic alternating algebra.

Remark. There are some familiar facts for Lie algebras that do not rely
on the Jacobi identity and remain true for symplectic alternating algebras.
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Such properties are particularly useful as we can use them when dealing with
quotients L/I where we only know that the resulting algebra is alternating.
For example L2 has co-dimension at least 2 in any nilpotent alternating al-
gebra L of dimension greater than or equal to 2. From this and the duality
given in (1), it follows immediately that the dimension of Z(L) is at least 2
for any non-trivial nilpotent symplectic algebra which is something that we
will also see later as a corollary of Lemma 2.1.

2 General Structure Theory

We next see that, like for Lie algebras, all minimal sets of generators have
the same number of elements and we can thus introduce the notion of a rank.

Definition. Let L be a nilpotent symplectic alternating algebra. We say
that {x1, . . . , xr} is a minimal set of generators if these generate L (as an
algebra) and no proper subset generates L.

Lemma 2.1 Let L be a nilpotent symplectic alternating algebra. Any mini-

mal set of generators has the same size which is dimL − dimL2.

Proof Let x1, . . . , xr ∈ L and let M be the subalgebra of L generated by
these elements. It suffices to show that L = M if and only if x1 +L2, · · · , xr +
L2 generate L/L2 as a vector space. Suppose first that L = M . Notice that
M = Fx1 + · · · + Fxr + M ∩ L2 and thus it is clear that L/L2 is generated
by x1 + L2, . . . , xr + L2 as a vector space. Conversely suppose now that
the images of x1, . . . , xr in L/L2 generate L/L2 as a vector space. An easy
induction shows that

L = M + Ls+1, Ls = Ms + Ls+1

for all integers s ≥ 1. If the class of L is n, we get in particular that
L = M + Ln+1 = M . 2

Definition. Let L be a nilpotent symplectic alternating algebra. The unique
smallest number of generators for L, as an algebra, is called the rank of L
and is denoted r(L).
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By last lemma we know that r(L) = dim L− dim L2. This has the following
curious consequence.

Corollary 2.2 Let L be a nilpotent symplectic alternating algebra. We have

r(L) = dimZ(L). In particular if L 6= {0} then dimZ(L) ≥ 2.

Proof. From (1) we know that Z(L) = (L2)⊥. Therefore

r(L) = dim L − dim L2 = dim (L2)⊥ = dim Z(L).

Finally, we cannot have r(L) = 1 as then we would have that L is one-
dimensional. Hence dim Z(L) ≥ 2. 2.

Lemma 2.3 Let I, J be ideals of a nilpotent symplectic alternating algebra

where I ⊆ J . If dim J = dim I + 1 then I ≤ J is central. If I is an

ideal such that dim I < 2n = dimL then there exists an ideal J such that

dim J = dim I + 1. If furthermore I is an isotropic ideal and dim I < n then

J can be chosen to be isotropic.

Proof Suppose J = I +Fx for some x ∈ L. Let y ∈ L. To show that I ≤ J
is central, it suffices to show that x · y ∈ I. Suppose that xy = u1 + ax for
u1 ∈ I and a ∈ F . As I � L it follows by induction that xyr = ur + arx for
some ur ∈ I. If L is nilpotent of class at most m it follows that 0 = um +amx
and hence a = 0.

For the latter part suppose first that I is any ideal such that dim I < 2n.
Let m be the largest positive integer such that Lm 6≤ I. Pick u ∈ Lm \ I.
Then J = I + Fu is the required ideal such that I ≤ J is central. Now
suppose furthermore that I is isotropic and that dim I < n. Then I⊥ is also
an ideal and I < I⊥. Let m be the largest non-negative integer such that
I⊥ L · · ·L

︸ ︷︷ ︸

m

6≤ I. Let u ∈ I⊥ L · · ·L
︸ ︷︷ ︸

m

\I and again the ideal J = I + Fu is the

one required. 2

Remark. Let U, V be subspaces of L. Notice that

UV = 0 ⇔ (UV, L) = 0 ⇔ (UL, V ) = 0 ⇔ UL ≤ V ⊥.

In other words we have that U annihilates V if and only if it annihilates
L/V ⊥. This is a useful property that we will be making use of later.
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Lemma 2.4 Let I and J be ideals in a symplectic alternating algebra L. We

have that I ·L ≤ J if and only if I ·J⊥ = {0}. In particular Lm ·Zm(L) = {0}
for all m ≥ 1.

Proof From the property given in last remark, we know that I annihi-
lates L/J if and only if I annihilates J⊥. The second part follows from this,
the fact that Lm annihilates L/Lm+1, and the fact that (Lm+1)⊥ = Zm(L). 2

Remark. It follows in particular that I · I⊥ = {0} for any ideal I. In partic-
ular any isotropic ideal is abelian. Notice also that the property LmZm(L) =
{0} is equivalent to the fact that Zm(L) annihilates L/Zm−1(L).

Remark. We have seen in the introduction that it is not true in general
that LiLj ≤ Li+j . As (Lm)⊥ = Zm−1(L) for all m ≥ 1, we however have that

LiLj ≤ Li+j ⇔ (LiLj , Zi+j−1(L)) = 0 ⇔ (LiZi+j−1(L), Lj) = 0
⇔ LiZi+j−1(L) ≤ Zj−1(L).

The obvious fact that LmL ≤ Lm+1 thus gives us the interesting fact from
last lemma that LmZm(L) = {0}.

Lemma 2.5 Let I be an ideal of L. Then IL ≤ I⊥ if and only if I is abelian.

Proof We have that I annihilates I if and only if I annihilates L/I⊥. 2

Remark. As I is an ideal we have in fact that IL ≤ I⊥ if and only if
IL ≤ I ∩ I⊥. Here I ∩ I⊥ is the ‘isotropic part’ of I.

Lemma 2.6 Let L be a nilpotent symplectic alternating algebra with ideals

I, J where J = I + Fx + Fy, (x, y) = 1 and Fx + Fy ≤ I⊥. Then JL ≤ I.
Furthermore if I is isotropic then J is abelian.

Proof As J is an ideal of L and as (xt, x) = 0 for all t ∈ L we have that
I + Fx is an ideal of L. By Lemma 2.3 we have that I ≤ I + Fx is central.
Similarly I ≤ I + Fy is central and thus JL ≤ I. For the second part notice
that if I is isotropic then I = J ∩ J⊥ thus JL ≤ I = J ∩ J⊥ and by Lemma
2.5 it follows that J is abelian. 2
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Lemma 2.7 Let L be a nilpotent symplectic alternating algebra. Every ideal

I of dimension 2 is contained in Z(L). Equivalently, every ideal of co-

dimension 2 must contain L2.

Proof. The second statement is a trivial fact that holds in all nilpotent
alternating algebras. The first statement is a consequence of this and of the
duality given by I ≤ Z(L) ⇔ L2 = Z(L)⊥ ≤ I⊥. 2

Lemma 2.8 Let I, J be ideals of a symplectic alternating algebra L and let

x ∈ L. We have Jx ≤ I if and only if I⊥x ≤ J⊥.

Proof. We have that Jx ≤ I is equivalent to (ux, v) = 0 for all u ∈ J and
all v ∈ I⊥. But this is equivalent to saying that (vx, u) = 0 for all v ∈ I⊥

and u ∈ J = (J⊥)⊥ and this is the same as saying that I⊥x ≤ J⊥. 2

Proposition 2.9 Let L be a symplectic alternating algebra. No term of the

upper central series has co-dimension 1. Equivalently, no term of the lower

central series has dimension 1.

Proof The first fact is a well-known fact about alternating algebras and
follows from the fact that if A is an alternating algebra then A/Z(A) cannot
be one-dimensional. Now the interesting second statement is a consequence
of this and the duality (Lr)⊥ = Zr−1(L). 2

In particular we have that

{0} = I0 ≤ I1 ≤ · · · ≤ Im = L

is an ascending central chain if and only if

L = I⊥

0 ≥ I⊥

1 ≥ · · · ≥ I⊥

m = {0}

is a descending central chain.

Remark. Suppose that L is any nilpotent alternating algebra such that
L/L2 is 2-dimensional. Then it follows immediately that the dimension of
L2/L3 is at most 1 and that the dimension of L3/L4 is at most 2. Using
this general fact and Proposition 2.9 one can quickly show that all nilpotent
symplectic alternating algebras of dimension up to 4 must be abelian. This
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is clear when the dimension is 2. Now suppose that L is a nilpotent sym-
plectic alternating algebra of dimension 4. We know that dim L/L2 ≥ 2.
If dim L2 = 2 then by the reasoning above, we would have that dimL3 = 1
that contradicts Proposition 2.9. By that proposition we neither can have
that dim L2 = 1. Thus we must have L2 = 0 and L is abelian.

Theorem 2.10 Let L be a nilpotent symplectic alternating algebra of dimen-

sion 2n ≥ 2. There exists an ascending chain of isotropic ideals

{0} = I0 < I1 < · · · < In−1 < In

such that dim Ir = r for r = 0, . . . , n. Furthermore, for 2n ≥ 6, I⊥

n−1 is

abelian and the ascending chain

{0} < I2 < I3 < . . . < In−1 < I⊥

n−1 < I⊥

n−2 < · · · < I⊥

2 < L

is a central chain. In particular L is nilpotent of class at most 2n − 3.

Proof Starting with the ideal I0 = {0}, we can apply Lemma 2.3 iteratively
to get the required chain

{0} = I0 < I1 < . . . < In.

By Lemma 2.7 we have that I2 ≤ Z(L). By this and Lemma 2.3 we thus
have that the chain

I0 < I2 < I3 < . . . < In−1

is central in L. By Lemma 2.8 it follows that the chain

I⊥

n−1 < I⊥

n−2 < . . . < I⊥

2 < I⊥

0

is also central. It only remains to see that In−1 < I⊥

n−1 is central and that
I⊥

n−1 is abelian. As I⊥

n−1 = In−1 +Fx+Fy for some x, y ∈ L where (x, y) = 1
and as In−1 is isotropic, this follows from Lemma 2.6. 2

Remark. When dim Z(L) = r < n, we can choose our chain such that
Ir = Z(L). We then get a central chain

I0 < Ir < Ir+1 < · · · < In−1 < I⊥

n−1 < I⊥

n−2 < · · · < I⊥

r < L.
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In particular the class is then at most 2n − 3 − 2(r − 2) = 2n − 2r + 1.

Presentations of nilpotent symplectic alternating algebras. Last
proposition tells us a great deal about the structure of nilpotent symplec-
tic alternating algebras. A moments reflection should convince the reader
that we can pick a standard basis x1, y1, x2, y2, . . . , xn, yn such that

I1 = Fxn, I2 = Fxn + Fxn−1, · · · , In = Fxn + · · ·+ Fx1,

I⊥

n−1 = In +Fy1, I⊥

n−2 = In +Fy1 +Fy2, · · · , I⊥

0 = L = In +Fy1 + · · ·+Fyn.

Now let u, v, w be three of the basis elements. Since In is abelian we have
that (uv, w) = 0 whenever two of these three elements are from {x1, . . . , xn}.
The fact that

{0} < I1 < . . . < In

is central also implies that (xiyj , yk) = 0 if i ≥ k. So we only need to consider
the possible non-zero triples (xiyj, yk), (yiyj, yk) for 1 ≤ i < j < k ≤ n. For
each triple (i, j, k) with 1 ≤ i < j < k ≤ n, let α(i, j, k) and β(i, j, k) be
some elements in the field F . We refer to the data

P : (xiyj, yk) = α(i, j, k), (yiyj, yk) = β(i, j, k), 1 ≤ i < j < k ≤ n

as a nilpotent presentation. We have just seen that every nilpotent symplectic
alternating algebra has a presentation of this type. Conversely, given any
nilpotent presentation, let

Ir = Fxn + Fxn−1 + · · ·+ Fxn+1−r

and we get an ascending central chain of isotropic ideals {0} = I0 < I1 <
. . . < In such that dim Ij = j for j = 1, . . . , n. By Lemma 2.8 we then get a
central chain

{0} = I0 < I1 < . . . < In < I⊥

n−1 < I⊥

n−2 < . . . < I⊥

0 = L

and thus L is nilpotent. Thus every nilpotent presentation describes a nilpo-
tent symplectic alternating algebra.

Remark. Notice that there are 2
(

n
3

)

parameters for these presentations.
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If F is a finite field this thus gives the value |F |2(
n

3) as the upper bound for
the number of 2n-dimensional nilpotent symplectic alternating algebras over
the field F . Armed with this information it is not difficult to get some good
information about the growth of nilpotent symplectic alternating algebras
over a finite field F . Let V be a 2n-dimensional vector space over F and
consider (∧3V )∗. After fixing a standard basis for V , each presentation of a
symplectic alternating algebra corresponds to an element in (∧3V )∗. Now let
N be the subset of (∧3V )∗ corresponding to all nilpotent presentations. The
number of nilpotent symplectic alternating algebras of dimension 2n is the
same as the number of Sp(V )-orbits of (∧3V )∗ consisting of presentations

that give nilpotent algebras. Suppose these are u
Sp(V )
i , i = 1, . . . , m. Then

N ⊆ ∪m
i=1u

Sp(V )
i

and thus |F |2(
n

3) = |N | ≤ m · |Sp(V )| ≤ m · |F |(
2n+1

2 ). These calculations
show that the number of nilpotent symplectic alternating algebras is

m = |F |n
3/3+O(n2).

From Proposition 2.9 we know that no term of the lower central series of a
symplectic alternating algebra can be 1-dimensional. Next proposition shows
that some of terms of the lower central series cannot be 2-dimensional.

Proposition 2.11 Let L be a symplectic alternating algebra we have that

dimLm 6= 2 for 2 ≤ m ≤ 4. Equivalently Zm(L) is not of co-dimension 2 if

1 ≤ m ≤ 3.

Proof. We first prove that dim L2 6= 2. We argue by contradiction and
suppose dim L2 = 2. Then

2 = dim L2 = dimZ(L)⊥ = dim L − dim Z(L).

Suppose L = Z(L)+Fu+Fv. Then L2 = Fuv, which contradicts dim L2 = 2.

Next we turn to showing that dim L3 6= 2. We argue by contradiction and
let L be a counter example of smallest dimension. We first notice that Z(L)
must be isotropic as otherwise L = I ⊕ I⊥ for some 2-dimensional ideal
I = Fu + Fv ≤ Z(L) where (u, v) = 1. But then M = I⊥ is a symplectic
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alternating algebra of smaller dimension where M3 = L3 is of dimension 2.
This however contradicts the minimality of L. We can thus assume that
Z(L) is isotropic. Notice that

2 = dim L3 = dim Z2(L)⊥ = dim L − dim Z2(L).

Say, L = Z2(L)+Fx+Fy. Then L2 = Z(L)+Fxy and, as Z(L) is isotropic
and xy ∈ L2 = Z(L)⊥, L2 is isotropic. Thus L2 ≤ (L2)⊥ = Z(L) and we get
the contradiction that L3 = {0}.

It now only remains to deal with L4. For a contradiction, suppose that
dim L4 = 2. Then

2 = dim L4 = dim Z3(L)⊥ = dim L − dim Z3(L).

Say L = Z3(L) + Fu + Fv. Then L2 ≤ Z2(L) + Fuv and using the fact that
Z2(L) · L2 = {0} we get

L2·L2 ≤ (Z2(L)+Fuv)L2 = Fuv·L2 ≤ Fuv·(Z2(L)+Fuv) = F (uv)(uv) = 0.

Thus 0 = (L, L2 · L2) ⇒ (L3, L2) = 0 ⇒ (L4, L) = 0, that gives us the
contradiction that L4 = {0}. 2

Example. Let L be the nilpotent alternating algebra with presentation
(we only list the triples that have non-zero value)

(x2y3, y4) = 1, (x1y2, y3) = 1, (y1y2, y4) = 1.

Then inspection shows that dim L5 = 2. The bound 4 in last proposition is
therefore the best one.

3 The structure of nilpotent symplectic al-

ternating algebras of maximal class

We have seen previously that nilpotent symplectic alternating algebras of di-
mension 2n have class at most 2n−3. For every algebra of dimension 2n ≥ 8
this bound is attained. As well as demonstrating this we will see that the



14

structure of these algebras of maximal class is very restricted.

Let L be a nilpotent symplectic alternating algebra of dimension 2n ≥ 8
with an ascending chain of isotropic ideals

{0} = I0 < I1 < · · · < In,

where dim Ij = j for j = 1, . . . , n.

Theorem 3.1 Suppose L is of maximal class. Then

I2 = Z1(L), I3 = Z2(L), . . . , In−1 = Zn−2(L),

I⊥

n−1 = Zn−1(L), I⊥

n−2 = Zn(L), · · · , I⊥

2 = Z2n−4(L).

Furthermore Z0(L), Z1(L), . . . , Z2n−3(L) are the unique ideals of L of dimen-

sions 0, 2, 3, . . . , n − 1, n + 1, n + 2, . . . , 2n − 2, 2n.

Proof Let J0 = {0}, J1 = I2, . . . , Jn−2 = In−1, Jn−1 = I⊥

n−1, Jn = I⊥

n−2, . . . , J2n−4 =
I⊥

2 , J2n−3 = L. By Theorem 2.10, the chain J0 < J1 < . . . < J2n−3 is central.
We argue by contradiction and let i be the smallest integer between 1 and
2n− 4 where Ji < Zi(L). Let u ∈ Zi(L) \ Ji and let k be the smallest integer
between i and 2n − 4 such that u ∈ Jk+1. Then

Jk < Jk + Fu ≤ Jk+1.

If Jk+1/Jk has dimension 1 it follows that Jk+1 ≤ Zk(L) and we get the
contradiction that the class is at most 2n − 4. We can thus suppose that
Jk+1/Jk has dimension 2 and there are two cases to consider, either k = n−2
or k = 2n − 4. In the former case we have

In−1 < In−1 + Fu ≤ I⊥

n−1

which implies that I = In−1 + Fu is an isotropic ideal of maximal dimension
n. As u ∈ Zn−2(L), we have that In−2 < I is centralised by L. By Lemma
2.8 it follows that I < I⊥

n−2 is also centralised by L and we we get a central
series

{0} = I0 < I2 < I3 < . . . < In−2 < I < I⊥

n−2 < I⊥

n−3 < · · · < I⊥

2 < I⊥

0 = L
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of length 2n−4 and we get again the contradiction that the class is less than
2n − 3. Finally suppose that k = 2n − 4. So we have

I⊥

2 < I⊥

2 + Fu < L

and u ∈ Z2n−4(L). Now let v ∈ L \ (I⊥

2 + Fu). Then L = I⊥

2 + Fu + Fv and
L2 = (I⊥

2 + Fu)L ≤ Z2n−5(L). Hence L ≤ Z2n−4(L) that again contradicts
the assumption that L is of class 2n − 3.

We now want to show that these terms of the upper central series are the
unique ideals of dimensions 0, 2, 3, . . . , n−1, n+1, n+2, . . . , 2n−2, 2n. First
let I be an ideal of dimension 2. By Lemma 2.7 we have that I ≤ Z(L) and
as we have seen that Z(L) has dimension 2, it follows that I = Z(L). Now
suppose that for some 2 ≤ k ≤ n−2 we know that Zk−1(L) is the only ideal of
dimension k. Let I be an ideal of dimension k +1. As L is nilpotent we have
that I contains a ideal J of dimension k. By the induction hypothesis we
have that J = Zk−1(L) and as I/J is of dimension 1 we have that I ≤ Zk(L).
We have that Zk(L) has dimension k + 1 and thus I = Zk(L). We have thus
seen that there are unique ideals of dimensions 0, 2, 3, . . . , n − 1. Now let I
be an ideal of dimension i ∈ {n + 1, n + 2, . . . , 2n − 2, 2n}. Then I⊥ is an
ideal whose dimension is in {0, 2, 3, . . . , n − 1}. By what we have just seen
I⊥ is unique and thus I as well. 2

Remarks (1) In particular it follows that Zk(L)⊥ = Z2n−3−k(L) for 0 ≤
k ≤ 2n − 3.

(2) As Lk = Zk−1(L)⊥, it follows that L, L2, . . . , L2n−2 are the unique ideals
of dimensions 2n, 2n − 2, 2n − 3, . . . , n + 1, n − 1, n − 2, . . . , 2, 0. Also

Lk = Zk−1(L)⊥ = Z2n−k−2(L).

Remark. Let L be any nilpotent symplectic alternating algebra of dimen-
sion 2n ≥ 6 with the property that dim Z(L) = 2. Notice that Z(L) must be
isotropic since otherwise we would have a 2-dimensional symplectic subalge-
bra I within Z(L) and we would get a direct sum I ⊕ I⊥ of two symplectic
alternating algebras. As I⊥ has non-trivial center this would contradict the
assumption that Z(L) is 2-dimensional. Now L has rank 2. Suppose it
is generated by x, y. Then L is generated by x, y, xy modulo L3 and thus
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dim Z2(L) = dim (L3)⊥ = dim L − dim L3 = 3.

The complete list of ideals of L. We have seen that there is a unique ideal
of dimension k for any 0 ≤ k ≤ 2n apart from k = 1, k = n and k = 2n − 1.
Let us now turn to the remaining dimensions. Now every ideal of dimension
1 is contained in Z(L) and conversely every subspace of dimension 1 in Z(L)
is an ideal.

Next consider an ideal I of dimension 2n − 1. Then I⊥ is an ideal of di-
mension 1 and is thus any subspace of dimension 1 such that

{0} < I⊥ < Z(L)

Equivalently, I is any subspace of dimension 2n − 1 such that

L2 = Z(L)⊥ < I < {0}⊥ = L.

Finally consider an ideal I of dimension n. Since L is nilpotent there exists
an ideal J of dimension n + 1 containing I. By last theorem we have that
J = Ln−1 = Zn−2(L)⊥. Also I contains an ideal of dimension n − 1 that we
know is Zn−2(L). Thus

Zn−2(L) < I < Zn−2(L)⊥.

We also know from our previous work that Zn−2(L) is an isotropic ideal of
dimension n − 1. I is thus an isotropic ideal of the form

Zn−2(L) + Fu

For some u ∈ Zn−2(L)⊥ \ Zn−2(L). Conversely, as Zn−2(L)⊥L ≤ Zn−2(L) we
have that for any intermediate subspace I of dimension n between Zn−2(L)
and Zn−2(L)⊥, I is an ideal.

We thus have a complete picture of the ideals of L.

We now focus on the characteristic ideals. It turns out that there are as
well always characteristic ideals of dimension 1, n and 2n− 1 when 2n ≥ 10.

Remark. Notice that if I is a characteristic ideal then the ideal I⊥ is also
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characteristic. To see this let φ be any automorphism of the symplectic al-
ternating algebra L and let a ∈ I⊥. As φ is an automorphism we have that
φ(a) ∈ φ(I)⊥ = I⊥.

Theorem 3.2 Let L be a nilpotent symplectic alternating algebra of dimen-

sion 2n ≥ 10 that is of maximal class. L has a chain of characteristic ideals

{0} = I0 < I1 < · · · < In < I⊥

n−1 < · · · < I⊥

1 < I⊥

0 = L

where for 0 ≤ k ≤ n, Ik is isotropic of dimension k.

Proof By Theorems 2.10 and 3.1, we know that we can get such a chain of
ideals where all the ideals apart from I1, In and I2n−1 are characteristic. We
want to show that we can choose our chain such that I1, In and I2n−1 are also
characteristic. Let x1, y1, . . . , xn, yn be a standard basis such that

Ik = Fxn + Fxn−1 + · · ·+ Fxn+1−k

for 1 ≤ k ≤ n. Then I4I
⊥

2 = Fxn−3yn−2 is a characteristic ideal. We claim
that this is non-trivial. Otherwise xn−3yn−2 = 0 and then (xn−3u, yn−2) = 0
for all u ∈ L that implies that xn−3L ≤ Fxn + Fxn−1 and we get the con-
tradiction that xn−3 ∈ Z2(L) = I3. Thus we have got a characteristic ideal
of dimension 1, namely I4I

⊥

2 = Z3(L) · L2. Notice that we are assuming
here that n ≥ 5. From this we get that (I4I

⊥

2 )⊥ is a characteristic ideal of
dimension 2n − 1.

It remains to find a characteristic ideal of dimension n. We know that
Ln = Fxn + Fxn−1 + · · · + Fx2, Ln−1 = I⊥

n−1 = Fxn + · · · + Fx1 + Fy1

and Ln−2 = I⊥

n−2 = I⊥

n−1 + Fy2. As Ln−1 = Ln−2 · L it follows that
Ln + Fx1 + Fy1 = (Ln−1 + Fy2)L and thus

Ln + Fx1 + Fy1 = Ln + y2L.

Thus there exist u, v ∈ L such that y2u+Ln = x1+Ln and y2v+Ln = y1+Ln.
Then

(y2u, x1) = 0, (y2u, y1) 6= 0, (y2v, x1) 6= 0, (y2v, y1) = 0.

Equivalently

(x1y2, u) = 0, (x1y2, v) 6= 0, (y1y2, u) 6= 0, (y1y2, v) = 0
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and this implies that x1y2, y1y2 are linearly independent (something that will
also be useful later). Consider next the 2-dimensional characteristic subspace

Ln−1Ln−2 = Fx1y2 + Fy1y2.

Notice that Ln−1Ln−2 ≤ In−2. Let k be the smallest positive integer between
1 and n − 3 such that Ln−1Ln−2 ≤ Ik+1. Let J = Ln−1Ln−2 ∩ Ik. Then
dim J = 1 and there is a unique one-dimensional subspace Fu of Fx1 + Fy1

such that FuLn−2 = J . Now I = In−1 + Fu is the characteristic ideal of
dimension n that we wanted. Notice that I = {x ∈ In+1 : xIn+2 ⊆ J}. 2

Remark. If L is a nilpotent symplectic alternating algebra of dimension
8 that is of maximal class then there is no characteristic ideal of dimension
1. The reader can convince himself of this by looking at the classification of
these algebras given in the last section.

Corollary 3.3 Let L be a nilpotent symplectic alternating algebra of maxi-

mal class and dimension 2n ≥ 10. The automorphism group of L is nilpotent-

by-abelian.

Proof Consider a chain of characteristic ideals as given in the last theorem

{0} = I0 < I1 < . . . < In < I⊥

n−1 < I⊥

n−2 < . . . < I⊥

0 = L.

Consider the ordered basis (xn, xn−1, . . . , x1, y1, . . . , yn) associated with this
chain, that is Ik = Fxn + Fxn−1 + · · ·+ Fxn+1−k. As the ideals in the chain
are all characteristic we see that the matrix of any automorphism with re-
spect to that ordered basis will be upper triangular. The result follows. 2

We next move on to presentations of nilpotent symplectic alternating al-
gebras of maximal class. Suppose L is any nilpotent symplectic alternating
algebra with a presentation

P : (xiyj, yk) = αijk, (yiyj, yk) = βijk 1 ≤ i < j < k ≤ n.

We would like to read from the presentation whether the algebra is of maxi-
mal class. This turns out to be possible.

Theorem 3.4 Let L be a nilpotent symplectic alternating algebra of dimen-

sion 2n ≥ 8 given by some nilpotent presentation P. The algebra is of max-

imal class if and only if xn−2yn−1, xn−3yn−2, . . . , x2y3 are non-zero and

x1y2, y1y2 are linearly independent.
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Proof Let us first see that these conditions are necessary. Suppose that
L is of maximal class. In the proof of Theorem 3.2 we have already seen
that x1y2 and y1y2 must be linearly independent. As before we let Ik =
Fxn + . . . + Fxn+1−k. As xn−2 6∈ Z(L), we have (xn−2yn−1, yn) 6= 0 and thus
xn−2yn−1 6= 0. As the terms of the central chain

I0 < I2 < I3 < . . . < In−1 < I⊥

n−1 < I⊥

n−2 < . . . < I⊥

2 < I⊥

0

are the terms of the lower central series, we know that Ik+1L = Ik for 2 ≤
k ≤ n − 2. Thus we have for 3 ≤ k ≤ n − 2 that

Ik−1 + Fxn−k+1 = (Ik + Fxn−k)L.

From this it follows Ik−1 + Fxn−k+1 = Ik−1 + xn−kL. In particular there
exists u ∈ L such that Ik−1 + xn−k+1 = Ik−1 + xn−ku. It follows that
0 6= (xn−ku, yn−k+1) = −(xn−kyn−k+1, u). Hence xn−kyn−k+1 is non-zero for
3 ≤ k ≤ n − 2.

Let us then see that these conditions are sufficient. We do this by show-
ing that I2 = I3L, I3 = I4L, . . ., In−2 = In−1L, In−1 = I⊥

n−1L, I⊥

n−1 = I⊥

n−2L,
. . ., I⊥

3 = I⊥

2 L, I⊥

2 = I⊥

0 L. This is sufficient as this would imply that
L2n−3 = I2 6= 0 and thus L is nilpotent of class 2n−3. Firstly as xn−2yn−1 6= 0
we have that (xn−2yn−1, yn) 6= 0 and thus I3L = xn−2L = Fxn +Fxn−1 = I2.
Now suppose that we have already established that Ik = Ik+1L for all
2 ≤ k ≤ m where 2 ≤ m ≤ n − 3. Then

Im+2L = (Im+1 + Fxn−m−1)L = Im + xn−m−1.L

As xn−m−1yn−m 6= 0 we have (xn−m−1u, yn−m) = −(xn−m−1yn−m, u) 6= 0 for
some u ∈ L and thus Im+2L = Im + xn−m−1L = Im + Fxn−m = Im+1. We
have thus established by induction that

I2 = I3L, . . . , In−2 = In−1L.

We next show that I⊥

n−1L = In−1. As x1y2 6= 0 we have that there exist u ∈ L
such that 0 6= (x1y2, u) = −(x1u, y2) and

I⊥

n−1L = (In−1 + Fx1 + Fy1)L = In−2 + Fx2 = In−1.
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Next we show that I⊥

n−2L = I⊥

n−1. As x1y2, y1y2 are linearly independent
there exist u, v ∈ L such that

(x1y2, u) = 0, (x1y2, v) 6= 0, (y1y2, u) 6= 0, (y1y2, v) = 0

and thus

(y2u, x1) = 0, (y2u, y1) 6= 0, (y2v, x1) 6= 0, (y2v, y1) = 0.

Hence

I⊥

n−2L = (I⊥

n−1 + Fy2)L = In−1 + Fy2L = In−1 + Fx1 + Fy1 = I⊥

n−1.

Now suppose that we have established that I⊥

k−1L = I⊥

k for m+1 ≤ k ≤ n−1
where 3 ≤ m ≤ n − 2. As xn−myn−m+1 6= 0 it follows that there exists u ∈ L
such that 0 6= (xn−myn−m+1, u) = (yn−m+1u, xn−m). Thus

I⊥

m−1L = (I⊥

m + yn−m+1)L = I⊥

m+1 + yn−m+1L = I⊥

m+1 + Fyn−m = I⊥

m.

It now only remains to see that I⊥

0 L = I⊥

2 . But this follows from xn−2yn−1 6= 0
that implies that (yn−1yn, xn−2) = (xn−2yn−1, yn) 6= 0. Thus

I⊥

0 L = (I⊥

2 + Fyn−1 + Fyn)L = I⊥

3 + (Fyn−1 + Fyn)L = I⊥

3 + Fyn−2 = I⊥

2 .

This finishes the proof. 2

Remark. In particular it follows that for each 2n ≥ 8 there exist a nilpotent
symplectic alternating algebra of maximal class. One just needs to choose the
presentation such that the conditions from Theorem 3.4 hold. One possibility
is

P : (xn−2yn−1, yn) = −1, (xn−3yn−2, yn) = −1, · · · , (x1y2, yn) = −1,
(y1y2, yn−1) = −1.

In fact the conditions are not a strong constraint. In particular the values
of (xiyj, yk), (yiyj, yk) where j − i ≥ 2 can be chosen freely. The number

of such triples is 2
(

n−1
3

)

that is a polynomial in n of degree 3 with leading

coefficient 1/3. Let F be any finite field. By a similar argument as we used
for determining the growth of nilpotent symplectic alternating algebras we
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see that the number m(n) of nilpotent symplectic alternating algebras of
maximal class satisfies

m(n) = |F |n
3/3+O(n2).

Remark. (1) Let L be a nilpotent symplectic alternating algebra of dimen-
sion 2n ≥ 10 that is of maximal class and consider a chain {0} = I0 < . . . < In

of characteristic ideals where Ik is of dimension k. We have, for 4 ≤ m ≤ n−1,

ImI⊥

m−2 = Fxn+1−myn+2−m

and thus we get that Fx2y3, Fx3y4, . . . , Fxn−3yn−2 are one-dimensional char-
acteristic subspaces of L. Also

I⊥

n−1I
⊥

n−2 = Fx1y2 + Fy1y2

is a characteristic subspace. So is I⊥

n I⊥

n−2 = Fx1y2.

(2) If V is a characteristic subspace of dimension d then we get a chain
of characteristic subspaces

V ∩ I1 ⊆ V ∩ I2 ⊆ . . . ⊆ V ∩ In ⊆ V ∩ I⊥

n−1 ⊆ . . . ⊆ V ∩ I⊥

0 = V.

Thus there is a chain of characteristic subspaces V1 < V2 < . . . < Vd where
vi is of dimension i.

4 Nilpotent algebras of dimension 2n ≤ 8

The classification of the nilpotent symplectic alternating algebras of dimen-
sions at most 8 is implicit in [3] although this is not done explicitly and the
context there is a more general setting. To demonstrate the machinery that
we have developed we will offer a much shorter approach here. The classifi-
cation of algebras of dimension 10 is far more challenging and will be dealt
with in a sequel to this paper. Through this section we will be working with
an arbitrary field F .

We have observed earlier that nilpotent symplectic alternating algebras of
dimensions 2 or 4 must be abelian.
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4.1 Algebras of dimension 6

Let L be a non-abelian nilpotent symplectic alternating algebra of dimension
6 with a nilpotent presentation P. There are at most two non-zero triple
values

(x1y2, y3) = a, (y1y2, y3) = b.

As L is non-abelian, one of these must be non-zero and, by replacing x1, y1

by −y1, x1 if necessary, we can assume that b 6= 0. Replacing then x3, y3

by bx3,
1
b
y3 implies that we can further assume that (y1y2, y3) = 1. Finally

replacing x1, y1 by x1 − ay1, y1 and we can also assume that (x1y2, y3) = 0.
Apart from the abelian algebra, there is thus only one algebra of dimension
6 with presentation

P1 : (y1y2, y3) = 1.

(We will normally only write down those triples where the value is non-zero).

4.2 Algebras of dimension 8

First suppose that Z(L) is not isotropic. We can then choose our standard
basis such that I = Fx4 + Fy4 ⊆ Z(L) and we get a direct sum I ⊕ I⊥ of
symplectic alternating algebras of dimensions 2 and 6. From 4.1 we then
know that apart from the abelian algebra, there is only one such algebra
L2 = Fx4 + Fx3 + Fx2 + Fx1 + Fy1 + Fy2 + Fy3 + Fy4 with presentation

P2 : (y1y2, y3) = 1.

We then turn to the situation where Z(L) is isotropic. Let us first see that
dim Z(L) 6= 4. We argue by contradiction and suppose that dimZ(L) = 4.
Pick a standard basis such that Z(L) = Fx4 + Fx3 + Fx2 + Fx1. Now L is
not abelian and thus (yiyj, yk) 6= 0 for some 1 ≤ i < j < k ≤ 4. Without
loss of generality, we can suppose that (y1y2, y3) = 1. Suppose now that
(y1y2, y4) = a, (y2y3, y4) = b and (y3y1, y4) = c. Let ȳ4 = y4 − by1 − cy2 − ay3.
Inspection shows that ȳ4 is orthogonal to L2 = Fy1y2 + Fy2y3 + Fy3y1 +
F ȳ4y1 + F ȳ4y2 + F ȳ4y3. Thus ȳ4 ∈ (L2)⊥ = Z(L) and we get the contra-
diction that dim Z(L) ≥ 5. Thus we have shown that dim Z(L) 6= 4 and as
dim Z(L) is always at least 2, we have two cases to consider: dimZ(L) = 3
and dimZ(L) = 2.
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DimZ(L) = 3. We can choose the standard basis such that Z(L) = Fx4 +

Fx3 + Fx2 and L2 = Z(L)⊥ = Fx4 + Fx3 + Fx2 + Fx1 + Fy1. By Theorem
2.10, we know that L3 = L2L ⊆ Z(L) and by Proposition 2.11 we must
then have L3 = Z(L). As x1 6∈ Z(L), we must have (x1yi, yj) 6= 0 for some
2 ≤ i < j ≤ 4. Without loss of generality (x1y2, y3) 6= 0. By replacing y4, y1

by y4 − ax1, y1 + ax4 for a suitable a, we can assume that (y2y4, y3) = 0. Let
V = Fy2 + Fy3 + Fy4. Now (y2y3, y4) = 0 and L2 = Z(L) + Fx1 + Fy1.
As L = L2 + V it follows that V 2 = Fx1 + Fy1 and as V 2 is not isotropic
we must have that some two of y2y3, y4y3, y2y4 are not isotropic. Without
loss of generality we can suppose that these are y2y3 and y4y3. By replac-
ing y4, x4 by ay4,

1
a
x4 for a suitable a ∈ F , we can furthermore assume that

(y2y3, y4y3) = 1. Thus

Fx1 + Fy1 = V 2 = Fy2y3 + Fy4y3

and y2y4 = ay2y3 + by4y3 for some a, b ∈ F . It follows that (y2 + by3)(y4 −
ay3) = 0. Now replace y2, y4, x3 by y2 + by3, y4 − ay3, x3 − bx2 + ax4 and then
replace x1, y1 by y2y3, y4y3. It follows that we get a new standard basis where

y2y3 = x1, y4y3 = y1, y2y4 = 0.

This implies that the only non-zero triples are (y1y2, y3) = 1 and (x1y3, y4) =
1. There is thus only one possible candidate here, the algebra L3 with pre-
sentation

P3 : (y1y2, y3) = 1, (x1y3, y4) = 1.

Conversely, one sees by inspection that Z(L3) = Fx4 + Fx3 + Fx2 and this
candidate is a genuine example with dim Z(L) = 3.

DimZ(L) = 2. We know that the class of L is at most 2 · 4 − 3 = 5 and

thus L5 ≤ Z(L). Let k be the smallest positive integer 2 ≤ k ≤ 5 such that
Lk ≤ Z(L). As dim Lk ≤ 2, it follows from Proposition 2.11 that k = 5.
Hence L is of maximal class and by Theorem 3.1 we can choose our standard
basis such that, we get ideals Ik = Fxn + · · ·+ Fxn+1−k, k = 0, . . . , n where

{0} = I0 < I1 < . . . < I4 = I⊥

4 < I⊥

3 < . . . < I⊥

0 = L

is a central series with I2 = Z(L) = L5, I3 = Z2(L) = L4, I⊥

3 = Z3(L) = L3

and I⊥

2 = Z4(L) = L2. By Theorem 3.4 we furthermore have that x1y2, y1y2
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are linearly independent and thus a basis for Z(L) = Fx4 + Fx3. We can
now pick our standard basis such that x1y2 = x4 and y1y2 = x3. As x2 6∈
Z(L), we also have that (x2y3, y4) 6= 0. This means that we have the non-
zero triples (x1y2, y4) = 1, (y1y2, y3) = 1 and (x2y3, y4) = r 6= 0. The
only remaining triples that are possibly non-zero are (x1y3, y4), (y1y3, y4) and
(y2y3, y4). Replacing x1,y1, and y2 by x1−ax2, y1−bx2 and y2+ay1−bx1−cx2

for suitable a, b, c ∈ F , we can assume that these extra triples are zero. We
can thus choose our basis so that our algebra L(r) has presentation

P(r) : (x2y3, y4) = r, (x1y2, y4) = 1, (y1y2, y3) = 1.

We finally need to sort out when, for r, s ∈ F ∗ = F \ {0}, L(r) and L(s) are
isomorphic. We will see that this happens if and only if r/s ∈ (F ∗)3. To see
that this is a sufficient condition, suppose we have an algebra L that has a pre-
sentation P(r) with respect to some standard basis x1, y1, x2, y2, x3, y3, x4, y4.
Suppose that s = a3r for some a ∈ F ∗. Let x̄1 = x1, ȳ1 = y1, x̄2 = ax2,
ȳ2 = 1

a
y2, x̄3 = 1

a
x3, ȳ3 = ay3, x̄4 = 1

a
x4 and ȳ4 = ay4. Inspection shows that

L has presentation P(s) with respect to the new basis. Hence L(s) ∼= L(r)
when r/s ∈ (F ∗)3. It remains to see that the condition is also necessary.
Consider the algebra L(r) and take an arbitrary new standard basis x̄1, ȳ1,
x̄2, ȳ2, x̄3, ȳ3, x̄4, ȳ4 such that L(r) satisfies the presentation P(s) for some
s ∈ F ∗. We want to show that s/r ∈ (F ∗)3. Now

ȳ3 = ay3 + by4 + u, ȳ4 = cy3 + dy4 + v

for some u, v ∈ L2 and a, b, c, d ∈ F where ad−bc 6= 0. As dim L2−dim L3 = 1
it follows readily that L2L2 ≤ L4 and it follows that

ȳ3ȳ4ȳ3 = (ay3 + by4)(cy3 + dy4)(ay3 + by4) + w,

ȳ3ȳ4ȳ4 = (ay3 + by4)(cy3 + dy4)(cy3 + dy4) + z,

for some w, z ∈ L4. As L6 = 0 we have that L4 is orthogonal to L3 and thus
in the following direct calculations we can omit w and z. We have

−s2 = (ȳ3ȳ4ȳ3, ȳ3ȳ4ȳ4) = −(ad − bc)3r2.

Hence s/r ∈ (F ∗)3.
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