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Abstract

Let N be any perfect symplectic alternating algebra. We show that N can be em-
bedded into a larger simple alternating algebra S of dimension 7 · (dim N) + 6 such that
Aut (S) = {id} . This answers a question raised in [9]. Building on this result we show more-
over that for any finite group G and characteristic c there exists a symplectic alternating
algebra L over a field F of characteristic c such that Aut (L) = G .
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1 Introduction

A symplectic alternating algebra (SAA) is a symplectic vector space L , whose associated alter-
nating form is nondegenerate, that is furthermore equipped with a binary alternating product
· : L× L→ L with the extra requirement that

(x · y, z) = (y · z, x)

for all x, y, z ∈ L . This condition can be expressed equivalently by saying that (u·x, v) = (u, v·x)
for all u, v, x ∈ L or in other words that multiplication from the right is self-adjoint with respect
to the alternating form.

Symplectic alternating algebras originate from a study of powerful 2 -Engel groups [4], [8] and
there is in a 1-1 correspondence between a certain rich class of powerful 2 -Engel 3 -groups of
exponent 27 and SAAs over the field GF(3) .

Let 2n be a given even integer and F a fixed field. Let V be the symplectic vector space
over the field F with a nondegenerate alternating form. Fix some basis u1, u2, . . . , u2n for

1



2

V . An alternating product · that turns V into a symplectic alternating algebra is uniquely
determined by the values

P : (ui · uj , uk), 1 ≤ i < j < k ≤ 2n.

Let L be the resulting symplectic alternating algebra. We refer to the data above as a presen-
tation for L with respect to the basis u1, . . . , u2n .

Consider the symplectic group Sp(V ) . The map V 3 → F, (u, v, w) 7→ (u · v, w) is an al-
ternating ternary form and a moment’s reflection should convince the reader that there is a 1-1
correspondence between symplectic alternating algebras of dimension 2n over F and orbits in
(∧3V )∗ under the natural action of Sp(V ) . In particular a symplectic alternating algebra L has
a trivial automorphism group if and only if the corresponding orbit in (∧3V )∗ is regular. From
this it is not difficult to determine the growth of symplectic alternating algebras. If m(n) is the

number of symplectic alternating algebras over a finite field F then m(n) = |F|
4n3

3
+O(n2) [7].

Because of the sheer growth, a general classification does not seem to be within reach although
this has been done for small values of n . Thus it is not difficult to see that m(0) = m(1) = 1
and m(2) = 2 . For higher dimensions the classification is already difficult. It is though known
that when F = GF(3) we have m(3) = 31 [9]. Some general structure theory is developed
in [9] and [10]. In particular there is a dichotomy result that is an analog to a corresponding
theorem for Lie algebras, namely that L either contains an abelian ideal or is a direct sum
of simple symplectic alternating algebras. We also have that any symplectic algebra that is
abelian-by-nilpotent must be nilpotent while this is not the case in general for solvable algebras.
We should also mention here that the study of orbits in ∧3V is a classical problem that has
been considered by a number of people (see for example [2], [5] and [6]).

For nilpotent symplectic alternating algebras there is a particularly rich structure theory with
a number of beautiful results [7]. We can pick a basis x1, y1, . . . , xn, yn with the property that
(xi, xj) = (yi, yj) = 0 and (xi, yj) = δij for 1 ≤ i ≤ j ≤ n . We refer to a basis of this type
as a standard basis. It turns out that for any nilpotent symplectic alternating algebra one can
always choose a suitable standard basis such that the chain of subspaces

0 = I0 < I1 < . . . < In < I⊥n−1 < · · · < I⊥0 = L,

with Ik = Fxn + · · · + Fxn−k+1 for k ≥ 1 , is a central chain of ideals. One can furthermore
see from this that xiyj = 0 if j ≤ i and that I⊥n−1 is abelian. It follows that a number of the
triple values (uv,w) are trivial. Listing only the values that are possibly non-zero it suffices to
consider

P : (xiyj , yk) = αijk, (yiyj , yk) = βijk, 1 ≤ i < j < k ≤ n

for some αijk, βijk ∈ F . Such a presentation is called a nilpotent presentation. Conversely any
such presentation describes a nilpotent SAA. The algebras that are of maximal class turn out to
have a rigid ideal structure. In particular when 2n ≥ 10 we can choose our chain of ideals above
such that they are all characteristic and it turns out that I0, I2, I3, . . . , In−1, I

⊥
n−1, I

⊥
n−2, . . . , I

⊥
0

are unique and equal to both the terms of the lower and upper central series (see [7] Theorems
3.1 and 3.2). This implies also that the automorphism group in this case is nilpotent-by-abelian,
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since it can be represented as a group of upper triangular matrices over F . The algebras of
maximal class can be identified easily from their nilpotent presentations. In fact, if P is any
nilpotent presentation of L with respect to a standard basis {x1, y1, . . . , xn, yn} , and 2n ≥ 8 ,
we have that L is of maximal class if and only if xiyi+1 6= 0 for all i = 2, . . . , n − 2 , and
x1y2, y1y2 are linearly independent (see [7] Theorem 3.4).

From the general theory of nilpotent SAAs one can also determine their growth. Thus if k(n) is
the number of nilpotent SAAs of dimension 2n over a finite field F then k(n) = |F|n3/3+O(n2) .
Again the growth is too large for a general classification to be feasable. The algebras of di-
mension 2n for n ≤ 4 are classified in [7] over any field F . The challenging classification of
algebras of dimension 10 is dealth with in Sorkatti’s PhD thesis and is again over any field F .

The structure of symplectic alternating algebras is quite asymmetric in general and one of
the questions raised in [9] was whether there exists SAAs with trivial automorphism group. In
this paper we will answer this question positively. We will in fact do much more. For any perfect
SAA N (i.e. where N2 = N ), we will construct a larger algebra S of dimension 7 ·(dimN)+6
that is simple and whose automorphism group is trivial. Building on this we will then show that
for any finite group G and characteristic c , there exists a symplectic alternating algebra L

over a field F of characteristic c where Aut (L) = G . Some preparation work regarding SAAs
of maximal class is done in Section 2 and then in Section 3 we finish the construction of a SAA
with a trivial automorphism group. Finally, in Section 4 we extend our work to show that any
finite group can be realised as the automorphism group of a SAA.

We should also add that the question whether a symplectic alternating algebra can have a
trivial automorphism group initially arose from an attempt to answer a question posed by A.
Caranti (see problem 11.46 in [3]) whether there exists a finite 2 -Engel 3 -group G of class 3
such that Aut (G) = Aut c(G) · Inn (G) where Aut c(G) is the group of central automorphisms
of G . As we said above there is in a 1-1 correspondence between a certain rich class of powerful
2 -Engel 3 -groups of exponent 27 and SAAs over the field GF(3) and it was pointed out in [9]
that a necessary condition for a group from this class to be a counter example to Caranti’s ques-
tion is that the corresponding symplectic alternating algebra would have a trivial automorphism
group. Unfortunately further analysis reveals that the condition is not sufficient however and
thus our examples to not provide directly such counter example. These examples may though
provide a basis for constructing such examples. In any case, a counter example to Cartanti’s
question has now been found based on the use of GAP and MAGMA [1].

2 Nilpotent algebras

Although we are concerned with simple algebras and their automorphism group, a knowledge
of certain nilpotent algebras will be crucial.

Let 2n ≥ 20 and choose a nondegenerate symplectic F -vector space L of dimension 2n .
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Select a standard basis {x1, . . . , xn, y1, . . . , yn} for L . The nilpotent presentation

P :

(xiyi+1, yi+3) = 1 for all i = 1, . . . , n− 3
(xn−2yn−1, yn) = 1
(x4y7, yi) = −1 for all i = 8, . . . , n
(x5y8, yi) = −1 for all i = 9, . . . , n
(x6y9, yi) = −1 for all i = 10, . . . , n
(y1y2, y3) = 1

gives L the structure of a nilpotent SAA. As x2y3, x3y4, . . . , xn−2yn−1 are non-zero and as
x1y2, y1y2 are linearly independent we know that L is of maximal class. For k = 1, . . . , n ,
let Ik = 〈xn, xn−1, · · · , xn−k+1〉 . From the general theory of symplectic alternating algebras of
maximal class, we know that Ik and I⊥k are characteristic ideals for k = 2, . . . , n− 1 . If I, J
are two characteristic ideals of L , their product, although not always an ideal, is a characteristic
subspace of L . Choose any k and select a ∈ Ik, b ∈ I⊥k−1 and x ∈ L . As IkL ≤ Ik−1 and
since (ab, x) = (xa, b) = 0 , it follows that IkI

⊥
k−1 = 0 . Therefore

Ik(I⊥k−2) = Ik(I⊥k−1 + 〈yn−k+2〉) = Ik〈yn−k+2〉 = 〈xn−k+1yn−k+2〉.

Notice that I4I
⊥
2 = 〈xn−3yn−2〉 = 〈xn〉 = I1 is thus a characteristic subspace contained in Z(L)

and thus a characteristic ideal. Also

In = {x ∈ I⊥n−1 : xI⊥n−2 ≤ In−3}

and thus it is also a characteristic ideal. It follows that the subspaces 〈xn−k+1yn−k+2〉 are
characteristic for k = 3, . . . , n . Hence 〈xk〉 is characteristic for k = 4, . . . , n . In order to make
calculations in L easier, it is better to express the above presentation in terms of the product
of L . Some relevant products among members of the basis are the following:

xiyi+1 = xi+3 for all i = 1, . . . , n− 3
xn−2yn−1 = xn
x4y7 = −(x5 +

∑n
i=8 xi)

x5y8 = −(x6 +
∑n

i=9 xi)
x6y9 = −(x7 +

∑n
i=10 xi)

y1y2 = x3.

Notice that the center of L is Z(L) = 〈xn, xn−1〉 and that Z2(L) is 〈xn, xn−1, xn−2〉 . We
have seen above that the subspaces 〈xk〉 are characteristic for k = 4, . . . , n . Thus, for each
θ ∈ Aut(L) , xkθ = λkxk for suitable λk ∈ F and for all k ≥ 4 . Thus, if we choose any subset
Ω ⊆ {i | 4 ≤ i ≤ n} , the subspace 〈xi | i ∈ Ω〉 is characteristic.

It follows that the subspaces U = 〈In, y1, y2, y3, y4, y7〉 , W = 〈In, y1, y2, y3, y4, y5, y8〉 and
T = 〈In, y1, y2, y3, y4, y5, y6, y9〉 are characteristic, since they can be expressed as

U = 〈x5, x6, xi | i ≥ 8〉⊥ W = 〈x6, x7, xi | i ≥ 9〉⊥ T = 〈x7, x8, xi | i ≥ 10〉⊥

and the product 〈x4〉U = 〈x4y7〉 is characteristic as well. Similarly we get that 〈x5y8〉 and
〈x6y9〉 are characteristic because they can be expressed as products 〈x5〉W and 〈x6〉T .
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Thus there exists µ, η, τ ∈ F such that (x4y7)θ = µx4y7 = −µ(x5 +
∑n

i=8 xi) , (x5y8)θ =
ηx5y8 = −η(x6 +

∑n
i=9 xi) and (x6y9)θ = τx6y9 = −τ(x7 +

∑n
i=10 xi) . But we also get

(x4y7)θ = (−x5 −
n∑
i=8

xi)θ = −(x5
θ +

n∑
i=8

xi
θ) = −(λ5x5 +

n∑
i=8

λixi).

Matching the two expressions of (x4y7)θ , we see that µ = λ5 = λi for all i ≥ 8 . The same
argument can be applied to the images of x5y8 and x6y9 in order to get that η = λ6 = λi for
all i ≥ 9 and τ = λ7 = λi for all i ≥ 10 . It follows that µ = η = τ = λi for all i ≥ 5 . We
indicate by λ this element of F . Since y6 belongs to I⊥n−6 = 〈y6〉 + I⊥n−5 , there exist ρ ∈ F
and v ∈ I⊥n−5 such that yθ6 = ρy6 + v . The automorphism θ is a symplectic map, hence

1 = (x6, y6) = (xθ6, y
θ
6) = (λx6, ρy6 + v) = λρ+ (x6, v) = λρ

because x6 ∈ In−5 , showing that ρ = λ−1 . Thus

λx5y6 = (x5y6)θ = xθ5y
θ
6 = (λx5)(λ−1y6) = x5y6

and hence λ must be 1 . We have therefore proved the following fact.

Theorem 2.1 Let F be any field, and n ≥ 10 a natural number. There exists a nilpotent SAA
over F of maximal class, with a standard basis {x1, . . . , xn, y1, . . . , yn} such that, for every
θ ∈ Aut(L) we have xθi = xi for all i = 5, 6, . . . , n .

3 Simple algebras

In this section we shall construct simple symplectic alternating algebras whose automorphism
groups are trivial. In [9] examples of simple SAAs are discussed and we will use, in our con-
struction, one of them. Fix a field F and let M be a symplectic F -vector space of dimension
6 with a standard basis {xi, yi | i = 1, 2, 3} . We turn M into a SAA by introducing the non-
trivial relations (x1x2, x3) = −1, (y1y2, y3) = 1 . Notice that as a result we have the following
non-trivial products in the basis elements:

x2x3 = y1 y2y3 = x1

x3x1 = y2 y3y1 = x2

x1x2 = y3 y1y2 = x3

(and we also have xiyj = 0 for 1 ≤ i, j ≤ 3 ). The algebra M is simple, as shown in [9]
Section 5.1. Choose now any perfect SAA N of dimension 2n and single out a standard
basis {ai, bi | i = 1, . . . , n} . Finally let L be a nilpotent SAA of maximal class, of dimension
12n = 2m . Notice that n ≥ 3 , since there is no perfect SAA of dimension less than 6 [9].
Therefore m ≥ 18 and the results of the previous section can be used. It is then possible to
choose L in such a way that, for a suitable standard basis {vi, wi | i = 1, . . . ,m} , we have
vθi = vi for all i = 5, . . . ,m and all θ ∈ Aut (L) . Let S = L�M �N be the orthogonal sum
of L,M,N as symplectic vector spaces. It will be helpful to set up some notation. Let
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(x1, x2, x3, y1, y2, y3) = (e1, e2, . . . , e6)

(a1, a2, . . . , an, b1, b2, . . . , bn) = (f1, f2, . . . , f2n).

Notice that we can extend the given products on L,M,N to a product on S such that the
elements eifj , 1 ≤ i ≤ 6 and 1 ≤ j ≤ 2n , are the same as the elements v1, . . . , vm, w1, . . . , wm
in any order we wish. This is easy to achieve, and to arrange for eifj = vk we just need to add
the relation (eifj , wk) = 1 . Similarly if wanted instead the eifj = wk then one would add the
relation (eifj , vk) = −1 . We now add the 2m neccessary relations where we have chosen the
order to get the additional property that

R :
wm = y1an = e4fn, wm−1 = y2bn = e5f2n, wm−2 = y3bn = e6f2n

vm−i = e1fi+1 for all i = 0, . . . , 2n− 1
vm−2n−i = e2+if2n for all i = 0, . . . , 4.

Notice that m− 2n− 4 = 4n− 4 ≥ 8 because n ≥ 3 . Hence every automorphim θ of L fixes
e1f1, e1f2, . . . , e1f2n, e2f2n, . . . , e6f2n a fact we will make use of later.

Remark. The product thus defined has the following features: MN = L, NL = M, LM =
N, L2 ≤ L, M2 = M and N2 = N . We will make use of these properties later.

Lemma 3.1 Let A = {a ∈ S | dim(aS) = 2} . Then 〈A〉 = Z(L) .

Proof. The center of L is generated by vm = e1f1, vm−1 = e1f2 . Given ei, fj we have
(vmei, fj) = (eifj , vm) and this is not zero if and only if eifj = wm = e4fn . In particular
(vm, e4fn) = 1 from which it follows that vme4 ∈ N and vmfn ∈ M are both non-zero. The
two vectors vme4, vmfn are then linearly independent and vmS has dimension 2 . A similar
argument shows that the same holds for vm−1 = e1f2 , so that Z(L) ≤ 〈A〉 . To prove the reverse
inclusion we choose 0 6= g ∈ A and write g = v+x+a with v ∈ L, x ∈M,a ∈ N . If x 6= 0 , then
dim(gN) = dim(xN) = 2n > 2 so that x must be trivial. Similarly dim(gM) = dim(aM) = 6
if a 6= 0 and therefore g ∈ L . Since g is not 0 there must be a pair (i, j) for which
(g, eifj) 6= 0 . This implies that gei and gfj are not 0 and, since they belong respectively
to M and N , they are linearly independent. If g does not belong to Z(L) , then gL has
dimension at least 1 and gS = gL + gM + gN turns out to have dimension at least 3 . This
proves that g is in Z(L) and the claim holds. 2

Lemma 3.2 Let B = {a | dim(aS + Z(L)) = 4} . Then Z(L) + 〈B〉 = Z2(L) .

Proof. We start by checking that Z2(L) ⊆ Z(L) + 〈B〉 . To this extent it is enough to see that
vm−2 = e1f3 belongs to B . By the structure properties of nilpotent SAA of maximal class it
follows that vm−2L has dimension 2 (see [7]). The subspace vm−2M is contained in N so
that, in order to understand its dimension, we calculate the values (vm−2ei, fj) = (eifj , vm−2) .
This element is 0 unless eifj = wm−2 . Since this happens for exactly one pair (i, j) = (6, 2n)
we have that vm−2M has dimension 1 and for the same reason vm−2N has dimension 1 . Thus
vm−2S = vm−2L + vm−2M + vm−2N has dimension 4 . Pick g ∈ B and write g = v + x + a ,
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for some v ∈ L, x ∈ M and a ∈ N . Arguing like in the proof of Lemma 3.1 we see
that x = 0 = a whence we need only to show that g ∈ Z2(L) . If g does not belong to
Z2(L) , there exists u ∈ L such that gu 6∈ Z(L) . Hence gL + Z(L) > Z(L) and we have
dim(gS + Z(L)) = dim(gL + Z(L)) + dim(gN) + dim(gM) ≥ 3 + 2 = 5 . Therefore g ∈ Z2(L)
and the claim is proved. 2

The previous lemmas show that both Z(L) and Z2(L) are characteristic subspaces of S .
For this reason the subspace T = {g | gZ2(L) ⊆ Z(L)} is characteristic as well. If we write an
element g ∈ T as g = v + x+ a , v ∈ L, x ∈ M, a ∈ N , and recall that ML ≤ N, LN ≤ M ,
it becomes clear that T = L + U , where U = {g ∈ M + N | gZ2(L) = 0} . We also notice
that U = (U ∩M) + (U ∩ N) , so that we may describe T by identifying the two subspaces
U ∩M, U ∩N .

In order to do this we first observe that (e1f1, e4fn) = 1 but (e1f1, erfs) = 0 for any other pair.
Similary (e1f2, e5f2n) = 1 and (e1f3, e6f2n) = 1 but (e1f2, erfs) = 0 and (e1f3, erfs) = 0 for
any other pair (r, s) . We use this information to determine first U ∩M . Let e =

∑
k λkek .

Then e(e1f1) = λ4e4(e1f1) and, as e4(e1f1) 6= 0 , this implies that λ4 = 0 . Similarly, consid-
ering e(e1f2) and e(e1f3) , we see that λ5 = λ6 = 0 and e ∈ Fx1 + Fx2 + Fx3 . Clearly
Fx1 + Fx2 + Fx3 ≤ U ∩ M . Hence U ∩ M = Fx1 + Fx2 + Fx3 . Similarly we see that
V ∩M =

∑
i 6=n,2n Ffi and T = L+Fx1+Fx2+Fx3+

∑
i 6=n,2n Ffi . Then (note that (fn, f2n) = 1 )

the subspace

T ∩ T⊥ = T ∩ (Fx1 + Fx2 + Fx3 + Ffn + Ff2n) = Fx1 + Fx2 + Fx3

is characteristic.

Lemma 3.3 The subalgebras L,M,N are characteristic in S .

Proof. Since the subspace Fx1 + Fx2 + Fx3 is characteristic, the same holds for the algebra it
generates, which is M . This gives that L+N = M⊥ is a characteristic subspace and therefore
each subspace (L + N)i is characteristic as well. Using the fact that N is perfect, an easy
inductive argument shows that (L + N)i ∩M⊥ = Li + N and, if c is the nilpotency class of
L , we get (L+N)c+1 ∩M⊥ = N . Hence N is characteristic and the same holds for L , since
L = (M +N)⊥ . 2

We are now in a position to describe the automorphism group of S .

Proposition 3.4 The automorphism group of S is trivial.

Proof. Let θ ∈ Aut(S) be any automorphism. By Lemma 3.3 we have, for all i = 1, . . . , 6
and j = 1, . . . , 2n , expressions

eθi =
6∑

k=1

λikek and fθj =
2n∑
l=1

µjlfl.

Moreover the elements e1f1, e1f2, . . . , e1f2n, e2f2n, . . . e6f2n are left fixed by every automorphism
of L hence they are centralized by the elements of Aut(S) because L is a characteristic
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subalgebra of S . Applying θ to eifj we have

(eifj)θ = eθi f
θ
j =

( 6∑
k=1

λikek
)( 2n∑

l=1

µjlfl
)

=
∑
k,l

λikµjlekfl.

When i = 1 (e1fj)θ = e1fj for all j and comparing coefficients we see that λ11µjj = 1 while
λ1k = 0 = µjl whenever (k, l) 6= (1, j) . Setting λ = λ11 , the action of θ can be described as
eθ1 = λe1 and fθj = λ−1fj for all j = 1, . . . , 2n . Similarly, from (eif2n)θ = eif2n , it follows
eθi = λei for all i = 1, . . . , 6 . Applying θ to the relation x1x2 = y3 , we find

λy3 = yθ3 = (x1x2)θ = xθ1x
θ
2 = λ2x1x2 = λ2y3

whence λ = 1 and θ fixes M+N elementwise. Since S is generated, as an algebra, by N+M ,
θ must be the identity and the theorem is proved. 2

Another interesting fact about S is the following.

Proposition 3.5 The algebra S is simple.

Proof. Assume, by contradiction, that I is a proper non-trivial ideal of S . Since I⊥ is an
ideal, we may assume, without loss of generality, that dim(I) ≥ dim(S)/2 = 7n+ 3 . The sub-
algebra L has dimension 12n , so that dim(I ∩L) = dim I + dimL− dim(I +L) ≥ 5n− 3 > 2 .
Clearly I ∩L is an ideal of L and, by Theorem 3.2 of [7], it contains Z(L) . Thus Z(L)S ⊆ I .
In particular the vector vmfn is in I and, using the equations (vmfn, ei) = (vm, eifn) , we
readily see that vmfn = e1 . Once we have got e1 = x1 ∈ I , it is clear that each ei belongs to
I . From M ≤ I we deduce L = MN ≤ I and finally N = LM ≤ I . Thus I = S contrary
to the assumption that I was proper. This contradiction proves that S is simple, as claimed. 2

As an immediate consequence of 3.5 we have:

Theorem 3.6 Let N be any perfect SAA over a field F . Then N can be embedded into a
larger simple alternating algebra S of dimension 7 · (dimN) + 6 such that Aut(S) is trivial.

Remark. It follows in particular that there are infinitely many simple SAAs over F .

4 Prescribing the automorphism group

In this section we will see how, using the algebra S described in Section 3, one can construct
simple algebras whose automorphism group is any finite group G . We stick to the notation
introduced in the previous section.

Let F be any field and K a finite dimensional Galois extention of F . The trace map tr :
K −→ F , has image in F and the F -bilinear form on K defined by (a, b) = tr(ab) is nonde-
generate and symmetric. Set L = L⊗K , where the tensor product is taken over F . For every
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pair of elements (s⊗ x), (t⊗ y) define (s⊗ x)(t⊗ y) = (st)⊗ (xy) . This can be extended to a
product on L satisfying uv = −uv for all u, v ∈ L . The algebra L can be endowed with an
alternating bilinear form defined by

(s⊗ x, t⊗ y) = (s, t)tr(xy)

on elements (s⊗x), (t⊗y) , and then extended by bilinearity. This form is clearly nondegenerate.
Choose r ⊗ u, s⊗ x, t⊗ y . We have

((r⊗u)(s⊗x), t⊗y) = ((rs)⊗(ux), t⊗y) = (rs, t)tr(uxy) = (st, r)tr(xyu) = ((s⊗x)(t⊗y), (r⊗u))

so that, for all α, β, γ ∈ A , the relation (αβ, γ) = (βγ, α) holds and L is a SAA.
We need to gain information about the structure of L when L is one of the algebras of maximal
class considered in Section 2. So let L be one of these algebras and {x1, . . . , xn, y1, . . . , yn} be
a standard basis as given in Section 2. It is not difficult to see that I2⊗K, . . . , In−1⊗K, I⊥n−1⊗
K, . . . , I⊥2 ⊗ K are the terms of the upper central series for L and thus characteristic. Also
(I4⊗K) · (I⊥2 ⊗K) = I1⊗K and In⊗K = {x ∈ I⊥n−1⊗K : x(I⊥n−2⊗K) ≤ I⊥n−3⊗K and hence
I1 ⊗K, In ⊗K and I⊥1 ⊗K = (I1 ⊗K)⊥ are also characteric. The same argument as in Section
2 shows that 〈x4〉⊗K, . . . , 〈xn〉⊗K are characteristic suspaces and that x5⊗ 1, . . . , xn⊗ 1 are
fixed by all θ ∈ Aut (L) . Using this we see that:

Lemma 4.1 Let θ any automorphism of L . There exist τ ∈ Gal(K | F) such that, for every
k = 5, . . . , n and for all a ∈ K , we have

(xk ⊗ a)θ = xk ⊗ aτ

Proof. We know that x4 ⊗ K, . . . , xn ⊗ K as well as the subspaces I⊥1 ⊗ K, . . . , I⊥n ⊗ K are
characteristic. It follows that exist αk, βk : K −→ K such that, for every a, b ∈ K one has:

(xn−k+1 ⊗ a)θ = xn−k+1 ⊗ aαn−k+1

(yn−k+2 ⊗ b)θ = yn−k+2 ⊗ bβn−k+2 + sk(b)
(xn−k+4 ⊗ (ab))θ = xn−k+4 ⊗ (ab)σn−k+4

for 4 ≤ k ≤ n − 1 , where sk(b) ∈ I⊥k−1 ⊗ K . Using the fact that θ preserves products
and that (Ik ⊗ K)(I⊥k−1 ⊗ K) = 0 , we see at once that (ab)σn−k+4 = aαn−k+1bβn−k+2 . Using
the fact that θ fixes x5 ⊗ 1, . . . xn ⊗ 1 , we see that by choosing a or b equal 1 we get
σn−k+4 = αn−k+1 = βn−k+2 and (ab)αn−k+1 = aαn−k+1bαn−k+1 for all a, b ∈ K . On the other
hand θ preserves sums, so for vk = xn−k+1 and α = αn−k+1 we have

vk ⊗ (a+ b)α = (vk ⊗ (a+ b))θ = (vk ⊗ a)θ + (vk ⊗ b)θ = vk ⊗ aα + vk ⊗ bα = vk ⊗ (aα + bα).

This shows that (a+ b)αk = aαk + bσk and (ab)αk = aαkbαk for k = 5, . . . , n and thus αk is a
field automorphism for k = 5, . . . , n .

We now argue in a similar manner as we did in Section 2. As x1 ⊗ K, . . . , xn ⊗ K are
characteristic, we have that

∑
i∈Ω xi ⊗ K is charactistic for all Ω ⊆ {4, . . . , n} . It follows

that the subspaces U ⊗ K,W ⊗ K, T ⊗ K are characteristic where U = 〈In, y1, y2, y3, y4, y7〉 ,
W = 〈In, y1, y2, y3, y4, y5, y8〉 and T = 〈In, y1, y2, y3, y4, y5, y6, y9〉 . This is the case since
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U ⊗K = (〈x5, x6, xi : i ≥ 8〉 ⊗K)⊥, W ⊗K = (〈x6, x7, xi : i ≥ 9〉 ⊗K)⊥, T ⊗K = (〈x7, x8, xi :
i ≥ 10〉 ⊗ K)⊥. Thus (x4 ⊗ K) · (U ⊗ K) = 〈x4y7〉 ⊗ K is characteristic as well. Similarly we
see that 〈x5y8〉 ⊗ K and 〈x6y9〉 ⊗ K are characteristic because these can be expressed as the
products (x5 ⊗K) · (W ⊗K) and (x6 ⊗K) · (T ⊗K) .

Thus there exist functions µ, η, τ : K→ K such that

(x4y7 ⊗ a)θ = x4y7 ⊗ aµ = −(x5 +
∑n

i=8 xi)⊗ aµ

(x5y8 ⊗ a)θ = x5y8 ⊗ aη = −(x6 +
∑n

i=9 xi)⊗ aη

(x6y9 ⊗ a)θ = x6y9 ⊗ aτ = −(x7 +
∑n

i=10 xi)⊗ aτ .

But we also get

(x4y7 ⊗ a)θ = (−(x5 +
n∑
i=8

xi)⊗ a)θ = −(x5 ⊗ aα5 +
n∑
i=8

xi ⊗ aαi).

Matching the two expressions of (x4y7 ⊗ a)θ , we see that µ = α5 = αi for 8 ≤ i ≤ n . Similar
arguement can be applied to the images of x5y8 ⊗ a and x6y9 ⊗ a to see that η = α6 = αi for
9 ≤ i ≤ n and τ = α7 = αi for 10 ≤ i ≤ n . It follows that µ = η = τ = αi or 5 ≤ i ≤ n .
This finishes the proof. 2

Choose a finite group G of order d and a field extension K | F such that G = Gal(K | F) . This
is indeed possible and a well known fact from classical Galois Theory. To see this consider any
field T . Let t1, . . . , tm be indeterminates and consider the field of fractions K = T(t1, . . . , tm) .
Let e1, . . . , em be the elementary symmetric polynomials in t1, . . . , tm and consider the subfield
E = T(e1, . . . , em) . Then the field extension T(t1, . . . , tn) | E is a Galois extension with Galois
group Sm . Then using the Galois correspondence, we can for any G ≤ Sm find a field F such
that E ⊆ F ⊆ T(t1, . . . , tm) and where the extension K | F has Galois group G . Notice that
we can choose K here to be of any characteristic.

Let n ≥ 7 be any integer and let S be the simple SAA algebra over F of dimension 12n + 6
constructed in Section 3. Define Q = S ⊗K . We will prove that Aut(Q) ' G .

Our first aim is to see that the subalgebras L ⊗ K, M ⊗ K and N ⊗ K are characteristic
in Q . To this end we follow the outline of Section 3.

Lemma 4.2 Let A = {a ∈ Q | dim(aQ) = 2d} . Then 〈A〉 = Z(L)⊗K .

Proof. The inclusion 〈A〉 ≥ Z(L)⊗K is clear. To prove the reverse inclusion we choose g ∈ A
and write g = v + x+ a with v ∈ L⊗K, x ∈M ⊗K, a ∈ N ⊗K . Assume x 6= 0 . If this is the
case we can write x =

∑3
i=1(xi ⊗ λi + yi ⊗ µi) where, for at least one index i , either λi or µi

is not 0 . It is then easy to see that dim(xQ) ≥ 2nd > 2d so that dim(gQ) > 2d . A similar
argument gives, when a 6= 0 , that dim(xQ) ≥ 6d > 2d proving that g belongs to L ⊗ K . If
g is not in Z(L) ⊗ K , then g(L ⊗ K) has dimension at least d and the same is true for the
subspaces g(M ⊗K) and g(N ⊗K) . A look at the proof of Lemma 3.1 readily shows that the
subspaces g(L ⊗ K), g(M ⊗ K), g(N ⊗ K) generates their direct sum, so that dim(gQ) ≥ 3d .
Thus g ∈ Z(L)⊗K as claimed. 2
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Lemma 4.3 Let B = {a | dim(aQ+ Z(L)⊗K) = 4d} . Then Z(L)⊗K + 〈B〉 = Z2(L)⊗K .

Proof. If B0 = {b ∈ S | dim(bS + Z(L)) = 4} we know, by Lemma 3.2, that

Z(L)⊗K + 〈B0〉 ⊗K = (Z(L) + 〈B0〉)⊗K = Z2(L)⊗K

and, since dim((s ⊗ λ)Q) = dim(sQ)d for all s ∈ S , we see that the set B0 ⊗ K is contained
in B . Conversely, if we choose g ∈ B , the same argument used in Lemma 4.2 shows that
g ∈ L⊗K . At this stage the last part of the proof of Lemma 3.2 can be applied in order to see
that, if g 6∈ Z2(S)⊗K , then dim(gQ+ Z(L)⊗K) ≥ 5d . 2

The previous lemmas show that Z(L)⊗K and Z2(L)⊗K are characteristic subspaces and, as
we did in the previous section, we use this information to single out other relevant characteristic
subspaces of Q .

As a first step we shall describe the subspace T = {g ∈ Q | g(Z2(L)⊗K ≤ Z(L)⊗K} which is
clearly characteristic in Q . Of course T ⊗K ≤ T and the reverse inclusion is also easy to check.

At this stage we can mimic the proof in Section 3 and show that the subalgebras L = L⊗K, M =
M ⊗K and N = N ⊗K are characteristic in Q .

We are now in a position to prove the main result of this section.

Theorem 4.4 The automorphism groups of Q is isomorphic to G .

Proof. Once again we follow the same ideas of previous section and try to modify the proof
of Theorem 3.4. The notation is the one we have set up in the previous section. Let θ be any
automorphism of Q and choose 1 ≤ i ≤ 6 , 1 ≤ j ≤ n and a, b ∈ K . Thus

(ei ⊗ a)θ =
∑6

l=1 el ⊗ αl(a, i)
(fj ⊗ b)θ =

∑n
k=1 fk ⊗ βk(b, j)

because M = M ⊗ K and N = N ⊗ K are characteristic subalgebras of Q . By Lemma 4.1
there exists σ ∈ Gal(K | F) such that

((eifj)⊗ c)θ = eifj ⊗ cσ

when (i, j) ∈ {(1, 1), (1, 2), . . . (1, 2n), (2, 2n), . . . (6, 2n)} . For such a pair (i, j) we have

eifj ⊗ (ab)σ = (eifj ⊗ ab)θ = (ei ⊗ a)θ(fj ⊗ b)θ =
∑
l,k

elfk ⊗ (αl(a, i)βk(b, j))

Choose i = 1 . It follows that α1(a, 1)βj(b, j) = (ab)σ while αl(a, i) = 0 = βk(b, j) whenever
(l, k) 6= (1, j) . In particular, choosing a = b = 1 we find βj(1, j) = α1(1, 1)−1 = c for all
j . From this we see that α1(a, 1) = caσ for all a ∈ K . Choosing j = 2n one obtains
αi(a, i)β2n(b, 2n) = (ab)σ and αi(a, l) = 0 if l 6= i . As before it follows that αi(a, i) = caσ . It
is now possible to describe completely the action of θ on M . For every ei and all a ∈ K one
has (ei ⊗ a)θ = ei ⊗ caσ . Thus, for any pair a, b ∈ K

y1 ⊗ c(ab)σ = (y1 ⊗ (ab))θ = ((x2x3)⊗ (ab))θ = (x2 ⊗ a)θ(x3 ⊗ b)θ = (x2 ⊗ caσ)(x3 ⊗ cbσ) =

= (x2x3)⊗ c2(ab)σ = y1 ⊗ c2(ab)σ
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showing that c = 1 . It readily follows that βj(b, j) = bσ for all b ∈ K and all j = 1, . . . , 2n
and we have

(ei ⊗ a)θ = ei ⊗ aσ ∀ i = 1, . . . , 6 ∀a ∈ K
(fj ⊗ b)θ = fj ⊗ bσ ∀j = 1, . . . , 2n ∀b ∈ K.

If v is any member of the basis B = {e1, . . . , e6, f1, . . . f2,n, eifj | 1 ≤ i ≤ 6 1 ≤ j ≤ 2n} and
a ∈ K , then (v⊗ a)θ = v⊗ aσ . On the other hand, for any given σ ∈ Gal(K | F) , let θ = Θ(σ)
be the map defined by setting (v⊗a)θ = v⊗aσ for v ∈ B and a ∈ K and extending by linearity.
This map is easily seen to be an automorphism of Q and, since tr((ab)σ) = tr(ab) , θ is also
a symplectic map. The function Θ : Gal(K | F) −→ Aut(Q) sending σ to Θ(σ) , is then a
surjective homomorphism, and its kernel is clearly trivial. Therefore Aut(Q) ' Gal(K | F) ' G ,
proving the claim. 2

References

[1] A. Abdollahi, A. Faghihi, S. A. Linton, E. A. O’Brien, Finite 3 -groups of class 3
whose elements commute with their automorphic images, Arch. Math. (Basel), 95 (2010),
no. 1, 1-7.

[2] R. Y. Donaghi, On the geometry of Grassmanians, Duke Math. J., 44 no.4 (1977), 795–
837.

[3] The Kourovka Notebook, Unsolved problems in group theory, 18th edition, Novosibirsk,
2014.

[4] P. Moravec and G. Traustason, Powerful 2 -Engel groups, Comm. Algebra 36 (2008),
3301–3323.

[5] J. A. Schouten, Klassifizierung der alternierenden Grössen dritten Grades in 7 Dimen-
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