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Logistical Information

The lectures are at the following times

• Monday 9.15am in the University Hall

• Wednesday 12.15pm in the University Hall

• Thursday 5.15pm in the University Hall

I will issue an example sheet each week on Monday. The sheet will be a mix of unstarred

questions to do for your tutors, starred (*) questions which are harder and for revision, and

optional double starred (**) questions which are meant to be a real challenge for those of you

who like that sort of thing. Finally there is an optional puzzle each week for a bit of fun.

Warning These typed notes do not cover the whole course. Some additional material will be

given in the lectures and on Moodle which is meant to enhance the lecture notes. There will be

practical demonstrations and also videos in the lectures, not to mention audience participation!

In addition, some parts of these notes indicated by a * (harder) or a ** (really a lot harder) are

not on the lectures, they are for general background reading and will not be examined. Also,

when the time comes, you may be advised to read parts of Anton (§12 and §13) and make your

own notes. You should also make a point of (i) coming to lectures and being prepared to join in

(ii) doing the example sheets. Only by doing both will you get the most out of the course, and

of course see the demonstrations and hear the jokes (OK so that might put you off). Above all

HAVE FUN!!

Acknowledgements These notes have evolved from various units taught in the first year at

the University of Bath over several years. Previous lecturers include: Martin Reed, John Willis,

Ray Ogden, Keith Walton, Victor Galaktionov, Alastair Spence and Valery Smyshlyaev.

c©The Department of Mathematical Sciences, The University of Bath, January 2020.
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1 Overview

Applied mathematics is the process of applying mathematics to real world problems, and also

learning and developing mathematical tools to solve these problems. Many of the advances in

mathematics, such as in calculus, differential equations, vector calculus, Fourier analysis (which

you will cover in the Second Year), computation and geometry have come directly from studying

such applications. All mathematical descriptions of the real world are to a certain extent an

approximation to the truth, but it is quite remarkable how (unreasonably effective) abstract

mathematics is at representing the world that we live in, and allowing us to make predictions

about how things will behave. When it comes to telling the future Mystic Meg is nothing

compared to an applied mathematician. Some mathematicians can give the impression that

applied maths is easy, just a matter of applying well known ideas in a routine way to solve routine

problems. Nothing could be further from the truth! Firstly, the process of understanding how

to describe the world in mathematical terms, and to then interpret the answers in a meaningful

way, is very subtle (indeed) and is a skill which we will be teaching you in many of the courses

that you will meet at Bath. We will call this process mathematical modelling. Secondly, the

mathematics that we will use is far from trivial. Often the (for example nonlinear differential)

equations that are used to represent reality are very hard to solve, and we need to use a great

variety of mathematical techniques to make any progress. I assure you that the mathematics

that you will be using in this, and future applied maths courses, is every bit as challenging as

the maths that you will meet in all of you other courses. To quote the great Richard Feynmann

you have to think real hard to do applied mathematics. Thirdly, and wonderfully, it is worth

it. The mathematics that you will learn really does tell us what the world is doing, and often

reveals surprising truths about the way that things work. If you don’t believe me, watch the

film Hidden Figures which will show you how a bunch of (female) mathematicians got us to the

moon, and in the film Apollo 13 how they got us back again.

The best way to do applied maths is to get a firm mathematical foundation to start with. This

course develops the theory of vectors – a major mathematical tool for modelling and analysis

of various “real world” (physical, mechanical etc.) applications. Vectors have numerous other

applications too, for example, in electromagnetic waves which are important in the design of

mobile phones, weather and climate forecasting, the design of industrial processes, personality

tests and much more besides. We will then combine our understanding of vetors with the main
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tools of calculus such as integration, differentiation and differential equations. Having done this

we can then look at problems in kinematics and mechanics. Kinematics is the study of how

bodies move. Mechanics deals with the action of forces on bodies and includes both statics and

the study of motion. We shall consider Newtonian Mechanics, including,

• the motion of the planets and satellites,

• projectiles (including a certain drop goal)

• circular orbits

• Some sporting problems

All of these will be illustrated by examples, some of which will involve some practical demonstra-

tions in the lecture. You will also learn the general process of how to approach mathematically

modelling a real life situation. In the 19th Century it was thought that Newtonian Mechanics

was a well understood and rather dry subject, and that everything was very predictable. We now

know that this is far from the case. For example the discovery of chaos which I will demonstrate

in the lectures, shows that systems governed by Newtonian mechanics can have very bizzare

behaviour indeed. In addition, a thorough understanding of mechanics is now essential for a

career in computer animation with companies such as Pixar, and also in many areas of sport,

as well as the space programme. It is also an essential part of the training of pilots, air traffic

controllers, forensic scientists (think high speed cars, or bullets) and, as we shall see, in the

design of pedestrian crossings, saving the whales and curing cancer!. Be prepared to be both

amazed by this course, and highly employable at the end.
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2 Vectors

Before looking at the applications we need to understand the tools, namely vectors, and so the

first few sections are about Vector Algebra and then Vector Calculus.

Text book - Anton “Calculus” This is a very readable book, and has lots of exercises.

However, we’ll not follow Anton all the time, and also we’ll cover certain topics differently. You

should read both these notes and the relevant sections in Anton.

2.1 Introduction to Vector Algebra

Some quantities in mechanics, physics, or indeed life in general, are characterised by a single real

number, for example, mass, density, temperature. However other physical quantities require the

specification of both a magnitude and direction, for example, velocity, an acceleration, or a force.

We shall assume that we live in a 3-Dimensional world which is part of a (3-D) Euclidean Space

R3, and for this course, vectors are 3-Dimensional. This means that a typical 3-dimensional

vector a = (x, y, z) needs three values to specify it exactly. To give a precise mathematical

definition we adopt the axioms of Euclidean geometry, namely, points, straight lines, planes,

parallel lines, distance, etc. We will then think of vectors as geometrical objects for the main.

(Note that this is not the only way to think of a vector. Basically anything which requires several

coordinates to specifiy it can be thought of as a vector. For example if I want to go shopping

and buy £x of sugar, £y of rice, and £z of strawberries, then my shopping for the day can be

summarised by the single vector a = (x, y, z). However, for most of this course we will stick to

the geometric interpretation of a vector which is summarised as follows.)

Definition 2.1 A vector is a directed line segment (DLS) characterised by two “ordered points”

in 3-D Euclidean space, P and Q, and is visualised as an arrow joining P to Q. P is the initial

point and Q is the terminal point. The vector is denoted
−−→
PQ.

Every vector has a direction and a length associated with it:

Definition 2.2 The length of
−−→
PQ is the distance between P and Q, and is denoted by ‖−−→PQ‖.

Often we say ‖−−→PQ‖ is the norm of
−−→
PQ.

Definition 2.3 If P and Q coincide (that is P = Q) then the vector is called the zero segment

(or zero vector), and is denoted
−→
0 , 0 or 0.
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P	  

��!
PQ

Q	  

Figure 1: A vector as a directed line segment from the point P to the point Q.

From the Euclidean distance axioms, namely, (a) the distance from a point to itself is zero,

and (b) the distance between any two distinct points is strictly positive, we have the following

“obvious” result.

Proposition 2.4
−−→
PQ =

−→
0 ⇐⇒ ‖−−→PQ‖= 0.

Proof:
−−→
PQ =

−→
0 ⇐⇒ P = Q ⇐⇒ ‖−−→PQ‖= 0. 2

Definition 2.5 Two directed line segments (DLSs)
−−→
PQ and

−→
RS are said to be parallel (or

collinear) if they lie on parallel straight lines 1 and 2. The zero segment is regarded as being

parallel to any vector.

2l

o

2l

An important idea is that two DLSs which have the same direction and magnitude are “equal”

or “equivalent”, and we do not distinguish between them. This leads to the following definition.

Definition 2.6 Two DLSs
−−→
PQ and

−→
RS are said to be equal ( equivalent), that is,

−−→
PQ =

−→
RS, if

1. They are collinear.

2. They have the same magnitude, that is, ‖−−→PQ‖=‖−→RS‖.

3. They point in the same direction.
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Note that this definition doesn’t mention the initial point of a DLS, so a DLS can be “freely”

moved, in that, for any DLS
−−→
PQ and for any other point R, there exists an equal (and unique)

DLS with initial point at R. Note that all zero DLSs are regarded as being equivalent.

Notation It is convenient to have a single label to describe this, for example,

a =
−−→
PQ =

−→
RS,

indicating that we don’t distinguish between two equivalent DLSs. Hence, a represents a “class”

of equivalent DLS’s each with the same magnitude and direction as
−−→
PQ.

Finally, ‖a‖ will denote the length of the vector a.

We will see presently that we can represent a as a = (a1, a2, a3) and that

‖a‖ =
√
a21 + a22 + a23.

2.2 Basic operations with vectors

In physical problems we often need to evaluate the combined effect of two processes characterised

by two vectors, say a and b, that “follow one after the other” in some sense. This leads us to

the first basic operation, namely, addition of two vectors.

Example: The wind is blowing with velocity a. A bird is flying with velocity b with respect

to the air. What is the velocity, say c, of the bird with respect to an observer on the ground.

(As usual the ‘velocity’ is defined to be the change in position (displacement) per unit of time.)

Answer: The answer is simply that c = a + b.

a	  

b	  

c	  

This example motivates the following definition:
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Definition 2.7 Given two vectors a and b. Position b so that its initial point coincides with

the terminal point of a. Then c = a + b is defined by the DLS whose initial point coincides with

the initial point of a and whose terminal point coincides with the terminal point of b.

Exercise: Check that this definition is consistent with the following equivalences. If

−−−→
P1Q1 =

−−−→
P2Q2 ,

−−−→
Q1S1 =

−−−→
Q2S2

then we need to show that
−−−→
P1Q1 +

−−−→
Q1S1 =

−−−→
P2Q2 +

−−−→
Q2S2.

Property 1 Commutativity of addition: a + b = b + a

Proof: Let a =
−−→
PQ, b =

−→
PR. Construct the parallelogram PQSR (see diagram).

a	  

b	  

c	  

b	  

a	  

P	  

Q	   S	  

R	  

Then, from the definition of equivalence of vectors, and the properties of parallelograms

−→
RS =

−−→
PQ = a,

−→
QS =

−→
PR = b.

Thus, from the definition of addition,
−−→
PQ+

−→
QS =

−→
PS, or

a + b =: c.

On the other hand,
−→
PR+

−→
RS =

−→
PS = c

and so

b + a = c
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Hence,

a + b = b + a ∀ a,b.

Property 2 Associativity of addition: Let a,b and c be three vectors. Then

(a + b) + c = a + (b + c).

(See Tutorial Sheet 1, Question 2).

Property 3 The zero vector: Consider a zero segment, namely,
−−→
PP . All zero segments are

regarded as equivalent and we write

−−→
PP =

−−→
QQ = 0.

Since by definition
−−→
PQ+

−−→
QQ =

−−→
PQ =

−−→
PP +

−−→
PQ,

it follows that

a + 0 = a = 0 + a.

Property 4 Negation of vectors: Given a vector a =
−−→
PQ we denote the negative of a by −a,

and define it by reversing its direction, so that,

−a =
−−→
QP.

Then, clearly,

a + (−a) =
−−→
PQ+

−−→
QP =

−−→
PP = 0.

and so

a + (−a) = 0.

Definition 2.8 (Subtraction)

a− b := a + (−b).

If a =
−−→
PQ and b =

−→
PR, then

a− b = a + (−b) =
−−→
PQ+

−→
QT =

−→
PT .

Now, since PRQT is a parallelogram,
−→
PT =

−−→
RQ and hence

−−→
RQ = a− b.
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a	  

b	  P	  

Q	  

R	  

-‐b	  T	  

a-‐b	  

Next we introduce the concept of multiplication by a scalar (or scalar multiplication). Consider

a + a. It is natural to write a + a = 2a. The vector 2a has the same direction as a but is twice

as long:

‖2a‖ = 2 ‖a‖ .

a	  

-‐a	  

2a	  

On the other hand, it is natural to write

−a = (−1)a ,
−→
PS = (−1)a.

Thus, multiplication by −1 results in altering the direction of a vector. This motivates the

following definition of scalar multiplication.

Definition 2.9 For any λ ∈ R, the scalar multiplication of a by λ produces the vector b = λa

such that

1. b is collinear to a,

2. ‖b‖= |λ| ‖a‖,
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3. b and a have the same direction if λ > 0, and opposite if λ < 0. (If λ = 0 then b =

0× a = 0.)

Property 5 Associativity of scalar multiplication: λ(µa) = (λµ)a

Property 6 Distributivity of scalar multiplication with respect to addition of vectors: λ(a+b) =

λa + λb

Property 7 Distributivity of scalar multiplication with respect to addition of scalars: (λ+µ)a =

λa + µa

Property 8 1 · a = a

(Properties 5 - 8 can be directly derived from the above definitions.)

Student Exercises:

Advert You should do these, and later student exercises! They are there to help make sure that

you understand the material so far. If you have problems with them, then discuss these with

your tutors.

(a) Draw a figure to show that Property 6 is true. (Hint: Think similar triangles.)

(b) Give arguments to show that Property 5 and Property 7 are true.

Eight Rules of Vector Algebra (or Vector Arithmetic)

1. a + b = b + a

2. (a + b) + c = a + (b + c)

3. a + 0 = 0 + a = a

4. a + (−a) = 0

5. λ(µa) = (λµ)a

6. λ(a + b) = λa + λb

7. (λ+ µ)a = λa + µa

8. 1 · a = a
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These 8 properties are satisfied by directed line segments (with addition, negation and scalar

multiplication introduced above). More generally, (1) - (8) may be regarded as “Axioms”, and

quantities that satisfy them are called vectors. The directed line segment is merely one example

of an object satisfying (1) - (8). Other examples are matrices and functions, among others.

Remark Many physical quantities (e.g. velocity, force) are indeed vectors. However not all

quantities having both a magnitude and a direction satisfy these rules. For example consider the

operation of rotation: the axis of rotation gives the direction, the angle is the magnitude. Let

“addition” be superposition of rotations. Then the commutative property 1 (namely a + b =

b + a) does not hold.

2.3 Unit vectors

Definition 2.10 A vector whose length is 1 is called a unit vector. Given a non-zero vector a,

that is a 6= 0, the unit vector in the direction of a is

â =
1

‖a‖a.

Check: ‖â‖ =
∣∣∣ 1
‖a‖

∣∣∣ ‖a‖ = ‖a‖
‖a‖ = 1.

2.4 Position Vectors:

A

a

0

Let O be the origin (which is a fixed point) in R3. Any point A can be identified with its

position vector a by

a :=
−→
OA.

The main concept to remember here is that the initial point of any position vector is always

the origin. It follows that for points A and B

−−→
AB =

−→
AO +

−−→
OB =

−−→
OB −−→OA = b− a

(in the obvious notation). Position vectors are often useful for solving problems in geometry

and mechanics.

Useful rules
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B
A

a
b

0

O

a

A B

b

C

c

1. Let the position vectors of A and B be a and b respectively.

Then
−−→
AB = b− a

2. Let C be the midpoint of AB and so c is the position vector of
−−→
OC

∴ c =
−→
OA+

−→
AC =

−→
OA+ 1

2

−−→
AB =

= a + 1
2(b− a) = 1

2(a + b).

Now let’s consider two examples.

Example 1: Assume a and b are non-zero and non-collinear, and let λ, µ be real numbers.

Then

λa + µb = 0⇒ λ = 0, µ = 0.

Proof First, assume λ 6= 0. Then a = −µ
λb, implying a and b are collinear: a contradiction.

Thus λ = 0. Hence

µb = 0,

and since b 6= 0, we must have µ = 0.2

We will now look at a worked example, which is the sort of question that you might be faced

with in your Summer exam. This example shows that position vectors are useful for solving

geometry problems

Worked example 2: Prove that the diagonals of a parallelogram bisect each other.

Answer: Always start with a diagram.
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The diagonals of the parallelogram are:

−−→
AB = b− a

−−→
OC = b + a

Let the diagonals intersect at the point P . So

−→
AP = λ

−−→
AB = λ(b− a) for some λ ∈ R

and
−−→
OP = µ(b + a) for some µ ∈ R.

To show that the diagonals bisect each other we need to show that λ = 1
2 , µ = 1

2 . (Check that

you understand why this must be so.)

Now

−→
OA =

−−→
OP +

−→
PA

∴ a = µ(b + a)− λ(b− a)

(1− µ− λ)a + (λ− µ)b = 0

Now, using the previous result it follows that the coefficients of the vectors a and b must both

be zero. Hence

1− µ− λ = 0 and λ− µ = 0.

Solving these two equations we see that λ = µ = 1
2 . Hence the diagonals bisect each other. 2

2.5 Vectors in Cartesian coordinates

Although vectors are entities in their own right and it is useful for many applications to treat

them in this way (also this is how Matlab works with vectors, treating them within a coordinate

system is often very useful for actual calculations. To do this in three-dimensional Euclidean

space we introduce a right-handed mutually orthogonal coordinate frame (Oxyz) with origin O,

and with coordinate planes Oxy,Oyz and Ozx. (See diagram following, and Anton §12.1.)
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O

z
x

y

j

k

i

z

x

y

In general, three non-zero vectors a,b, c (which have the same initial point and are not coplanar)

form a right-handed co-ordinate system if a right-threaded screw rotated from a to b through

an angle less than 180o will advance in the direction c. (See page 4. in “Theory and Problems

of Theoretical Mechanics” by Spiegel (in library).)

A very important set of vectors are i, j and k. These are the unit vectors pointing in the

positive directions of Ox,Oy,Oz respectively. Let a be an arbitrary vector. We can always

decompose a into a “linear combination” of i, j,k as follows.

Proposition 2.11 Any vector a, has components a1, a2, a3 ∈ R such that a = a1i + a2j + a3k.

The values of the components a1, a2, a3 are unique.

Definition 2.12 The a1, a2, a3 are called components of a, and we write a = (a1, a2, a3).

Proof: In part (1) we prove existence, and then in part (2) show uniqueness.

1. Existence (geometrical):

Let A be such that a =
−→
OA. Construct a “box” (rectangular parallelepiped) with faces

parallel to the coordinate planes

Let a =
−→
OA. Now a =

−→
OA =

−−→
OB +

−−→
BC +

−→
CA, and since

−−→
OB is parallel to i, there exists

a1 such that
−−→
OB = a1i. Similarly

−−→
BC = a2j, and

−→
CA = a3k. Therefore

a = a1i + a2j + a3k.

2. Uniqueness (algebraic):

Assume there exists another representation

a = a′1i + a′2j + a′3k,
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z
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k

b

a

y

c

x

for some a′1, a
′
2, a
′
3 ∈ R. Subtracting gives

(a1 − a′1)i + (a2 − a′2)j + (a3 − a′3)k = 0.

Assume, without loss of generality, a1 6= a′1. Then

i = − a2 − a
′
2

a1 − a′1
j − a3 − a′3

a1 − a′1
k.

Therefore i is “co-planar” to j and k (i.e. i lies in same plane as j & k). But i is orthogonal

to the Oyz plane, a contradiction. 2

Examples of the use of components:

Length (this is a really important result):

‖a‖ = (a21 + a22 + a23)
1
2

We obtain this hugely important, and useful, result by applying Pythagoras’ theorem twice:

‖a‖2 = ‖−→OA‖2 = ‖−−→OC‖2 + ‖−→CA‖2 =
(
‖−−→OB‖2 + ‖−−→BC‖2

)
+ ‖−→CA‖2 = a21 + a22 + a23.

Addition:

a + b = (a1i + a2j + a3k) + (b1i + b2j + b3k)

= (a1 + b1)i + (a2 + b2)j + (a3 + b3)k

= (a1 + b1, a2 + b2, a3 + c3) (∗)

Multiplication by scalar:

λa = λ(a1i + a2j + a3k) = (λa1)i + (λa2)j + (λa3)k = (λa1, λa2, λa3) (∗∗)

Exercise: Which of the laws of vector algebra have been used in (*) and (**) above?
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2.6 The dot product (scalar product)

Definition 2.13 Given two vectors a and b, their dot (or scalar) product (denoted a.b) is a

scalar defined by

a.b =

 ‖a‖‖b‖ cos(θ), if a 6= 0 and b 6= 0

0 , if a = 0 or b = 0,

where θ is the angle between a and b (0 ≤ θ ≤ π).

For a 6= 0,b 6= 0, we have

cos(θ) =
a.b

||a|| ||b|| ,

and so the dot product tells us about the angle between two vectors. In fact, if a.b = 0, then a

is orthogonal (perpendicular) to b. (See also Anton pp.809-811.) The converse is also true, so

we have the hugely important result that

Two non-zero vectors a and b are orthogonal if and only if a.b = 0.

The dot product is an insanely useful concept. It will be used extensively as a mathematical

tool in the manipulation of vectors. However it also has meaning in many physical situations,

for example, if a represents a force and b represents a displacement, then W = a.b is the work

done by the force. (See the discussion in Anton on work on pp813-814.)

The component (or “algebraic”) form of the dot product

From the cosine rule

‖a− b‖2 = ‖a‖2 + ‖b‖2 − 2 ‖a‖ ‖b‖ cos(θ)︸ ︷︷ ︸
:= a.b

Therefore,

a.b =
1

2

(
‖a‖2 + ‖b‖2 − ‖a− b‖2

)
=

1

2

(
a21 + a22 + a23 + b21 + b22 + b23 − (a1 − b1)2 − (a2 − b2)2 − (a3 − b3)2

)
= a1b1 + a2b2 + a3b3

Thus we have the really very very important result

a.b = a1b1 + a2b2 + a3b3.
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(Note that we define the dot product in a geometric manner and then deduce the component

form. Anton does the reverse - the dot product is defined in Def 12.3.1 and then the geometric

form is deduced in Theorem 12.3.3. Matlab does the same as Anton. )

Properties of the dot product: Given the vectors a,b, c, and for any scalar λ:

1. a.b = b.a

2. a.(b + c) = a.b + a.c

3. λ(a.b) = (λa).b = a.(λb)

4. a.a = ‖a‖2

5. a.0 = 0

Remark These properties can also be used as axioms in an abstract theory of vectors. If we

proceed along this line, then we first define a “Linear Space” using the addition and scalar

multiplication properties we’ve seen before, and then introduce an “inner product” based on

the rules for the dot product. You’ll meet all this in later courses. For example the theory of

Hilbert Spaces is developed from these considerations, and this theory is essential in the study

of Quantum Mechanics.

Student Exercise (you know what to do!):

(a) Derive (1) and (4) from the definition of a.b

(b) Derive (2) and (3) from the component form of the dot product.

The dot product is used frequently when solving problems, such as those you will meet in your

exam. Here are some examples.

Example 1 (From Part A of a recent exam): (Finding the angle between two vectors) Let

a = 2i− j + k, and b = i + j + 2k. Find the angle θ between a and b.

Answer: We know that

cos(θ) =
a.b

‖a‖‖b‖ .

Now, from the component formula for a.b we have,

a.b = 2× 1 + (−1)× 1 + 1× 2 = 3
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and

‖a‖ = (22 + (−1)2 + 12)
1
2 =
√

6, ‖b‖ = (12 + 12 + 22)
1
2 =
√

6.

It follows that

cos(θ) =
a.b

‖a‖ · ‖b‖ =
3√

6 ·
√

6
=

1

2
,

therefore θ = π
3 . (Exercise: What is the angle in degrees?)

Example 2: The dot product provides an easy way of finding components of vectors. For

example, if

a = (a1, a2, a3) = a1i + a2j + a3k

then

a.i = a1, the component of a in the direction of i.

For the “basis” vectors i, j,k we have

i.i = j.j = k.k = 1, i.j = j.k = k.i = 0.

2

Example 3 (This is an example of a use of the dot product to do quite a clever piece

of geometry) : Find the angle between a diagonal of a cube and one of its edges.

a

t

A

BO

z

y

x
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Solution Consider a cube of size d, let a =
−→
OA be the diagonal and let b =

−−→
OB.

a =
−→
OA

= di + dj + dk

= (d, d, d)

b =
−−→
OB = di = (d, 0, 0)

cos θ =
a.b

‖a‖‖b‖ =
d2√
3d.d

=
1√
3

∴ θ = cos−1
(

1√
3

)
2

* Example 4: Find the acute angle between the diagonals of a quadrilateral having vertices

(0, 0, 0), (1, 0, 0), (2, 1, 0) and (0, 1, 0).

-

6
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@

@
@

@
@
@@

O A i

C

j

B(2, 1, 0)

Θ

NB: No k direction needed.

−→
OA = i,

−−→
OB = 2i + j,

−−→
OC = j,

−→
CA = i− j.

cos Θ =

−−→
OB.
−→
CA

‖−−→OB‖.‖−→CA‖
=

2.1 + 1.(−1)√
5.
√

2
=

1√
10

Θ = cos−1
(

1√
10

)
.

Beware A common error is to say: “If x.a = x.b then a = b”

This is clearly incorrect. The correct reasoning goes as follows:

“If x.a = x.b then x.(a− b) = 0. Thus x is orthogonal to (a− b) .”
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However, we have a useful Lemma and Corollary, where the key phrase in both is “for all x”.

Lemma 2.14 If x.c = 0 for all x, then c = 0.

Proof Take x = c. Then c.c = 0, so ‖c‖2= 0⇒ c = 0.2

Corollary 2.15 If x.a = x.b for all x, then a = b.

Proof Rearranging gives x.(a− b) = 0 for all x, and using Lemma 1.14, we have a− b = 0⇒
a = b.2

Exercise Why is Corollary 2.15 different from the Beware example?

Orthogonal projection Consider a 6= 0 and b. A useful way to represent b is in the form:

b = b|| + b⊥,

where b|| is parallel to a, and b⊥ is orthogonal to a, so that a.b⊥ = 0. (See diagram.)

b	  

a	  

b?

b||

To show this we let

b|| = λa,

for some λ ∈ R. Therefore,

b.a = (b|| + b⊥).a

= (b||).a

= λa.a

= λ‖a‖2.
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Hence, since a 6= 0,

λ =
b.a

‖a‖2

and so we can determine b||. Next, b⊥ can be found from the equation b⊥ = b − b||. Thus,

b|| =
(b.a)

‖a‖2 a

b⊥ = b− (b.a)

‖a‖2 a

Definition 2.16 b|| is called the orthogonal projection of b on a: it can also be written as

(b.â)â, where â is the unit vector along a. b⊥ is the vector component of b orthogonal to a.

Later we shall use the fact (easily deduced from the previous diagram) that ||b⊥|| = ||b|| sin θ,
where θ (0 ≤ θ ≤ π/2) is the angle between a and b.

*Direction Cosines Let a =
−→
OA be a vector from O to A, and denote by α, β, γ the angles

that
−→
OA makes with Ox,Oy,Oz, respectively. We define the direction cosines of a to be

cos(α), cos(β), cos(γ). Now

a1 = i.a = ‖i‖ ‖a‖ cos(α)

and so,

cos(α) =
a1
‖a‖ .

Similarly, cos(β) = a2
‖a‖ , cos(γ) = a3

‖a‖ . It is easily shown that

cos2(α) + cos2(β) + cos2(γ) = 1.

*Exercises

1. What are the direction cosines of i?

2. A line makes angles of 60o with both the x−axis and the y−axis and is inclined at an

obtuse angle to the z−axis. Show that its direction cosines are 1
2 ,

1
2 ,− 1√

2
and find the

angle it makes with the z−axis.

Addition of Orthogonal projections and Orthogonal Components: Given a 6= 0, b, c.

We can write b = b|| + b⊥, and c = c|| + c⊥. Similarly, b + c = (b + c)|| + (b + c)⊥. We have

the following result:
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(b + c)|| = b|| + c||, (b + c)⊥ = b⊥ + c⊥.

Proof Now b|| =
(b.a)

‖a‖2 a, and there is a similar expression for c||. Adding gives:

b|| + c|| =
(b + c).a

‖a‖2 a = (b + c)||. Then b⊥ + c⊥ = b + c−
(
b|| + c||

)
= (b + c)⊥ 2

2.7 The cross (or vector) product

The cross product gives us a way of ’multiplying’ vectors. It was invented/discovered by the great

French mathematician Lagrange. Often in applications one needs to find a vector orthogonal to

two other vectors. This is accomplished using the cross product. However the cross product has

many other uses define.

a

b

a ⇥ b

✓

Definition 2.17 Given two vectors a and b,which are at an angle θ apart, their cross (or

vector product) c denoted by c = a× b is a vector

(i) orthogonal to both a and b

(ii) ‖c‖ = ‖a‖ ‖b‖ sin(θ), (0 ≤ θ ≤ π)

(iii) If a ‖ b, then a × b = 0. Otherwise, the direction of c is such that a,b, c form a right-

handed system (that is, all the angles are less than π).

In fact, it is easy to see that a ‖ b if and only if a× b = 0.

IMPORTANT NOTE, PLEASE READ In some older text books, exam questions for

versions of this course, and possibly at school, you may have seen the notation c = a ∧ b for

the cross product. In these notes I will follow the more usual practice now of using c = a× b.
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However, these two notations mean exactly the same thing. For this course please use the

c = a× b notation for all of your work.

As well as its numerous applications in geometry (such as calculating volumes and areas), the

cross product plays a VERY important role in mechanics, especially when rotation is involved.

We shall see many examples of this. For example the angular momentum of a body, and

the torque/couple generated by a force are all expressed in terms of the cross product. The

Coriolis and Magnus forces forces experienced by a spinning body in motion (think of the

Earths atmosphere or a football), and the Lorentz force F experienced by an electron of charge

e moving at velocity v in a magnetic field B is given by

F = e v ×B.

When coupled to the gradient operator ∇ which we will meet later, we get the ’curl’ operator

∇× which allows us to define quantities such as vorticity (which is vital for weather forecasting)

and links electricity and magnetism together in Maxwell’s equations.

As advertised above, there is a simple geometrical interpretation of the length of a cross

product in terms of an area. First, note that ‖a × b‖ = ||a|| ||b|| sin(θ) = ‖a‖ ‖b⊥‖, since

‖b⊥‖ = ‖b‖ sin(θ). Thus the length of ‖a× b‖ equals the area of the parallelogram generated

by a and b.

a

b

✓

b?

(1) a×b = −b×a So the cross product is not commutative. In fact it is anti-commutative.

(2) a× (b + c) = (a× b) + (a× c)
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(3) λ(a× b) = (λa)× b = a× (λb)

(4) a× a = 0,∀a (since sin(θ) = 0).

Proof of (1): First, a × b and b × a are both orthogonal to a and b: so they are parallel.

Next, ‖a× b‖ = ‖b× a‖ = ‖a‖ ‖b‖ sin(θ): so that a× b and b× a have the same magnitude.

Finally, a,b,a × b form a right handed system. Also, b,a,b × a form a right handed system.

Thus d is in the opposite direction to c and so,

a× b = −b× a .

2

Proof of (2): We’ll delay the proof of this till after we introduce the scalar triple product.

Important examples:

i× i = j× j = k× k = 0.

i× j = k, j× k = i, k× i = j.

j× i = −k, k× j = −i, i× k = −j.

(Proofs from the definition.)

The component form of the vector product: This is a bit messy, but it is an important

way to calculate the cross product. The best way to remember this is to use the ’determinant’

method which we will come on to shortly Given two vectors

a = a1i + a2j + a3k

b = b1i + b2j + b3k

then (learn this, you are expected to know it for your examination!!!)

a× b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k
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We establish this by using the rules for the cross products of the unit vectors as follows.

a × b = (a1i + a2j + a3k)× (b1i + b2j + b3k)

= a1b1i× i + a1b2i× j + a1b3i× k +

a2b1j× i + a2b2j× j + a2b3j× k +

a3b1k× i + a3b2k× j + a3b3k× k

= a1b2k− a1b3j− a2b1k + a2b3i + a3b1j− a3b2i

= (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k.

There is a convenient way of calculating, and remembering, the vector product using 3 × 3

determinants which you will also meet in the algebra courses. This is how I remember the

formula myself.

a× b =

∣∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣ = i

∣∣∣∣∣∣ a2 a3

b2 b3

∣∣∣∣∣∣+ j

∣∣∣∣∣∣ a3 a1

b3 b1

∣∣∣∣∣∣+ k

∣∣∣∣∣∣ a1 a2

b1 b2

∣∣∣∣∣∣
DO learn this. I expect you to know it by heart for your exam!

“The rule of Sarrus”

For 3× 3 determinants, one can use the “Rule of Sarrus” which goes as follows:

To evaluate ∣∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣∣
the first step is to repeat the first two columns

c1

b1

a1

c2

b2

a2

c3

b3

a3

c1

b1

a1

c2

b2

a2
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@@R

@@

@@R

@@

@@R

@@

@@R
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@@R
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Now the determinant equals

(a1b2c3 + a2b3c1 + a3b1c2)− (a3b2c1 + a1b3c2 + a2b1c3)︸ ︷︷ ︸
”the

@@

@@R
terms” − ”the

�
�
�	

terms”
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Exercise: You can easily check that this equals. Make sure that you do this.

a1

∣∣∣∣∣∣ b2 b3

c2 c3

∣∣∣∣∣∣+ a2

∣∣∣∣∣∣ b3 b1

c3 c1

∣∣∣∣∣∣+ a3

∣∣∣∣∣∣ b1 b2

c1 c2

∣∣∣∣∣∣ .
Remark In these notes we define the vector product geometrically and go on to deduce the

component form. Anton first defines the vector product using the determinant ( and then

deduces the geometric properties. Either approach is good. But I would advise you to get

familiar with the vector form as it will make calculations much simpler and quicker later on.‘

2.8 The Scalar Triple Product

We saw earlier that if a and b are two vectors, then the area of the parallelogram spanned

by them is given by the magnitude of a × b. Now consider three vectors a,b, c. These can be

thought of as the sides of a parallolopiped (think of a squashed cube). The scalar triple product

allows us to calculate the volume of this solid object.

Definition 2.18 Given three vectors a,b, c, their scalar triple product, denoted by [a,b, c],

is the scalar

[a,b, c] := a.(b× c)

The component form of the scalar triple product:

[a,b, c] = a1(b× c)1 + a2(b× c)2 + a3(b× c)3 =

= a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1)

=

∣∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣∣ - the 3× 3 determinant again!

Back to the geometric interpretation:

Consider the parallelepiped P (spanned by a,b, c). The area of the base is ‖b× c‖. The height

is ‖a‖ cos(θ) if (0 ≤ θ ≤ π

2
), or −‖a‖ cos(θ) if (

π

2
≤ θ ≤ π). (Here θ is the angle between a and

b× c.) If the volume of P is denoted by V , then

[a,b, c] =

 V > 0, if a,b, c is right handed

−V < 0, if a,b, c is left handed.
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b

c	  
✓ a

So [a,b, c] is a “signed” volume of a parallelepiped.

Since the volume of the parallelepiped as well as the right-handedness property are unchanged

if the vectors a,b and c are interchanged cyclically we see immediately that

a.(b× c) = b.(c× a) = c.(a× b).

Here we have kept the . and the × fixed and cyclically interchanged a,b and c. We give a full

list of the properties of the scalar triple product shortly.

This result will become insanely important when we want to change variables in multi-variate

calculus!

Co-planar vectors: Three vectors are co-planar (in other words they all lie in the same plane)

if there exist scalars λ, µ, ν, with λ2 + µ2 + ν2 > 0, such that λa + µb + νc = 0. (We say that

a,b and c are “linearly dependent” vectors.)

[a,b, c] = 0 ⇐⇒ a,b, c are co-planar .

Exercise The proof of this result follows immediately from the geometric interpretation. Make

sure that you understand why.

Properties of the scalar triple product

(1) [a,b, c] = [b, c,a] = [c,a,b] =

= −[a, c,b] = −[b,a, c] = −[c,b,a]

(Setting c = a gives [a,a,b] = [a.b.a] = [b,a,a] = 0,∀a,b)

(2) [a,b, c + d] = [a,b, c] + [a,b,d]
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(3) λ[a,b, c] = [λa,b, c]

Properties (1) - (3) follow from the properties of the scalar and the vector products.

Example:

[i, j,k] = i.(j× k) = i.i = 1.

N.B. [a,b, c] = a.(b× c) = [c,a,b] = c.(a×b) = (a×b).c. Therefore the order of the . and ×
doesn’t matter. Also, the brackets can be dropped in a.(b× c), since (a.b)× c makes no sense

(a scalar vector product a vector).

Proof of the distributive law, property (2), for the vector product: We wish to prove:

a× (b + c) = a× b + a× c.

Proof To prove this result (which is hard to prove straight from the definitions), we use the

cyclic property of the scalar triple product (twice) and the distributive property of the scalar

product. Let x be an arbitrary vector and then consider

x.a× (b + c) = (b + c).x× a (cyclic STP)

= b.x× a + c.x× a (distributive property of scalar product)

= x.a× b + x.a× c (cyclic STP)

= x.(a× b + a× c).

Therefore

x.(a× (b + c)) = x.(a× b + a× c)),

for all x. Corollary 2.15 then gives us the result that

a× (b + c) = a× b + a× c,

as required.2

2.9 The Triple Vector Product

Now we have defined the scalar triple product it is natural to consider what we might mean by

the vector triple product. In fact we have two vector triple products: defined by

a× (b× c) = (c.a) b− (b.a) c
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and

(a× b)× c = (a.c) b− (b.c) a

NOTE These two vector triple products are NOT the same. For those of you who like group

theory, the cross product is not associative.

How to remember these identities for your exam? (Which you need to do!) One way is note

that each of the vectors inside the brackets on the left appears once outside the brackets on the

right and the middle’ vector b appears first. Each term contains a,b, c once only.

Another way is to used the mnemonic CAB - BAC for the first identity. Think of sitting in

the back of a taxi to help remember this. I once shared a taxi with Carol Vorderman, but that

is another story.

Proof of the identity a× (b× c) = (a.c)b− (a.b)c.

We use components. First, if a = 0 then the result is true. Assume a 6= 0, and select the axes

such that a = ai.

LHS = ai× {i(b2c3 − b3c2) + j(b3c1 − b1c3) + k(b1c2 − b2c1)}
= j(−a(b1c2 − b2c1)) + k(a(b3c1 − b1c3)),

RHS = (ai.c)b− (ai.b)c

= (ac1)b− (ab1)c

= (ac1)(b1i + b2j + b3k)− (ab1)(c1i + c2j + c3k)

= ja(c1b2 − c2b1) + ka(c1b3 − c3b1) = LHS.2

The equivalent identity for the second vector triple product immediately follows:

(a× b)× c = −c× (a× b) = −{(c.b)a− (c.a)b} = (a.c)b− (b.c)a.

Important Exercise (you should do this, if only for the real pleasure in seeing a

lovely result):

Prove the beautiful Jacobi identity:

a× (b× c) + b× (c× a) + c× (a× b) = 0
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Hint Expand out the 3 vector triple products.

NOTE In the third year of your course (should you choose to do so) we will generalise all of this

lovely stuff when we look at differential geometry in general and Lie Algebras in particular.

2.10 Summary

In this section the main tools for manipulating vectors have been defined and discussed. These

tools are, the dot product, the vector product, the scalar triple product and the vector triple

product. We shall see how these are used in geometry, in kinematics (especially rotational

motion) and in mechanics (where we will bend it like Beckham), in the following Chapters.
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3 Applications of vectors to the geometry of straight lines and

planes

In this Chapter we will put the theory of vectors to work, to allow us to represent, and do

calculations with, lines and planes and some other surfaces in 3-D. In particular we derive

equations for these. We shall answer some typical questions in 3-D geometry, like “what is the

equation of the common perpendicular to two given lines”, and “find the perpendicular distance

from a point to a plane” and ”when does a line intersect a plane”. These questions are not only

interesting and important in their own right, but they lie at the heart of the modern computer

graphics industry. (For more information on this see my article Maths goes to the movies on

Moodle.)

In this Section we will start by looking at lines, then we will look at planes. In the next section

we will look at some more exotic surfaces which may change with time.

3.1 The equation of a straight line.

Perhaps the simplest geometric concept (after a point) is that of a straight line. One application

of straight lines is in optics, and finding the intersection of straight lines with objects is used in

the graphics industry to see how those objects are illuminated by light. To work with lines, we

need to know their equations. First we find the equation of a straight line.

O	  

A	  
R	  

a	  

L	  

r = a + �`

A line L in R3 through a point A, is uniquely specified by the choice of the point A and a
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direction vector l 6= 0. Let A have position vector a. Then a point R with position vector r is

on the line if and only if there exists λ ∈ R, such that r = a + λl. The vector equation of the

line is given by taking all values of λ so that

r = a + λl, (−∞ < λ < +∞) . (3.1)

Definition 3.1 Equation (3.1) is the parametric form of the vector equation of a straight line.

As the “real parameter” λ varies from −∞ to +∞, the point R traces out the entire line. The

component form of (3.1) is as follows. For

r = (x, y, z), a = (a1, a2, a3), l = (l1, l2, l3)

then

L :


x = a1 + λl1

y = a2 + λl2

z = a3 + λl3

2

An alternative and often very useful form of the equation of a straight line is as follows.

The vector
−→
AR is parallel to l if and only if

(r− a)× l = 0

(3.2)

We now give several examples which illustrate the use of equations (3.1), (3.2).

Example: Find the vector equation of the line passing through the points A and B with position

vectors a = i + j, b = j + k respectively.

Solution: Now l = b− a = k− i, and using the formula r = a + λl, we obtain

r = i + j + λ(k− i).

In components

x = 1− λ, y = 1, z = λ, (or y = 1, x = 1− z, z is arbitrary). 2
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Exercise Use the alternative form of the equation of the line given by (3.2) to obtain the

equation of the line in the previous example. [Hint: (r− a)× l = 0 implies

(r− i− j)× (k− i) = 0.

Now, with r = (x, y, z), apply the determinant form of the cross product....] 2

We now consider two important geometrical situations which provide very useful results later

on in this Chapter and are are also useful in computer animation applications.

Find the condition that two lines intersect. Given two non-parallel lines in R3

L1 : r = a + λl, λ ∈ R

L2 : r = b + µm, µ ∈ R,

show that they intersect if and only if

[a, l,m] = [b, l,m] . (3.3)

P
A

B

O

b

l

b-‐a	  

a

m

L2

L1

Solution: From the figure it is clear that if the point A, with position vector a, is on L1 and

B, with position vector b is on L2, and there is a point P on the intersection of the two lines

so that P ∈ L1 ∩ L2 then the vectors (a− b), l,m are co-planar. Thus [a− b, l,m] = 0. Hence

[a, l,m] = [b, l,m], using properties of the triple scalar product. 2

We will now think of a problem faced by an air traffic controller (and by the pilots of the

aircraft!). You have two aircraft travelling on straight line paths L1 and L2. How close will they

get to each other?
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To do this calculation we need to work out the distance between the two lines. We do this by

calculating the line which is a common perpendicular to both lines, and then working out

the length of this.

Problem: Let

L1 : r = a + λl

L2 : r = b + µm

be two non-intersecting, non-parallel lines in R3. What is the equation of the common perpen-

dicular L⊥?

a	  

b	   C	  
L1

L2

L?

D	  
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Solution: We seek L⊥ : r = c + νn for some direction vector n. Now L⊥⊥L1 and L⊥⊥L2.

Therefore we can take n := l×m.

Take C to be the point of intersection of L2 ∩L⊥. Since C ∈ L2, there exists a real µ0 such that

c = b + µ0m.

Therefore

L⊥ : r = b + µ0m + ν(l×m).

Now we need to determine µ0. To do this we use the fact that L⊥ also intersects L1, and so,

using (3.3),

[a, l,n] = [c, l,n] = [b + µ0m, l,n].

(Make sure you understand why this is so.) Thus

[a, l, l×m] = [b + µ0m, l, l×m].

Therefore

µ0 =
[a− b, l, l×m]

[m, l, l×m]
.

Note that the denominator is

[m, l, l×m] = [l×m,m, l] = (l×m).(m× l) = −(l×m).(l×m) = −‖l×m‖2,

which is nonzero since the lines are non-parallel (hence l×m 6= 0). 2

We can also find the point D with vector d where the perpendicular L⊥ intersects the line L1.

We will have

d = a + λ0l.

We can find the value of λ0 by interchanging the two lines in the expression for µ0. This gives

λ0 =
[b− a, m, m× l]

[l, m, m× l]
.

Now we have found the points C and D the length of the shortest line between L1 and L2 is

given by ‖c− d‖.

NOTE Distances between lines, and between lines and points, is now an important aspect of

the rapidly growing field of machine learning.
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3.2 The equation of the plane.

A plane is the set of points which lie on a flat surface. We usually call a plane a two-dimensional

surface.Although we live on a round Earth, because we are small in comparison we experience

it as a plane. (Of course if you believe in a flat Earth then it is a plane.) In computer graphics

we often represent a complicated shape as a set of intersecting planes and look at the way that

light reflects from them. All of this makes it worth studying the plane in some detail.

There are several ways that we can represent a plane. In general we will find that it is the set

of points (x, y, z) such that

ax+ by + cz + d = 0,

where a, b, c and d are constants.

	  	  

N = l ⇥ m

l

m

⇧

A	  

Let Π be a plane. It can be specified by a point A on the plane with position vector a, and two

non-parallel vectors l and m with in the plane Π. We say l and m are parallel to Π. Then for

any point R ∈ Π with position vector r there are a unique pair of scalars λ and µ such that

r = a + λl + µm (3.4)

Equation (3.4) is the parametric form of the vector equation of the plane.
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Alternative form: There is an alternative, and much more useful, form for the equation of a

plane is to think of it as all of the points orthogonal to a given vector. To describe this, let N

be a vector perpendicular to Π (a normal to Π). For example, one such vector is given by

N = l×m

for the above l,m. Then, R ∈ Π⇔
(r− a).N = 0. (3.5)

We can re-write (3.5) as r.N = a.N =: D, say. In components with

N = (A,B,C), and r = (x, y, z),

then

Ax+By + Cz = D . (3.6)

Example: Find the equation of the plane passing through A = (1, 2, 3) and perpendicular to

N = (0, 1, 1).

Solution: Since a.N = 5 we have r.N = a.N = 5. Therefore the equation of the plane is

y + z = 5.

2

A special case is when N is a unit normal, which we denote by n. Then we have

(r− a) · n = 0 . (3.7)

In terms of the above l,m, see (3.4), we can take the unit normal to be

n = ± l×m

‖l×m‖·

Equations (3.4), (3.5), (3.6) and (3.7) are equivalent forms of the equation of a plane.

Note that (3.7) may also be written

r.n = d (3.8)

with d := a.n.
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⇧

R	  

n

O	  

A	  

d

The number d in the above formula has a special geometric meaning. To see this, let R ∈ Π be

a point in the plane, with position vector r so that r is orthogonal to the plane, and thus r is

parallel to n. It follows that r = λn with λ = ±‖r‖. So

d = r.n = λn.n = λ = ±‖r‖.

Hence d is ± the perpendicular distance from O to Π. 2

The component form of (3.8) is, with n = (n1, n2, n3),

n1x+ n2y + n3z = d . (3.9)

Let us consider some examples.

Example 1: Let Π be the plane given by x+3y+4z = −2. What is the perpendicular distance

from O to Π?

Solution: From the equation of the plane we see that the normal N is given by

N = (1, 3, 4),

and the unit normal is

n =
N

‖N‖ =
N√
26
.
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Hence,

r · n =
r ·N√

26
= − 2√

26

Thus, the distance from O to Π is
2√
26

. 2

Example 2: Find the intersection of a line

L : r = a + λl, λ ∈ R

and a plane

Π : r.N = D.

Let S be the point of intersection, with position vector s = a + λ0l. (Draw a diagram here if

you wish.) Now S lies both on the line and in the plane, so

(a + λ0l).N = D ⇒ λ0 =
D − a.N

l.N
. (3.10)

2

Example 3: Find the perpendicular distance between the point B with position vector b and

the plane Π : r.N = D.

Solution: Let the perpendicular distance be h.

Draw the perpendicular from B to Π and let it meet Π at B′. Thus,
−−→
BB′ ⊥ Π. Therefore

−−→
BB′ ‖ N, and so

−−→
BB′ = λ0N, for some λ0 ∈ R.

Then (b + λ0N) is the position vector of B′. Hence

(b + λ0N) ·N = D.

So b.N + λ0‖N‖2 = D, and hence

λ0 =
D − b ·N
‖N‖2 .

Therefore, h = ‖−−→BB′‖ = |λ0| ‖N‖ =
|D − b.N|
‖N‖ . 2
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⇧

B

B0

O

h

b

N

3.3 Summary

In this Chapter we have derived the basic equations of a straight line and a plane in 3-D . In

addition, several useful results were obtained, for example, (3.3) gives a condition for two lines

to intersect (which is useful in air traffic contriol and also in computer graphics). This result

was used to obtain the equation of the common perpendicular to two straight lines. Planes and

normals go hand in hand, see (3.5) and (3.7). Important techniques to learn and remember are

how to find the normal to a plane, and how to find the perpendicular distance from a point to

a plane. These will all come in handy later when we look at how objects move around.
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4 Vector functions, line integrals and directional derivatives.

Whilst lines and planes are very important in geometry, real life is full of much more exotic

shapes. Fortunately, vector calculus gives us a way of representing these, and also seeing how

they might change. This is vital information if you are trying to represent an image in a computer

graphics simulation, or to plot the path of a space craft or an aircraft. In this Chapter we will

show how we can do this. We will start by looking at general parametric curves. That is, curves

which are described by a parameter (usually the variable t). We will then look at what happens

when we differentiate these with respect to t to find velocities and accelerations. We will look

at integrating with respect to t. This allows us to work out quantities such as energy.

4.1 Examples of parametric curves in 3-D

P = (x(t), y(t), z(t))

O

Let P = (x(t), y(t), z(t)) be a point whose position vector r varies with “time” t, so that,

r = r(t) = x(t)i + y(t)j + z(t)k.

The components x(t), y(t), z(t) are real-valued (scalar) functions of the real variable t. So, a

vector-valued function r(t) may be interpreted as a triple of real-valued functions. As t varies,

the point P traces out a curve C.

Example 1: The straight line If a and l are constant vectors then r(t) = a + tl represents the

equation of a straight line, L say.
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As t varies from −∞ to +∞, P traces out the straight line in the direction of l, through the

point A.

Example 2: The Circular helix

Let

r(t) = a cos(t) i + a sin(t) j + c tk (a, c positive constants )

Then

x(t) = a cos(t), y(t) = a sin(t), z(t) = ct.

Note that then x2 + y2 = a2, and therefore the curve C lies on this cylinder x2 + y2 = a2 but

increases in z with t. The resulting curve C is called a circular helix. 2

We see the helix in the design of a spiral staircase and also in the shape of the DNA molecule

(which is two helices intertwined).

4.2 The calculus of vector-valued functions

If t is thought of as time, then we can think of the points on the helix above as moving along

the helix with time. To get the picture, imagine yourself climbing up a circular staircase, with

the end of your nose a point. As you move your position changes with time, and therefore we

can differentiate it to give you your velocity. This velocity will be itself a vector. We are going
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to define differentiation of vector functions in the obvious way, but first, to recall what you are

learning in the analysis courses, we need to know what a limit of a vector valued function is.

Definition 4.1 (Limit) r(t)→ r0 as t→ t0 iff

‖r(t)− r0‖ → 0 as t→ t0.

(Recall that the latter means that for all positive ε there exists δ > 0 such that ‖r(t)− r0‖ < ε

as long as |t− t0| < δ.)

If we write r(t) = (x(t), y(t), z(t)) and r0 = (x0, y0, z0) then obviously r(t)→ r0 as t→ t0 iff

x(t) → x0, y(t) → y0, z(t) → z0.

Here we use the fact that a vector valued function is a triple of real valued scalar functions, and

we know, from your analysis courses, how to take the limits of real functions.

Definition 4.2 (Continuity) We say that r(t) is continuous if for all t0, r(t) → r(t0) as

t → t0. Obviously, r(t) is continuous if and only if all its components x(t), y(t) and z(t) are

continuous.

Definition 4.3 (Derivative) Given a time dependent vector r(t) the derivative r′(t) is

dr

dt
= r′(t) := lim

h→0

[
r(t+ h)− r(t)

h

]
, (4.1)

provided this limit exists.
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It follows that, provided the scalar derivatives x′(t), y′(t) and z′(t) all exist,

r′(t) = x′(t)i + y′(t)j + z′(t)k, (4.2)

so we differentiate the components. From now on, we assume that all r(t) we consider are “good

enough” for the derivatives to exist. We then say r(t) is differentiable.

Notation: There are many ways of writing a derivative. To avoid confusion, in these notes

r′(t), r′,
dr

dt
,
d

dt

(
r(t)

)
are all equivalent.

A geometrical interpretation of the derivative:

As t varies r traces out the curve C (think of the example of the helix). Now if P and Q are

the end points of the position vectors r(t) and r(t+ h) respectively,

r(t+ h) − r(t)

h
=

−−→
PQ

h

and so, if h → 0, Q → P , and
r(t+ h)− r(t)

h
tends to a vector in the direction of the tangent

to C at P . Hence, we have the following definition

Assuming r′(t) 6= 0, r′(t) is called a tangent vector to the curve C at point P .

The tangent points in the direction of increasing t.

The tanjent vector is precisely the velocity of the point at that moment.

Example: For the helix

r(t) = a cos(t) i + a sin(t) j + c tk

the tangent vector r′(t), is

r′(t) = − a sin(t) i + a cos(t) j + ck. 2

Rules of differentiation

Let r(t), r1(t), r2(t) be differentiable vector-valued functions, λ(t) a differentiable real-valued

function, and c a constant vector. We can differentiate sums, dot products and cross products

of vectors as follows.

Then:
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1.
d

dt
(c) = 0

2.
d

dt

(
r1(t) + r2(t)

)
=

d

dt

(
r1(t)

)
+
d

dt

(
r2(t)

)
3.

d

dt

(
λ(t)r(t)

)
=

d

dt

(
λ(t)

)
r(t) + λ(t)

d

dt

(
r(t)

)
4. For the dot product:

d

dt

(
r1 . r2

)
=

dr1
dt

. r2 + r1 .
dr2
dt

5. For the cross product,
d

dt

(
r1 × r2

)
=

dr1
dt
× r2 + r1 ∧

dr2
dt

(N.B. Keep the correct

ordering!)

Thus the usual rules of differentiation apply. Proofs of (1) - (5) directly follow from definition

(4.1), or component form (4.2). Verify this as an exercise.

For a position vector r(t), ‖r(t)‖ is a scalar function of t and we can differentiate it.

Example 1: Show that for r 6= 0

d

dt

(
‖r‖
)

=
1

‖r‖r . r
′

We deduce that r.r′ = 0 iff ‖r‖ = constant.

Solution: (i) Recall, ‖r‖2 = r.r. Differentiate both sides with respect to t

d

dt

(
‖r‖2

)
=

d

dt
(r . r)

∴ 2‖r‖ d
dt

(
‖r‖
)

=
dr

dt
. r + r

dr

dt
= 2 r.

dr

dt

∴
d

dt

(
‖r‖
)

=
1

‖r‖r.r
′. (4.3)

We will use this result often.

(ii) If ‖r‖ = constant ∴
d

dt

(
‖r‖
)

= 0

∴ r.r′ = ‖r‖ d
dt

(
‖r‖
)

︸ ︷︷ ︸
=0

= 0 2

Integration By analogy with differentiation, we have

b∫
a

r(t)dt :=

 b∫
a

x(t)dt

 i +

 b∫
a

y(t)dt

 j +

 b∫
a

z(t)dt

k.

Also, the usual integration rules apply.
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Anti-derivatives ∫
r′(t)dt = r(t) + c,

d

dt

{∫
r(t)dt

}
= r(t).

Example 4: If r : R→ R3 is a twice differentiable function such that r′′(t) ≡ 0, show that r(t)

represents a straight line.

Solution: In this case,

r′′(t) ≡ 0 =⇒ d

dt

(
r′(t)

)
= 0

=⇒ r′(t) = c,

where c is a constant vector (analogous to the constant of integration). Therefore,∫
r′(t)dt = ct+ d,

where d is a constant vector, and thus

r(t) = tc + d, ∀t ∈ R,

which is the equation of a straight line through arbitrary point d in an arbitrary direction c, as

required. 2

4.3 Arc-length

Imagine that you are an ant crawling along a curve. You may well be interested in how far you

have travelled. To do this calculation (even if you are not an ant) we need to find the arc-length

of the curve. The arc-length of a section of a curve is defined as a limit of lengths of piecewise

straight lines. Selecting a point P0 on a curve C corresponding to t = t0, we introduce the arc

length, s say, from P as a signed length: s is positive for t > t0 and negative for t < t0.

NOTE It is often convenient to use the arc-length s as a parameter to describe C (instead of

t).

Change of variable: (The Chain Rule)

If r = r(t) and t = t(s) then
dr

ds
=

dr

dt

dt

ds
(4.4)

(Prove using components).
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Example: For a circle of radius a in the xy-plane, r = (x, y, 0), where x(t) = a cos t, y(t) =

a sin t, and for the arc-length s(t) = at. Hence

dr

ds
=

dr

dt

dt

ds
=
dr

dt

/
ds

dt
=

1

a
r′ = − i sin

(s
a

)
+ j cos

(s
a

)
2

How to compute the arc-length

Warning! Even simple curves can have very hard to compute arc-length. With this warning

we proceed to find a formula for arc-length. Let r(t) be a position vector of P on C, a smooth

curve in 3-D.

Let A ∈ C be a given reference point and let s(t) be the arc length along C from A to a point

P having position vector r(t). Now consider a point Q which is close to P for which s(t+ h) is

length from A to Q, and the line PQ lies close to the part of C between P and Q.

Then, for small h,

s(t+ h)− s(t)
h

' ‖
−−→
PQ‖
h

=
‖r(t+ h)− r(t)‖

h
=

∥∥∥∥r(t+ h)− r(t)

h

∥∥∥∥ .
Now taking the limit as h→ 0,

ds

dt
=

∥∥∥∥drdt
∥∥∥∥ = ‖r′‖ (4.5)
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Integrating (4.5) from t0 to t

s(t) =

t∫
t0

∥∥r′(τ)
∥∥ dτ =

t∫
t0

√(
dx

dτ

)2

+

(
dy

dτ

)2

+

(
dz

dτ

)2

dτ

(Here τ is a dummy variable of integration which, strictly speaking, could be anything but t

which is the upper limit; we nevertheless often use in similar context t also as the integration

variable, for notational simplicity.)

See an example in lectures on the arc-length for a circular helix; see also the example in the

end of the next subsection. However, be warned (again), this integral is often impossible to

calculate!

Warning! In general ∥∥∥∥drdt
∥∥∥∥ 6= d

dt

(
‖r(t)‖

)
.

(The length of a derivative is generally different from the derivative of a length.)

4.4 Tanjents, principal unit normal vectors and curvature.

We have seen that r′(t) is a vector tangent to C at r(t), assuming r′(t) 6= 0. We apply the usual

recipe to construct a vector of unit length pointing in the tangent direction:

Definition 4.4 With r′(t) 6= 0,

T̂(t) :=
r′(t)

‖r′(t)‖ (4.6)

is called the unit vector tangent to C at t (or unit tangent vector).

If we choose the arc length s as the parameter for the curve C, then using the Chain Rule and

(4.6)

r′ =
dr

dt
=
dr

ds

ds

dt
=
dr

ds

∥∥r′∥∥ ∴ from (4.6)

T̂ =
dr

ds
(4.7)(

Note that

∥∥∥∥drds
∥∥∥∥ = 1.

)
We might want to see how rapidly a curve changes. For example if we fold a piece of paper

then any curve drawn on that paper changes rapidly at the fold point. We can measure this by

defining the curvature of the curve.
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We have

‖T̂‖ = 1 ∴ ‖T̂‖2 = T̂ · T̂ ≡ 1

and differentiating the latter, T̂ · dT̂
dt

= 0

Thus
dT̂

dt
is orthogonal to the tangent vector T̂ and so is normal to the curve C.

Definition 4.5 Assume T̂′ :=
dT̂

dt
6= 0, then

N̂ :=
T̂′

‖T̂′‖
(4.8)

is called the principal unit normal.

(The word “principal” means that this is “the” unit normal to C pointing in the direction in

which the curve actually curves, or in other words lying in the plane “best approximating”

the curve C near the considered point P . More precise statements would require use of more

advanced Analysis.)

In the s-parametrisation, replacing in (4.8) t by s (and recalling that ds
dt > 0)

N̂ =

dT̂

ds∥∥∥dT̂ds ∥∥∥ ,
or, re-arranging,

dT̂

ds
= κ N̂, κ :=

∥∥∥∥∥dT̂ds
∥∥∥∥∥ . (4.9)

This leads us to the following definitions

The length κ of the vector
dT̂

ds
is called the curvature of curve C at the given point t.

The quantity a = 1/κ is called the radius of curvature.

Note that T̂ = dr/ds. It follows that

κ = ‖d
2r

ds2
‖.

The larger that κ is (or the smaller that a is) the more that the curve is changing in its direction

over a short distance

By the chain rule and using also (4.5),
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κ =

∥∥∥∥∥dT̂ds
∥∥∥∥∥ =

∥∥∥∥∥dT̂dt
/
ds

dt

∥∥∥∥∥ =
‖T̂′(t)‖
‖r′(t)‖ (4.10)

Example: Consider again the circular helix. Then

r(t) = (a cos t)i + (a sin t)j + (ct)k (a, c positive constants )

r′(t) = −a sin t i + a cos t j + ck

‖r′‖ =
(
a2(sin2 t+ cos2 t) + c2

) 1
2

=
√
a2 + c2

So

ds

dt
= ‖r′‖ =

√
a2 + c2

Take our start point as t = 0 i.e. r(0) = (a, 0, 0).

(1) The arc-length from (a, 0, 0) to r(t) is s(t) =
t∫
0

‖r′‖dt =
√
a2 + c2 t.

(2) The unit tangent vector:

T̂ =
r′

‖r′‖ =
−(a sin t)i + (a cos t)j + ck√

a2 + c2
.

(3) To find the principal unit normal, now

T̂′ =
dT̂

dt
=
−(a cos t)i− (a sin t)j√

a2 + c2

∴
∥∥∥T̂′∥∥∥ =

a√
a2 + c2

∴ N̂ =
T̂′∥∥∥T̂′∥∥∥ = − cos t i − sin t j.

(4) Hence, from (4.9)-(4.15), for the curvature,

κ =

∥∥∥∥ ddtT̂
∥∥∥∥

‖r′‖ =
a√

a2 + c2
1√

a2 + c2
=

a

a2 + c2
,

with

dT̂

ds
=

dT

dt

/
ds

dt
=

1√
a2+c2

(−a cos ti− a sin tj)
√
a2 + c2

=
−(a cos t)i− (a sin t)j

a2 + c2
= κ N̂.

Note that, in particular, for c = 0 (so that C is a circle) κ =
1

a
, the inverse radius. 2

More examples of curvature can found in the example sheets. BUt have some fun with origami

to give yourselves a feeling for what curvature is all about.
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4.5 Line integrals

Imagine that you are carrying a heavy suit of armour as you go up the spiral staircase of a castle.

To do this you need to do some work. As well as working against gravity, every step that you

take takes effort due to friction, so that the work involves taking into account the arc-length

along the curve. To work out the total amount of work that you have to do involves integrating

all of this along the whole length of the curve. To this we have to do a line integral along the

curve. Line integrals are a very important aspect of vector calculus and play a central role in

calculations of work and energy. Another example of a line integral is the integration of the

velocity vector of the flow of air along a closed loop around the aerofoil of a wing on an aircraft.

This line integral called the circulation is used to find the lift on the wing. You will meet them

not only in this course but also in courses on partial differential equations, multi-variate calculus,

fluid mechanics, electromagnetics and in courses involving complex variables.

Definition 4.6 Suppose that we have a parametrised curve C in three dimensions from the

points A to P given by r = (x(t), y(t), z(t)) for a < t < b. This has a tanjent vector r′ =

(dx/dt, dy/dt, dz/dt). Now suppose that we have a vector quantity F(x, y, z) which is defined at

all points along the curve. Then the vector line integral I of the vector function F(r) is given

by

I =

∫ b

t=a
F.r′ dt =

∫ b

t=a
F(x(t), y(t), z(t)).(dx/dt, dy/dt, dz/dt) dt. (4.11)

Example 1: Let’s, consider a circular staircase with (x(t), y(t), z(t)) = (cos(2t), sin(2t), 3t), 0 <

t < 1. We carry a heavy weight of mass m up this staircase and the force acting on this weight

is F = (0, 0,−mg). The work done in doing this is given by |I| where I is the line integral. Now

r′ = (−2 sin(2t), 2 cos(2t), 3). Thus

I =

∫ 1

0
(0, 0,−mg).(−2 sin(2t), 2 cos(2t), 3) dt =

∫ 1

0
−3mg dt = −3mg.

Example 2: In the same problem above an additional amount of work, proportional to µ is

done against friction, so that now F = (0, 0,−mg)− µr′. The total work done is now |I| where

I =

∫ 1

0
(2µ sin(2t),−2µ cos(2t),−mg−3µ).(−2 sin(2t), 2 cos(2t), 3) dt =

∫ 1

0
−3mg−13µ dt = −3mg−13µ.
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The above definition of a line integral is very useful for finding the integral of vector valued

quantities and determining energy. However, we also often want to find the line integral of a

scalar quantity. For example, if we have a wire bent into a shape with a varying density ρ(r)

along the wire, then the integral of ρ with respect to arc-length s along the wire gives its total

mass. We now make this precise

We saw in Section 4.3 that the total arc-length s along the curve C defined by r = r(t), from A

to P , is given by:

s =

∫ b

t=a
||r′(t)|| dt

since ds/dt = ||r′||.
This can be generalised to integrate a general scalar function ρ(r(t)) along the curve C:

Definition 4.7 The scalar line integral of the scalar function ρ(r) is the scalar I given by

I =

∫
C
ρ(r) ds =

∫ b

t=a
ρ(r(t)) ||r′(t)|| dt. (4.12)

Example A wire is described by the curve r = (t, t2, t3), 0 < t < 1. Its density increases along

its length and is given by ρ(s) = s2. Find an expression involving an integral for its total mass

m.

We have that

m =

∫
C
ρ(s) ds =

∫
s2 ds =

S3

3
,

where S is the total arc-length of the wire. In turn we have that

S =

∫ 1

t=0

ds

dt
dt =

∫ 1

0

√
1 + 4t2 + 9t4 dt.

Hence

m =

(∫ 1
0

√
1 + 4t2 + 9t4 dt

)3
3

.

If you wish, you can evaluate this integral. Alternatively, you may not.

4.6 Gradients and directional derivatives

Suppose that we are walking on a mountain. We sit down to rest and get out an apple to eat.

Carelessly we put the apple on the ground and it starts to roll away. What direction will it roll
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in? Similarly, we walk up the mountain, but on a footpath which keeps changing direction. How

fast are we moving up hill? These, and many other important questions, can be answered by

using the gradient operator ∇. This gives us a way of finding the derivative of a scalar function

f of a vector.

Take the horizontal xy-plane horizontal, and define a differentiable function f(x, y) : R2 → R.

Then z = f(x, y) describes a surface in 3D above the xy-plane: f(a, b) is the height of the surface

above the point (a, b) on the plane. This is called the graph of f(x, y). It is the set of points

(x, y, z) ∈ R3 where z = f(x, y).

Definition If c ∈ R, then we define a level curve of points (x, y) for which f(x, y) = c. On the

surface, the points (x, y, c) form the contour lines of points at the height c.

Back to our mountaineering example. A standard OS map of a mountainous region will depict

heights using contour lines. The University of Bath is in just such a (mountainous) region and

the 1:25 000 scale OS map of Bath is shown below in which the height contours are all indicated.

At any point (x, y) we can find the partial derivatives of f given by ∂f
∂x ,

∂f
∂y , also written as

fx(x, y) and fy(x, y). These give the rates of change of f with respect to distance in the x and

y directions respectively. Geometrically, fx(a, b) and fy(a, b) are the slopes of the surface in the

positive x and y directions at (a, b). That is, in the directions of the unit vectors i, j.

We now look at how the value of f changes as we move along a curve. Suppose that we define

the curve

C = (x(t), y(t)).
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We can then define the function g along this curve by

g(t) = f(x(t), y(t)).

If g is a path on a hill, and f is the height of the hill, then g(t) is our percpetion of how out

height changes with time t.

Definition 4.8 The directional derivative of the function f along the curve C is given by dg/dt.

By using the chain rule we can evaluate the directional derivative. In particular

dg

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
≡ fx

dx

dt
+ fy

dy

dt
. (4.13)

A special case of the directional derivative is given when the curve C is a straight line in the

direction of the vector u = (u, v) passing through the point (a, b). We then have

x(t) = a+ ut, y(t) = b+ vt, g(t) = f(a+ ut, b+ vt), dx/dt = u, dy/dt = v.

The following definition then follows directly from the expression (4.13).

Definition 4.9 The directional derivative Duf of the function f(x, y) at the point (a, b) and in

the direction of the vector u = (u, v) is given by

Duf = ufx + vfy (4.14)

Example Suppose that f(x, y) = x2 − 2y2. What is the directional derivative of f in the

direction of u = (1, 2) at the point (a, b) = (1, 1)?.

Solution At the point (1, 1) we have

fx = 2x = 2, and fy = −4y = −4.

Therefore

Duf = 2 ∗ 1− 4 ∗ 2 = −6.

Now. If we look at the equation (4.14) it has the form

Duf = u.(fx, fy).

There seems to be something special about the vector fx i + fy j. This observation motivates

the following defintion
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Definition 4.10 At any point (x, y) where the first partial derivatives exist, we define the vector

∇f(x, y), also written as grad f(x, y), by the expression

∇f(x, y) = fx(x, y) i + fy(x, y) j (4.15)

The symbol ∇, called ”grad”, ”del” or ”nabla” is a vector differential operator which acts on

a scalar valued function and is given by

∇ = i
∂

∂x
+ j

∂

∂y
(4.16)

In later courses you will also meet the divergence operator ∇. and the curl operator ∇× which

act on vector valued functions.

Example If f(x, y) = (x2y − 3y2x) then ∇f = (2xy,−6xy).

The following result follows immediately from the definitions

Theorem 4.11 The directional derivative of the function f(x, y) in the direction u is given by

Duf = u.∇f.

The following theorem gives a geometrical interpretation of ∇f .

Theorem 4.12 If f(x, y) is differentiable at (a, b) and ∇f(a, b) 6= 0, then ∇f(a, b) is a vector

normal to the level curve (contour) of f(x, y) at (a, b).

Proof On a contour we have the identity f(x, y) = c. If we suppose that the contour is given

by the curve (x(t), y(t)) for some parameter t, then differentiating the identity with respect to

t and applying the chain rule we have that

fx dx/dt+ fy dy/dt = 0.

As the tanjent T = (dx/dt, dy/dt) and also ∇f = (fx, fy) we see immediately that

∇f.T = 0.

In other words the vector ∇f is orthogonal to the tanjent vector T. Hence ∇f is in the direction

of the normal to the contour.
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Now we return to our example of an apple rolling down hill. The apple will roll in the path of

steepest descent in which its height changes most rapidly. The question we now ask is, what is

the direction of steepest descent?

The answer to this is given by the follwing very important theorem

Theorem 4.13 The vector ∇f(a, b) is in the direction of the maximum increase of f at the

point (a, b). If u is a unit vector in the direction of ∇f then

Duf = ‖∇f‖. (4.17)

Proof Let u be an arbitrary unit vector. Then

Duf = u.∇f = ‖∇f‖ cos(θ),

where θ is the angle between u and ∇f . Now, the expression above is clearly maximised when

cos(θ) = 1 so that θ = 0. It follows that u must be parallel to, and in the same direction as,

∇f . For this vector Duf = ‖∇f‖.

The vector ∇f is in the direction of the steepest ascent of f . Conversely the vector −∇f is

in the direction of the steepest descent. We can now answer the question of the mountaineers

lunch. The apple will roll in the direction of the steepest descent, in other words in the direction

of −∇f .

READ THIS It is hard to over emphasise the importance of the above theorem. It has

implications that go far beyond having lunch on a mountain. For example, suppose that you are

in charge of a company which makes a profit f(x) which depends on a number of parameters

summarised by the vector x. If you are currently operating with the parameters set to x = a and

you want to increase your profit, then then way to do this most rapidly is to move the parameters

in the direction of ∇f . Conversely, if you want to minimise a function f then you do this most

rapidly by moving in the direction of −∇f . If ∇f = 0 then the function is at a maximum or

at a minimum. These observations lie at the heart of the mathematical field of optimisation.

They are used countless times a day by computer codes trying to improve how things operate.

Indeed they are at the very heart of the ultra modern subject of machine learning.

We will now look at some examples to illustrate the use of these results.

59



Example 1 The height of the surface close to the top of a mountain is described by the function

f(x, y) = 1− 2x2 − 3y2.

Question 1 At the point (1, 1) what is the line of steepest descent?

Answer We have

∇f = (−4x,−6y).

At the point (x, y) = (1, 1) it follows that −∇f = (4, 6) so the line of steepest descent is in the

direction (4, 6).

Question 2 What are the contours of the surface?

Answer The contours are given by the set of curves

2x2 + 3y2 = c.

These are all ellipses centred on the origin.

Question 3 If we are at the point (1, 1) and then move in the direction of v = (2,−1) do we go

uphill or downhill?

Answer The rate of change of f in the direction of v is given by

Dvf = v.∇f = (2,−1).(−4,−6) = −2.

IAs this is negative we are walking down hill. This is illustrated in the figure below which shows

the contours of the function f(x, y), the point (1, 1) and a vector in the direction (2,−1).

Example 2: The height of a surface close to a pass at (x, y) = (0, 0) between two mountain

peaks is described by the function

f(x, y) = (x2 − y2).

In this case we have

∇f = (2x,−2y).

The contours are the set of hyperbolae centred on the origin, given by the curves

x2 − y2 = c.

Student exercise Draw the contours of the function f(x, y). Calculate ∇f and hence work out

the line of steepest descent at the point (1, 2).

NOTE This shape is also that of a Pringles Crisp, see the figure.
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Figure 2: Contours of the function f and the line in the direction (2,−1).

Figure 3: Have a pringle
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5 Kinematics

Kinematics is the study of the motion of particles along curves, or of particles moving in free

space or on some surface. Here we start apply the vector algebra and vector calculus introduced

in the previous sections to physical problems to see how things move. We will be looking both

at particles moving in straght lines, and also spinning around in circles. To do this we not only

need to represent the position of particle using a vector, but we will want to differentiate this

position once (to find its velocity), twice (to find its acceleration) and three times (to find its

jerk). Yes, I did say jerk, this is an important concept in road traffic collisions. We will mostly

be think of the motion of a point particle. In reality moving objects have substance and they

both move and spin (think of the Earth). Our intuition for the motion of a point may often not

work when thinking of a massive mving and spinning object such as a football. So be warned!

5.1 Velocity and acceleration

We will start then by looking at a particle moving in free space. Consider such a particle P

moving in space along a curve C. Let the position vector of P be x(t), where t represents time.

We will write r(t) = ‖x(t)‖ or, dropping the ‘t’, r = ‖x‖.
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Definition 5.1 The velocity v(t) is the rate of change of position and is defined by:

v(t) = lim
4t→0

x(t+4t)− x(t)

4t =
dx(t)

dt
= ẋ(t).

The velocity vector is tangential to C (remember that r′ is the tangent vector defioned earlier.)

Notation Usually we use “ ˙ =
d

dt
”, so we write ẋ =

dx

dt
, and ẍ =

dẋ

dt
=
d2x

dt2
.

Definition 5.2 The speed v is the magnitude of v. So

v = ‖v‖ =

∥∥∥∥dxdt
∥∥∥∥ (=

ds

dt
= ṡ

)
where s denotes arc-length.

Definition 5.3 The acceleration vector a is the rate of change of velocity:

a =
dv

dt
=

d2x

dt2

= v̇ = ẍ

Useful identities

(1) rṙ = x.ẋ

(2) vv̇ = ẋ.ẍ = v.v̇

Proof of (1)

r2 = ‖x‖2 = x.x,

therefore, differentiating,

2rṙ = 2x.ẋ.

Proof of (2) Similar to the proof of (1) - see Example sheet.

5.2 Equations of Motion and Vector Differential Equations

The equations of motion in two and three dimensions are often described by using vector valued

differential equations. The usual rules for solving differential equations apply. To show this we’ll

look at two examples.

Example 1: Consider the motion of a charged particle moving in a magnetic field which is

described by the vector differential equation:

ẍ = k x× ẋ, (5.1)
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where k is a constant.

(i) Show that the speed v is constant throughout the motion.

(ii) Find a differential equation for r(t) = ‖x(t)‖, and hence solve for r(t).

Solution

(i) Take the dot product of (5.1) with ẋ to give:

ẋ.ẍ = ẋ.(kx× ẋ) = 0.

Thus, via the second “useful identity” above,

vv̇ = 0.

Therefore 1
2

d

dt

(
v2
)

= 0, and so v is a constant.

(ii) Remember that r2 = x.x. To make use of the differential equation (5.1) we need to

differentiate twice to get a term containing ẍ.

d2

dt2
(r2) =

d

dt

(
d

dt
(x.x)

)
=

d

dt
(2x.ẋ)

= 2ẋ.ẋ + 2x.ẍ

= 2‖v‖2 + 2x.(kx ∧ ẋ)

= 2v2.

But v is constant by (i), so solving this scalar ODE gives

r(t)2 = v2t2 +At+B,

or

r(t) =
√
v2t2 +At+B,

where A,B are constants of integration to be determined e.g. from the initial conditions.

2

Example 2 The motion of a particle in three dimensions at the end of a perfect spring, in the

absence of air resistance and friction, is described by the vector differential equation

ẍ + ω2x = 0, (5.2)

where ω is constant.
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(i) Show that ẋ× x = h, a constant vector.

(ii) Determine x(t) given that x(0) = x0 and ẋ(0) = v0.

(iii) Describe the motion geometrically.

VERY IMPORTANT. READ THIS FIRST

The differental equation (5.2), called the harmonic oscilator equation, is one of the most impor-

tant equations in the whole of mathematics. It describes the periodic solutions that you get to

most problems in vibration and wave mechanics. It is essential for this and later courses that

you are completely familiar with it and its solution. There are a number of ways to solve it:

1. Look up the answer. This method can be used if you have access to a formula book.

However, this is not an option during your exam.

2. Using the characteristic equation. This is the usual method. First think of (5.2) as a

scalar, rather than a vector equation. It is a very special example of a second order

ordinary differential equation with constant coefficients. To solve it you pose a solution of

the form

x(t) = eλt.

Substituting into the differential equation we have

λ2eλt + ω2eλt = 0.

The unknown λ therefore satisfies the characteristic (quadratic) equation

λ2 + ω2 = 0.

Thus we have λ = ±iω. The general solution of (5.2) then has the form

x(t) = ceiωt + de−iωt,

for general c and d. Using the result that eiωt = cos(ωt)+ i sin(ωt) we then have that there

are general constants a and b so that

x(t) = a cos(ωt) + b sin(ωt). (5.3)
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Now, to extend this to the vector case you simply replace the scalars a and b by vectors.

This is because (5.2) is basically three scalar equations in each of the three coordinate

directions. The solution of (5.2) then becomes

x(t) = a cos(ωt) + b sin(ωt). (5.4)

This funtion is periodic with period

T =
2π

ω
.

3. Know the answer. Whilst the above method is completely correct and general, I do not

expect you to go through this process every time that you meet the equation (5.2). Instead

it is completely satisfactory for the purposes of this course to simply write down the answer

(5.3). If you will do this you will get full marks. You should simply learn that (5.3) is the

general solution to (5.2). You will meet the equation (5.2) so often in examples, that you

really simply need to know what it’s answer is, without having to rederive it every time.

Now we consider the solution of the original problem

(i) To show a quantity is constant it is usually easiest to prove that its derivative is zero.

Now,
d

dt
(ẋ× x) = ẍ× x + ẋ× ẋ = −ω2x× x + 0 = 0.

Therefore, ẋ× x = h, for some constant vector h.

(ii) From the above discussion you can now write down the result that the equation (5.2) has

the general solution

x(t) = a cos(ωt) + b sin(ωt), a,b are arbitrary constant vectors.

We now need to find the values of a and b. From the initial conditions

x0 = a cos(0) + b sin(0) = a,

v0 = −a ω sin(0) + bω cos(0) = bω. ∴ b =
v0

ω
.

Thus the solution is

x(t) = x0 cos(ωt) +
1

ω
v0 sin(ωt)) .
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We see that the motion is oscillatory in time and it has period 2π/ω. This is reasonable

given that it is describing the motion of a mass which is bouncing up and down at the end

of a spring.

If x(t) = (x(t), y(t), z(t)) then we can plot x(t) as a function of t, or we can plot (x, y, z)

together. Taking representative vectors a and b we then get the following graphs.

Figure 4: The motion (t, x) which is oscillatory.

Figure 5: The motion (x, y, z) which is all in one plane.

(iii) Since x0,v0 are constant vectors, it follows that x(t) remains in the plane generated by x0

and v0. 2

This is a VERY important example. Motion such as this occurs everywhere in vibrating systems.
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The quantity h is called the angular momentum. This is conserved in this example. In fact it is

conserved in any system acted on by a (central) force F which is parallel to the position vector

r.

5.3 Rotating systems

Rotating systems arise very naturally in lots of applications, for example in machinery (such as

car engines), the motion of the planets, and even the motion of certain types of bacteria. If you

spin around on the ice then you too are in circular motion. In this section we will take our first

look at rotating systems. This will then motivate a more general approach in the next section

using polar coordinates. The figure below will motivate our discussions.

When we think of rotation we naturally think of an axis. This will be a line through the origin

O in the direction of the unit vector a around which things rotate. We also have an angle

measuring the amount of the rotation. Consider the rotation of a point P about such a fixed

axis. The point will move around a circle of radius r in a plane Π which is perpendicular to a.

Now we will introduce polar coordinates on the plane Π. To do this we will let Q be the origin,

and we then set r = ‖−−→QP‖. We then draw a fixed line ` on Π through Q. If we take the line

QP then there an angle θ between this line and the line ` measured in an anti-clockwise sense.
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The angle θ will change as the vector
−−→
QP rotates about the axis.

We will now introduce two important vectors. We define er to be the unit vector in the direction
−−→
QP , and eθ to be the unit vector in Π perpendicular to er pointing in the direction of increasing

θ. These are illustrated in the figure. We will look at these vectors in much more detail in the

next section.

If x =
−−→
OP then it can be seen from the diagram that:

x(t) =
−−→
OQ+

−−→
QP

= ‖OQ‖a + r er.

If r is constant, the point at P will move in the direction of the vector eθ and we have

ẋ = rθ̇ eθ

This result will be fully justified in the next section.

We see from the diagram that the unit vectors a, er and eθ are orthogonal and form a right-

handed orthonormal system. Therefore,

eθ = a× er.

Hence,

a× x = a× (‖OQ‖a + r er) = r eθ

Therefore

ẋ = rθ̇ eθ = θ̇a× x.

If we denote

ω = θ̇ a (5.5)

it follows that

ẋ = ω × x. (5.6)

This shows that the cross product can be used to calculate velocities in rotating systems
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5.4 Velocity and Acceleration in polar coordinates in 2-D

We will now generalise these ideas. So far we have always used the unit vectors i, j,k to represent

vectors. However, it is often convenient to deal with “moving” or “rotating” axes, such as the

vectors er and eθ described above. In this section we will look at how we can calculate velocity

and acceleration in terms of these.

To do this we take the plane Π = OXY and P = (x, y) a point on the plane with position vector

x(t) = (x, y). We now introduce polar coordinates (r, θ) for the point P , where r := ‖x‖, θ is

the angle between x and the OX-axis as on the diagram. We have

x = r cos(θ), y = r sin(θ).

The unit vectors that we considered in the last section now become

er =
x

r
( the radial direction),

eθ orthogonal to er, in the direction of increasing θ ( the angular direction).

Hence er, eθ are unit vectors pointing in the direction of increasing r and θ, respectively. In

terms of i and j, by considering the diagram, it follows from trigonometry that

er = cos(θ) i + sin(θ) j,

eθ = − sin(θ) i + cos(θ) j.

 (5.7)
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Note that er, eθ are independent of r. Now, differentiate (5.7) with regard to θ:

der
dθ

= − sin(θ) i + cos(θ) j = eθ,

deθ
dθ

= − cos(θ)i− sin(θ)j = − er.

 (5.8)

So, for a moving point x(t), the chain rule gives,

ėr =
der
dt

=
der
dθ

dθ

dt
= θ̇ eθ.

ėθ =
deθ
dt

=
deθ
dθ

dθ

dt
= − θ̇ er.

The resulting important equations, that you should remember, are then

ėr = θ̇ eθ,

ėθ = −θ̇ er.

Velocity in polar coordinates.

From the definition of er, the position vector of P is given by

x(t) = r(t)er(θ(t)), (5.9)

and differentiating with respect to t gives,

v = ẋ = ṙer + rėr = ṙer + rθ̇eθ (5.10)

So, ṙ (called the radial velocity) and rθ̇ (called the angular velocity) are the components of the

velocity v in the er and eθ directions, respectively.

The speed is given by:

v = ‖v‖ =

√
ṙ2 + r2θ̇2 , (5.11)

(using Pythagoras’ theorem, or directly via v2 = v · v etc.).

Acceleration in polar coordinates

Differentiating the expression for the velocity, and using again the identity in the box we have,

ẍ =
d

dt
(ẋ) =

d

dt

(
ṙer + rθ̇eθ

)
= r̈er + ṙėr + ṙθ̇eθ + rθ̈eθ + rθ̇ėθ

= r̈er + ṙθ̇eθ + ṙθ̇eθ + rθ̈eθ − r θ̇2er.
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Thus we have the very (very) important expression which you must learn

ẍ =
(
r̈ − rθ̇2

)
er +

(
rθ̈ + 2ṙθ̇

)
eθ

Hence, (r̈ − rθ̇2) and (rθ̈ + 2ṙθ̇) are the acceleration components in the er and eθ directions,

respectively.

Note that for the angular component of the acceleration we have

rθ̈ + 2ṙθ̇ =
1

r

d

dt

(
r2θ̇
)
.

Definition 5.4 θ̇ is the rate of change of the angle θ, often called “angular speed” ω. So θ̇ = ω.

Funky stuff When we are in a rotating frame we pick up the two additional acceleration

components given by rθ̇2 and rθ̈ + 2ṙθ̇. These are called the centrifugal and coriolis terms

respectively. In such a rotating frame they play an identical role to forces and it was thinking

about this which helped Einstein to formulate his General Theory of Relativity. The Earth is

such a rotating frame. The resulting Coriolis Force acting on the atmosphere is a prime driver

for our weather systems.
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Example 1: A particle moves on a circle of (constant) radius R with a constant angular

acceleration α (i.e. θ̈ = α). If the particle starts from rest, show that after time t, (a) its

angular speed, ω, is given by ω = αt, and (b) the arc length covered is R
2 ωt.

Solution

ẋ = ṙer + rθ̇ eθ = Rθ̇eθ (since ṙ = 0)

ẍ = (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ = −Rθ̇2er +Rθ̈eθ.

(a) Angular acceleration

θ̈ = α

hence θ̇ = αt+A.

But A = 0 since θ̇(0) = 0 (that is, the particle starts from rest).

hence ω = θ̇ = αt .

(b)

θ =
1

2
αt2 (we can take θ(0) = 0)

∴ Rθ =
R

2
αt2

hence the arclength travelled = Rθ =
R

2
αt2 =

R

2
ωt.

2

Next we give an example to show how the fixed i, j frame and the moving er, eθ frame can be

used together.

Example 2:

A wheel of (constant) radius a and centre C rolls without slipping at a constant angular speed

ω along a horizontal plane which contains the origin O (which is the starting point of the rolling

motion). At t = 0 the spoke CP is vertically downwards, with the point P in contact with the

plane. Find the acceleration of the point P .

Solution Suppose that the wheel has rotated an angle θ. The no-slipping condition implies that

the arc length from O to P is given by a θ = aω t. If Q is a point a distance a vertically above
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the origin O then, after a time t, the position vector of P , namely x(t), is given by

x(t) =
−−→
OP =

−−→
OQ+

−−→
QC +

−−→
CP

= aj− a θi + aer.

Thus, the velocity of P is given by (using θ̇ = ω and the the fact that ȧ = 0)

v = ẋ = − aθ̇ i + aėr = − aωi + aθ̇eθ

= aω(eθ − i).

Note that as eθ = i the velocity of P is zero. This is the no-slip condition in action. The bottom

of a wheel has zero velocity, this is why wheels and tyres work.

Hence, the acceleration of P is given by,

a = ẍ = aωėθ = − aωθ̇er = − aω2er,

and so a acts only in the radial direction. 2

5.5 Some curves in polar coordinates (r, θ)

Having defined polar coordinates, it is interesting to look at some well-known curves in 2-D

expressed in terms of these. We will meet these again in the dynamics part of this course.
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Example 1 The curve given by r = l, l > 0, is a circle of radius l, centred on (0, 0).

Example 2 The curve given by

r =
l

1 + e cos(θ)
,

with e, l constants, arises frequently in celestial mechanics. It is a conic section and was discov-

ered by the Greek mathematician Appolonius about 3000 years ago. If l > 0, and 0 < e < 1, it

is an ellipse, with focus at the origin O. See the figure below.

Figure 6: An elliptical orbit with the origin O at the focus.

Since we need to know about elliptical orbits of planets later on, we give a derivation in terms

of Cartesian coordinates.

Derivation: l = r + e r cos(θ)︸ ︷︷ ︸
=x

∴ l − ex = r

∴ (l − ex)2 = r2 = x2 + y2

∴ (1− e2)x2 + 2lex+ y2 = l2

∴ (1− e2)
(
x+

le

1− e2
)2

+ y2 =
l2

1− e2
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∴

(
x+ le

l−e2

)2
(

l
1−e2

)2 +
y2(
l√

1− e2
)2 = 1.

This is the usual equation of an ellipse in Cartesian coordinates where,

x̂2

a2
+
ŷ2

b2
= 1,

x̂ = x+
le

1− e2 , ŷ = y,

a =
l

1− e2 , b =
l√

1− e2
.

Here, e is called the “eccentricity” and l is the “semi-latus rectum”. If e = 0 then we have a

circle. The ellipse is the orbit of a planet going around the Sun. This iss Kepler’s first law of

planetary motion and was one of the starting points of modern science. Later on we will prove

this result for an inverse square law of gravity.

Example 3

r =
l

1 + e cos θ
, e > 1,

is the equation of a hyperbola. This curve is the orbit of a fast moving comet passing by the

Sun, or of an Alpha particle passing by the nucleus of an atom. (This was discovered by Ernest

Rutherford in the early part of the 20th Century.)

The hyperbola has asymptotes which are the lines at the two angles for which

cos(θ) = −1

e
.

Hyperbolas play an important role in sending satellites to distant parts of the Solar system,

when they pass by planets using hyperbolic ’sling-shot’ orbits.

Example 4

r =
l

1 + cos(θ)
,

is the equation of a parabola. The parabola is the cross-sectional shape of a satellite TV dish

and also of a car headlight.

5.6 Kepler’s laws of motion

One of the greatest breakthroughs in the history of science came from the subject of Kinematics!

The ancients thought that the Sun and the planets went round the Earth. As the paths of these
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Figure 7: A hyperbolic orbit, with the origin O at the focus.

heavenly bodies take complicated paths when viewed from the Earth the original Ptolmeic view

of the solar system had planets moving on small circles (epicycles) on larger circles around the

Earth. This was a very complicated was of describing the motion. A dramatic simplification

(of the science of not of the philosophy) was then proposed by Copernicus who suggested that

instead to the planets and Sun going round the Earth, that instead the Earth and the planets

went around the Sun. The orbits of all of these would be circles with the Sun at the centre. This

caused a huge controversy as it no longer placed the Earth at the centre of the universe. Galileo

was famously put under house arrest for supporting the Copernican view of things. However

there still remained a problem. The Copernican view of the solar system did not agree very well

with the experimental measurements. In particular in the 16th century, the Danish astronomer

Tycho Brahe made detailed observations of the motion of the planets and showed that they did

not agree with the predications of the Copernican model. Brahe in fact advocated a different

model in which the planets went around the Sun, and the Sun then went around the Earth. The

problem was that Copernicus had thought that the planets had to go around the Sun in circles as

these were the ’perfect’ orbit. Fortunately there were other possible curves which were almost as

perfect. These were ellipses, which had be known about for at least 2000 years. Brahe’s student,
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Johannes Kepler (illustrated) analysed his data and realised that if he replaced circles by ellipses

Figure 8: Johannes Kepler

then everything worked perfectly, with brilliant fit between theory and observations. This was

a huge breakthrough in science and the dawn of the modern scientific revolution! In this sense

humanity was incredibly lucky in that the planets went around the Sun along curves which had

already been studied by mathematicians. It was a classic example of a mathematical discovery

having to wait 2000 years before it found an application. Politicians who fund mathematics

should take not of this. In 1609 (i.e. before the invention of calculus) Kepler published his

three laws which are valid for all planets in the solar system and which fitted the observations

perfectly. These laws then led Newton directly to the invention of calculus. The three laws of

the kinematics of a planet are as follows:

K1: Each planet moves in an ellipse with the Sun at a focus.

K2: Areas swept out by the radius vector from the Sun to a planet in equal times are equal.

K3: The square of the period of revolution T of a planet is proportional to the cube of the

semi-major axis,

T 2 = ca3, (5.12)

where the constant of proportionality c is independent of the planet in the Solar System.
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Figure 9: An illustration of K1 (with the planet going round the Sun which as the focus of

an ellipse) and K2 (which is that the area swept out between the red lines is the same as that

between the blue lines, in the same period of time).

Some implications of Kepler’s laws: We now look at some of the kinematic implications of

these laws. Later in the dynamics part of this course we will derive them directly from Newton’s

law of gravitation.

Take polar axes in the plane of the orbit with the Sun at the origin.

K1: As we have already seen, in polar coordinates an ellipse is given by

r =
l

1 + e cos(θ)
, (0 < e < 1), (5.13)

where the constants l and e take different values for different planets. Recall from before that

the semi-major axis, a, and the semi-minor axis, b, are given by

a =
l

1− e2 , b =
l√

1− e2
. (5.14)

K2: Suppose in a small time increment δt, the angle θ increases by an amount δθ (see the figure

following). Let A(t) be the area swept by the radius vector from time t0 to t. The area swept

out by the radius vector in time δt is

δA =
1

2
r2δθ + O

(
(δθ)2

)
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Figure 10: The period of a planet squared compared against the semi-major axis cubed for the

planets in the Solar System

.

(i.e., to first order with respect to small δθ, δA is approximated by
1

2
r2δθ ). Divide by δt and

let δt→ 0, to give
dA

dt
= lim

δt→0

δA

δt
= lim

δt→0

1

2
r2
δθ

δt
=

1

2
r2θ̇.

K2 implies that the rate of change of the swept out area
dA

dt
is constant, so dropping the factor

1
2 we have

r2θ̇ = h, a constant . (5.15)

Note that the constant h takes different values for different planets.

K3: First, note that the period of revolution T is the time taken to go from θ = 0 to θ = 2π,

i.e. for the swept out area to coincide with the area of the ellipse. Since, from the above,

dA

dt
=

1

2
h

is constant, by the fundamental theorem of calculus,

A(T )−A(0) =
1

2
hT = area of the ellipse.

The area of an ellipse with semi-axes a and b is known to equal πab.
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Figure 11: The implications of K2. The area swept out by the radius vector is (to leading order)

given by δA = r2δθ/2.

1

Hence

T =
2πab

h
.

1* As a non-examinable exercise, you can also evaluate the area A of an ellipse in polar coordinates, as follows:

A =

π∫
−π

1

2
r2dθ =

l2

2

π∫
−π

1

(1 + e cos θ)2
dθ

Now use the substitution s = tan θ/2, so dθ =
2ds

1 + s2
, and cos θ =

1− s2

1 + s2
, to obtain

A = l2
+∞∫
−∞

(1 + s2)ds

((1 + e) + (1− e)s2)2
= l2

π
2∫

−π
2

(
1 +

1 + e

1− e tan
2 φ

)
(1 + e)2 sec4 φ

(1 + e)
1
2

(1− e) 1
2

sec2 φ dφ

where we have used the further substitution (1−e)
1
2 s = (1+e)

1
2 tanφ to get the second integral. After simplifying

the integrand,

A =
l2

(1− e2) 3
2

π
2∫

−π
2

(
(1− e) cos2 φ+ (1 + e) sin2 φ

)
dφ =

πl2

(1− e2) 3
2

= π a b.

2
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Finally, using (5.14),

T 2 =
4π2a2b2

h2
=

4π2l4

h2(1− e2)3 =

(
4π2l

h2

)
a3. (5.16)

K3 states that T 2 = c a3, with the constant of proportionality c being independent of the planet.

Thus
4π2l

h2
is a constant, which is the same for all the planets. Therefore K3 implies that

µ :=
h2

l
, (5.17)

is independent of the particular planet under consideration.

In Chapter 8 we will show why this follows from Newton’s inverse square law of gravitation.
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6 Dynamics

In the last section we looked at how bodies move and how vector calculus allows us to study

this motion. In general such bodies move under the action of forces. It is understanding this

which allows us to predict their motions, and introduces us to the great subject of dynamics.

6.1 Forces and Newton’s Laws

We start our discussion of dynamics with some definitions and physical concepts.

(a) An inertial frame of reference (or coordinate system) is one which is fixed or is moving

with uniform velocity compared to a “universal” fixed frame of reference. We shall assume

that the sun (and sometimes the earth too) forms an inertial system. (This is a reasonable

assumption as long as speeds aren’t too large.) Newton’s Laws hold under the assumption

that all measurements or observations are made with respect to an inertial system.

(b) Any body (lump of matter) has associated with it a numerical value, called its mass. It

is an intrinsic property of the body, and is a measure of its resistance to change in its

motion (or a measure of its inertia). We’ll refer to all bodies whose size does not matter

in the considered context and which can therefore be regarded as points as particles, for

example, tennis balls, apples, satellites, planets....

(c) The linear momentum of a particle is defined to be the vector p = mv = mẋ, where m

is the mass. The linear momentum is a measure of how hard it is to stop the body.

(d) Forces cause particles to move (as experience suggests). Experimental evidence sug-

gests that there are fundamental and non-fundamental forces (see Feynmann, ‘Lectures on

Physics I’ for a physical discussion). Fundamental forces are gravitational (long range),

electromagnetic (long range), and nuclear (short range). Non-fundamental forces in-

clude molecular, elastic, and frictional forces. We will be mostly considering in this course

the gravitational and frictional forces.

Newton’s laws of motion:

In an inertial frame (which is thereby postulated to exist, but see Einstein’s General Theory of

Relativity for an extension of this idea):

N1: Any freely moving particle moves with uniform velocity.
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N2: A particle of mass m subject to a total force F undergoes an acceleration a given by

F = m ẍ = ma.

N3: Action and reaction are equal in magnitude and opposite in direction. So if F12 denotes

the force exerted by particle 2 on particle 1, and F21 denotes the force exerted by particle

1 on particle 2, then

F12 = −F21.

6.2 Examples of forces

There are many different types of force. Here is a list of the most common ones, which we will

all consider in this course.

1. Constant forces These are the simplest types of force. We have

F = C

for some constant vector C. An example of this (as we shall see) is the gravitational force

of the Earth on a particle close to the Earth’s surface.

2. Frictional and viscous forces These always act to oppose the motion of a particle and

generally take the form

F = −k(x, ẋ) ẋ.

If the force arises from having the particle in contact with a surface, then it is usually due

to friction (which can be a static or a dynamic force). If it arises from the motion of the

particle through a fluid (such as air or water) then this force is due to viscosity and is often

also called drag.

3. Central forces These are forces which act in the same direction as x. Examples of these

are the gravitational force of the Sun on the Earth, or the force of an atomic nucleus on

an electron.

6.3 Inverse square law forces

These type of forces are very common in three dimensional spaces. We consider a body at

position x1 acting on another body at position x2. The resulting force F between them is then
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given by

F = K
x1 − x2

‖x1 − x2‖3
. (6.1)

If one of the bodies if fixed at the origin (for example the Sun) then this is a central force acting

on the other body.

A very important example of such a force is given by Newton’s law ofGgravitation. In this case

we consider the two bodies to have mass m1 and m2. The resulting force is then

F = −Gm1m2
x1 − x2

‖x1 − x2‖3
, (6.2)

where G is the Gravitational Constant.

Equally if the two bodies are charged with charges e1 and e2 then the Coulomb electrostatic

force between them is

F = −ke1e2
x1 − x2

‖x1 − x2‖3
. (6.3)

where k is the Coulomb constant.

If r = ‖x1 − x2‖ then it follows from (6.3) that

‖F‖ =
|K|
r2

. (6.4)

For this reason, these forces are called inverse square-law forces. Newton derived his inverse

square law for Gravity by considering Kepler’s laws of motion. It took him 20 years and he had

to invent calculus to do it. However, we now know that inverse square laws arise very naturally

in three dimensional space. Very loosely speaking it is because the strength of the forca at the

centre has to be spread over a the surface of a sphere of radius r. This surface has area 4πr2.

So the force reduces by a factor of 1/r2 as we move away from the centre. This rather vague

statement will be proved in the second year course on Vectors and PDEs.

6.4 Particle motion in the neighbourhood of the Earth

Close to the surface of the Earth, the gravitational force becomes (close to) constant.

Consider a two-particle system with M (Earth) � m (particle, for example, a satellite). Then

we may regard the Earth as fixed and the equation of motion of the particle is

mẍ = F = − GMm

r3
x, r = ‖x‖.
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∴ ẍ = − GM
r3

x, ‖ẍ‖ =
GM

r2
.

Particle motion very close to the Earth

Assume now that the earth is a sphere of radius R, and that the particle is sufficiently close to

the surface of the Earth so we may take ‖x‖ = R. So, to a good approximation,

F = mẍ = − GMm

R3
x = − GMm

R2
x̂,

where x̂ =
x

‖x‖ =
x

R
, is the unit vector pointing ‘away’ from the centre of the earth. Introduce

the scalar g :=
GM

R2
, and the vector g := − gx̂.

Funky stuff Note that the mass of the particle m cancels out in this equation and that g is

independent of m. So the acceleration of a mass m in a gravitational field does not depend on

m. This was one of the starting points of Einstein’s General Theory of Relativity.

For a particle very close to the earth, the acceleration is given by

ẍ = g (‘free fall’ acceleration).

Definition 6.1 The weight of a particle close to the surface of the earth is defined to be F =

mg.
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Important Note: The above discussion regards the earth as a particle. This seems reasonable

for planetary motion (that is, when ‖x‖ � R). However, Newton showed that even near the

surface, the gravitational attraction is the same as if all Earth’s mass were concentrated at its

centre, assuming the Earth has a spherically symmetric mass distribution.
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7 Motion under a constant gravitational force:

projectiles, pendulums and friction

In this section we will use the Newton’s second law to derive the differential equations of motion

for projectiles, pendulums and motion under the action of friction. We first analyse the motion

of projectiles in a non-resisting medium in §7.1, and then we consider the more realistic case of

motion in a resisting medium in §7.2. We will then look at the rigid pendulum. Finally we will

look at problems with friction.

7.1 Motion of a projectile under gravity in non-resisting medium.

Consider the motion of a particle very close to the Earth, subject to the (constant) Earth’s

gravitational attraction mg and assuming no air resistance. From Newton’s Second law we have

mẍ = mg or ẍ = g. (7.1)

Thus

ẍ = g

We can solve (7.1) by integrating twice to give

x(t) = x0 + v0t+
1

2
gt2, (7.2)

where x0 = x(0), v0 = ẋ(0).

Example 1: Assume that at time t = 0, a particle (projectile) is launched from the surface of

the earth at an angle α and with speed v0. Find the horizontal distance travelled and the path

of the particle in (x, y) coordinates (ie. the trajectory).

Solution: To find solution to this problem we will follow general strategy which is applicable

to most of the problems from now on. This is a general approach to the great subject of

mathematical modelling. For the purposes of this course it will consist of the following five

steps

Step 1: Draw a careful diagram, showing the origin, the axes, the particle and the forces acting

on it, and any initial data that we have
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For this problem the particle has the position vector

x(t) = x(t) i + y(t) j.

The diagram of its motion then has the following form:

Step 2 Resolve the forces and apply Newton’s second law linking forces and accelerations.

Only the gravity force mg applies where g = −gj.
Newton’s second law them implies that the particle satisfies the Ordinary Differential Equation

(ODE) (7.1).

Step 3: Determine the Initial conditions, I.C.

As the particle starts from the origin we have x0 = 0.

Considering the diagram and using a bit of trigonometry we have

ẋ(0) = v0 = v0 cos(α) i + v0 sin(α) j.

Step 4 Solve the ODE together with the I.C.
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The solution is given by (7.2).

Step 5 Analyse the solution to answer the question and find the motion of the particle

For x(t) = x(t) i + y(t) j, from (7.2) we have, in components,

i component: x(t) = (v0 cos(α))t, (7.3)

and,

j component: y(t) = (v0 sin(α))t− 1

2
g t2. (7.4)

To eliminate t note that from (7.3), t =
x

v0 cos(α)
, so that,

y = v0 sin(α)
x

v0 cos(α)
− 1

2
g

x2

v20 cos2(α)
,

and so we have the important result

y = x tan(α)− g
2 v20 cos2(α)

x2.

(7.5)

This curve is a parabola in the (x, y) plane. This important result was discovered by Galileo in

the 16th Century.

To find the distance travelled, set y = 0. Thus, x = 0 (the starting point) or

x = X =
2v20 sin(α) cos(α)

g
=

v20 sin(2α)

g
.

Definition 7.1 X, the horizontal distance travelled, is called the range.

The maximum value for X is
v20
g

and this occurs when sin(2α) = 1, that is, α =
π

4
.

Example 2:

A rugby ball is kicked at an angle α to the horizontal from a point at ground level with a speed

v0. It is aimed at a goal which is a distance d away from the kicker. The height of the crossbar

on the goal is h.
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Figure 12: Jonny Wilkinson winning the 2003 Rugby World Cup for England with the drop goal

of all time.

(i) Find the angle α which maximises the ball’s height y when it gets to the goal

(ii) Show that the ball will clear the crossbar (and the player will score a goal) if

v20 > g
{

(d2 + h2)
1
2 + h

}
.

Solution:

Step 1 The diagram for this situation is given below.

Steps 2–4 These are the same as in the previous example.

91



Step 5 From (7.5), at x = d,

y(d) = d tan(α)− gd2

2 v20 cos2(α)
.

To find the maximum value for y(d), we seek α such that
dy

dα
(d) = 0. Therefore

dy

dα
= d sec2(α) − gd2

v20

sin(α)

cos3(α)
= 0.

Thus,

sec2(α)

(
d− gd2

v20
tan(α)

)
= 0,

which gives

tan(α) =
v20
gd
.

Therefore
1

cos2(α)
= tan2(α) + 1 =

v40
g2d2

+ 1.

So, from the expressions for y(d) and tan(α) etc,

ymax = d
v20
gd
− gd2

2v20

(
v40
g2d2

+ 1

)

=
v20
g
− v20

2g
− gd2

2v20

=
v20
2g
− gd2

2v20
.

(ii) The ball will clear the crossbar if and only if ymax > h . Now,

ymax > h

⇐⇒ v20
2g
− gd2

2v20
> h

⇐⇒ v40 − g2d2 > 2ghv20

⇐⇒ (v20 − gh)2 > g2(d2 + h2)

⇐⇒ v20 > gh+ g(d2 + h2)
1
2

or v20 < gh− g(d2 + h2)
1
2

Now the term on the right-hand side of the last inequality is negative, so the inequality is never

satisfied. Therefore

ymax > h ⇐⇒ v20 > gh+ g(d2 + h2)
1
2 .

2
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7.2 Motion of a projectile under gravity and air resistance.

In reality, when particles move through the air a resistive force, f say, is exerted on the particle.

This is often called the drag on the particle.

f

m

t

Experiments suggest that provided the particle is not spinning then this force acts in a direction

opposite to its velocity, i.e.

f = −f(v)v

where v = ‖v‖, v = ẋ, and where f(v) is some positive function. For v not very large f(v) is

found to be

f(v) = µ

where µ > 0 is a physical constant called the drag coefficient. Thus

f = −µv = −µẋ, (7.6)

and N2 implies that mẍ = −µẋ +mg. Rearranging we obtain

ẍ + kẋ = g, k = µ/m, (7.7)

a second order linear vector ODE with initial conditions:

x(0) = x0, ẋ(0) = v0.

Note that k reduces as m increases. This means that large bodies, such as Elephants, are much

less affected by air resistance than small bodies such as mice. This leads to the conclusion that

large bodies fall faster than smaller ones. (Although in a vacuum all bodies fall at exactly the

same rate.)

If we set v = ẋ then we have the vector ODE

v̇ + kv = g.
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You should be able to solve this first order ODE using the techniques that you learned last

semester. To do this you look at the separate ODEs for the different components of the solution,

and then using an integrating factor to solve each ODE in turn. If you do this you will get:

v =
g

k
+

(
v0 −

1

k
g

)
e−kt. (7.8)

Now integrate this equation to get

x(t) = x0 + v0
1

k

(
1− e−kt

)
+ g

1

k2

(
e−kt − 1 + kt

)
. (7.9)

For a comparison, the “no air resistance” case which we studied in §7.1 has solution:

x(t) = x0 + v0t+
1

2
gt2. (7.10)

** Challenge. Show that (7.9) reduces to (7.10) as k → 0.

Example: At the time t = 0, a golf ball is launched from the surface of the Earth at an angle

α and speed v0. Assuming air resistance as described above, describe the trajectory of the ball.

a

e
g

d

fv

b

h

Solution:

Step 1 The situation is illustrated below.

Syeps 2–4 are the same as before.

Step 5 As we have shown, the ODE (7.7) holds and has solution (7.9). Using (7.9), in compo-

nents we have

x(t) =
(1− e−kt)

k
v0 cos(α) (7.11)

y(t) =
(1− e−kt)

k
v0 sin(α) − g

k2

(
e−kt − 1 + kt

)
(7.12)

To find the trajectory in terms of y and x we eliminate t. From (7.11)

1− e−kt =
kx

v0 cos(α)
,
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and so

kt = − ln

(
1− kx

v0 cos(α)

)
.

Hence the trajectory is from (7.12)

y = x tan(α) +
g

k2

[
kx

v0 cos(α)
+ ln

(
1− kx

v0 cos(α)

)]
. (7.13)

This can be compared with the trajectory with no resistance (7.5) given by

y = x tan(α) − gx2

2v20 cos2(α)
.

The shape of this trajectory is illustrated below. Anyone who has watched a golf ball in flight

will recognise its shape.

Implications:

1) It follows from from (7.11), that as 0 < e−kt → 0 as t→∞ then

x(t) <
v0 cos(α)

k
and x(t) −→ v0 cos(α)

k
as t→∞.

2) From (7.12) y(t) −→ −∞, as t→∞.

3) From (7.8) v(t) −→ 1

k
g as t −→ ∞. Hence the velocity tends to a constant. This is

called the terminal velocity.
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7.3 The simple pendulum

We will now look at the problem of a swinging pendulum. This will comprise of a particle of

mass m is fixed to the end of either a light rod (the rigid pendulum) or an inextensible light

string (the non-rigid pendulum). In both cases the rod and the string are of length l. The

other end is pivoted at the origin O. The rod/string swings in a vertical plane, so the motion

is in two dimensional. We will assume that the angle that the rod/string makes to the vertical

is θ. Physically, the tension in the rod/string exerts a force T on the particle acting towards

the origin. In the case of the rigid rod this tension can be either positive or negative and the

particle is always constrained to move at the end of the rod. In the case of a string, it has to

be positive for the strong to remain taut. If it drops to zero then the string goes slack and the

system changes, with the particle moving freely in space

Example: A rigid pendulum comprises a mass at the end of a light rod of length l. The rod is

freely pivoted at the origin and makes an angle θ with the vertical. At the time t = 0, we have

θ(0) = 0, and the horizontal speed is l v0.

(1) Prove that (in the absence of friction and air resistance) the angle θ satisfies the nonlinear

second order ODE

θ̈ +
g

l
sin(θ) = 0.

(Do not attempt to solve this ODE).

(2) If the energy E of the pendulum is defined by

E =
θ̇2

2
− g

l
cos(θ).

Prove that E is constant. Hence show that

θ̇2 = v20 −
2g

l
(1− cos(θ)).

(3) Calculate the tension T in the rod.

(4) Hence describe the possible motions of the rigid pendulum.

Solution We take the five point approach to solving this problem

Step 1: Draw a picture.
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We take the origin to be the fixed end of the rod. In polar coordinates, with the unit vectors,

er, eθ we have from before that the position vector is x = rer, The position, velocity and

acceleration are then given by

x = r er, and,

ẋ = ṙ er + rθ̇ eθ,

ẍ = (r̈ − rθ̇2) er + (rθ̈ + 2ṙθ̇) eθ.

But the rod is rigid and has constant length l. It follows that r = l, ṙ = r̈ = 0. Thus

ẍ = −l θ̇2 er + l θ̈ eθ.

Step 2: Resolve all of the forces.

There are two forces acting on the mass. The tension T in the rod, which acts along the rod

in the direction er, and the gravitational force which acts in the vertical direction −k. It is

convenient to resolve all of these forces in the directions er and eθ. This gives the following
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(which you should check)

mg = mg cos(θ) er −mg sin(θ) eθ,

T = −T er.

Hence, if we apply Newton’ Second Law, comparing forces and mass times accelerations, we

have:

mẍ = mg + T,

or,

−m l θ̇2 er +m l θ̈ eθ = (m g cos(θ)− T ) er −m g sin(θ) eθ. (7.14)

Now consider the components in the direction of eθ we have the second order differential equation

m l θ̈ = −m g sin(θ).

Hence, θ satisfies the second order ODE

l θ̈ + g sin(θ) = 0.

as required. Warning this equation is very (very) hard to solve analytically.

If we next resolve in the direction of er we find that the tension T satisfies the equation

m g cos(θ)− T = −m l θ̇2. (7.15)

To find T we must calculate θ̇, which we do next.

Step 3: Find the initial conditions.

These are given by: θ(0) = 0 and the horizontal speed at t = 0 is l v0. Since, at t = 0, r = l, a

constant, then ṙ(0) = 0. So

ẋ = ṙ er︸︷︷︸
=0

+rθ̇ eθ = lθ̇ eθ

⇒ l θ̇(0) = l v0 (setting t = 0).

⇒ θ̇(0) = v0.

Step 4: Integrate the motion to calculate the energy E and hence find the tension T .
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The equation (7.15) is a nonlinear ODE for θ(t). We cannot solve this ODE in general (honest,

I did warn you) BUT we can find a first integral. In fact this is important as it allows us to find

the Energy of the whole system and then the tension in the rod.

To do this we multiply all terms in the expression (7.15) by θ̇ to give

θ̇θ̈ +
g

l
sin(θ)θ̇ = 0. (7.16)

Next we use the two results that

d

dt
θ̇2 = 2θ̇θ̈ and

d

dt
cos(θ) = − sin(θ)θ̇.

Hence we can integrate (7.16) to give

E =
1

2
θ̇2 − g

l
cos(θ), (7.17)

for some constant, E.

E is the energy of the system, which is conserved during the motion.

Setting t = 0 in (7.17) and using the fact that θ̇(0) = v0 (from Step 3), we have

C =
v20
2
− g

l

Hence

θ̇2 = v20 −
2g

l
(1− cos(θ)) . (7.18)

This is the result in (2).

It follows that θ satisfies the first order differential equation

dθ

dt
=

√
v20 −

2g

l
(1− cos(θ)).

This ODE cannot be solved analytically (without using Elliptic Functions), but could be solved

numerically using techniques discussed in later Units. However, we can obtain quite a bit of

information about the solution with further analysis.

Finding the tension. Recall from (7.15) that the tension T is given by

T = mg cos(θ) +mlθ̇2.

99



Thus, using (7.18), we have that the tension is explicitly given by

T = m l v20 +m g (3 cos(θ)− 2) . (7.19)

Step 5: Find the resulting motion.

We notice that as θ increases from zero, cos(θ) decreases and so

(a) T decreases (from (7.19)), and

(b) θ̇ decreases (from (7.18)), so the pendulum slows down.

In fact, from (7.18), θ̇2 = 0 (ie. zero speed) ⇐⇒

v20 =
2g

l
(1− cos(θ)) ,

or,

cos(θ) = 1− lv20
2g

=: P, say.

If −1 ≤ P ≤ 1 then there is a critical angle θ1 where θ̇1 = 0. At this angle the pendulum comes

momentarily to rest. The critical angle is given by

θ1 = cos−1(P ).

Now we can work out the possible types of motion.

Case 1. We first, assume that v20 < V 2 ≡ 4g
l .

In this case, P > −1 and so θ1 < π. Thus θ̇ = 0 occurs before θ = π. At this point we have

(from the underlying differential equation)

θ̈ = −g
l

sin(θ1) < 0.

Hence, θ reaches a maximum value at θ = θ1 and then decreases. The pendulum swings back to

the origin, where now (from considering the energy) θ̇ = −v0 (Prove this). It continues swinging

until θ = −θ1. When is momentarily comes to rest again, before swinging back. Thus the

pendulum exhibits periodic motion.

Case 2. Now consider the case v20 = V 2.

In this case θ1 = π and we have θ̇ = θ̈ = π. The pendulum eventually (in fact it takes an infinite

time!) comes to rest at the vertically upright position with θ = π. This is in fact unstable (you

can test this by trying to balance a pencil on its end).
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Case 3. Finally consider the case v20 > V 2.

In this case there is no value of θ for which θ̇ = 0. In this case the pendulum completes whole

revolutions and continues to swing like this for ever, with θ constantly increasing with time.

d

c

b

a

e

To summarise. The rigid pendulum has

(a) periodic oscillations if v20 < 4g/l ⇔ P > −1, and

(b) full revolutions if v20 > 4g/l ⇔ P < −1.

The borderline case v20 = 4g/l corresponds to a bifurcation: which is a switch between the two

qualitatively different regimes as v0 is varied.

7.4 Small oscillations

7.4.1 Oscillations when there is no air resistance

Let v0 be small, we expect that a small initial velocity will lead to small oscillations. More

precisely, we assume:
v20l

2g
� 1.

a
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Then we are obviously in the case
v20l

2g
< 1 in the previous section. Now

|θ(t)| ≤ θ1 = cos−1 P

= cos−1
(

1− v20
2gl

)
� 1

⇒ sin(θ) = θ − θ3

6
+ · · · ≈ θ, to a good approximation.

Then the equation θ̈ +
g

l
sin(θ) = 0 is approximated by the linear second order ODE

θ̈ +
g

l
θ = 0

⇔ θ̈ + ω2θ = 0, ω :=
(g
l

) 1
2
,

which gives rise to simple harmonic motion. in fact it has the exact solution, which satisfies

the I.C given by

θ(t) = v0

√
l

g
sin

(√
g

l
t

)
.

Exercise: Check this

The period T of the pendulum with small oscillations is then given by

T = 2π

√
l

g
.

NOTE 1 that T is independent of v0 if v0 is small. This result was discovered by Galileo. As

the size of the oscillations increases so does T , but slowly.

NOTE2 In SI Units g ≈ π2 to a very good approximation. Thus we have the very good

approximation

T ≈ 2
√
l.

Hence a pendulum which is one metre long, will have a half swing (from side to side) whihc is

almost exactly one second. As far as I know this is a coiincidence.

7.4.2 Small oscillations with air resistance

This is called the damped pendulum equation. If we include air resistance this will always act

in an opposite direction to that of motion i.e. in the direction −eθ. If we set the air resistance

as −2klθ̇eθ and resolve in the direction eθ then the resulting ODE for the mass in the case of

small oscillations is given by

θ̈ + 2k θ̇ +
g

l
θ = 0.
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We supoose that initially we start the pendulum moving from a state of rest so that:

θ = θ0 and that θ̇ = 0.

We solve this ODE by posing a solution of the form

θ = eλt

and substituting into the ODE. This leads to the following quadratic (characteristic) equation

for θ

λ2 + 2kλ+
g

l
= 0.

Assuming that k is small, in particular that k2 < g/l, this quadratic equation has the complex

roots

λ± = −k ± i
√
g/l − k2 ≡ −k ± iω,

where

ω2 = g/l − k2.

Thus the general solution to the damped pendulum equation is:

θ(t) = e−kt [A cos(ωt) +B sin(ωt)] .

Here A and B are constants.

To find A and B we need to make use of the initial conditions. It follows immediately that

θ0 = θ(0) = A.

Similarly (with a bit more work)

0 = θ̇(0) = −kA+ ωB.

Thus

A = θ0 and B =
kθ0
ω
.

The resulting motion is illustrated below with k = 0.5, ω = 3 and θ0 = 1. It takes the form of

oscillations which gradually damp to zero. You can try this at home if you make your self a

simple pendulum using a piece of string and a weight of some sort.
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7.5 * Optional and non-examinable. A mass on a string eg. a lion

If the mass is on a string rather than a rigid rod, then the motion is exactly the same provided

that the string remains taught i.e. if the tension T > 0. This arises provided that

T = m l v20 +m g (3 cos(θ)− 2) > 0.

It is clear that T decreases as θ increases. If v0 < V then at θ = θ1 we have cos(θ1) = 1− lv20/2g,

thus after some manipulation we have

T (θ1) = mg

(
1− v20l

2g

)
.

There are then three cases

1. v20 < 2g/l. In this case the string remains taut during the motion and the system behaves

like the rigid pendulum.

2. 2g/l < v20 < 5g/l. In this case the string goes slack at some angle θ2 < θ1.

3. v20 > 5g/l. The string never comes to rest and the tension T is always positive. The mass

swirls around the pivot on the end of a taut string (Think of the lion here).
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In Case 2, at the point when θ = θ2 where

m l v20 +m g (3 cos(θ2)− 2) ,

the mass will move off as a free projectile.

The limit of v20 = 5g/l comes the expression

T = m l v20 +m g (3 cos(θ)− 2) > m l v20 − 5 m g

so that T > 0 for all θ in this case, with the minimum value of T arising when θ = π.

7.6 ** Very optional and non-examinable. The chaotic double pendulum

The double pendulum comprises two rigid pendulums coupled together through a smooth joint

with respective masses m1,2 lengths l1,2 and angles θ1,2 to the vertical. This is illustrated below.

Figure 13: A schematic of the double pendulum.

The differential equations for the double pendulum, are given (in the absence of friction) by

(m1 +m2)l1θ̈1 +m2l2θ̈2 cos(θ1 − θ2) +m2l2θ̇2
2

sin(θ1 − θ2) + g(m1 +m2) sin(θ1) = 0,

m2l2θ̈2 +m2l1θ̈1 cos(θ1 − θ2)−m2l1θ̇
2
1 sin(θ1 − θ2) +m2g sin(θ2) = 0.

By taking θ1 and θ2 to be small, we can show that there are two distinct types of periodic

oscillation with either θ1 and θ2 in phase, or with θ1 and θ2 out of phase.

If, for example (as in the lectures) we take m1 = 2m2 = 2 and l1 = l2 = 1, then for larger

values of θ1 and θ2 chaotic motion is possible. This is very complex and apparantly random
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Figure 14: Chaotic motion of the double pendulum. In this figure a light is shone from the

bottom of the bottom part of the pendulum.

motion. We illustrate the chaotic motion in Figure 14. Chaotic motion cannot be random as

it is described by differential equations, but it certainly appears to be. You can check this by

solving the above equations using Matlab. If you go onto the Moodle site you will find much

more information about the double pendulum. It shows how complex the motion of even a

simple mechanical system can be.

7.7 Motion along surfaces with friction
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In this sub-section we will consider that most mysterious of all forces, namely friction. Friction

is the force that arises when two bodies are in contact. It a weird force because it can take many

differ values when the two objects are stationary with respect to each other (static friction), and

a different value when they are moving relative to each other (dynamic friction). Friction is an

example of is what is called an emergent prpoerty, as we see, on the large scale, what emerges

from the interaction of a lot of things on a small scale. It is vital to understand friction because

much of our technology relies on it in some way. An example of relevance to all of us is the

technology behind shoes which are designed not to slip on wet ground.

Consider a particle sliding on a surface S and acted upon by gravity, so that motion is essentially

in 2D. The surface exerts a force on the particle which has two components:

1. A normal reaction, R which is orthogonal to the surface, so R = Rn, where n is

the normal to the surface and R ≥ 0 on physical grounds. This force acts to prevent

the particle moving through the surface (and is a function of the electronic bonds in the

surface matertial).

2. The tangential component is the dynamic frictional force, f , which acts in the direction

opposite to the direction of motion.

Experiments show that to a good approximation, that whilst the particle is moving we have:

f = µR (7.20)

where f = ‖f‖, R = ‖R‖. The constant µ ≥ 0 is the coefficient of (dynamic) friction and is a

constant.

If the body is at rest relative to a surface, and a force F is applied to it, then the frictional force

will oppose its motion. The maximum force F that can be applied until the particle moves is

given by

F = µSR, (7.21)

The resistance to the applied force F is called the static friction and this can take any value

between 0 and µSR. Weird! What is even wierder is that in most cases µS > µ. What we see

is that if an increasing force F (t) is applied to the particle then it stays at rest until F = µSR.

It then starts to slide, and at this point the friction force decreases, so that the force on the

particle increases and it accelerates. Try this for your self by pushing an object with your finger.
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Notice that (7.21) only specifies the magnitude f of the static friction force f . Its direction is

such that maintains the particle’s static position at the surface. In most physical models of

friction, the coefficient of static friction µs in (7.21) is larger than the coefficient of the dynamic

friction µ in (7.20). The two equations (7.20) and (7.21) constitute Coulomb’s Law of Friction,

due to C.A. Coulomb (1736 - 1806).

Example: A brick of mass m slides along a horizontal plane. At time t = 0 its speed is v0. Let

µ be the coefficient of dynamic friction. Show that the particle comes to rest at time T =
v0
gµ

.

Solution We find the solution by using the familiar 5-point plan

Step 1: (Draw a diagram showing the forces and the motion)

The position vector is x = xi, and the velocity v = vi.

Step 2: (Resolve the forces and apply Newton’ s second law)

The forces acting on the brick are: the normal reaction R = R j, gravity mg = −mg j and

dynamic friction f = −f i. So, from Newton’s Second Law:

mẍ = F = R + f + mg,
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or

mẍ i = R j− f i−mg j. (7.22)

Step 3: (I.C.)

These are x(0) = x(0) i = 0, so x(0) = 0. Also ẋ(0) = ẋ(0) i = v0i, so ẋ(0) = v0.

Step 4: (Solve the system arising from applying Newton’s Second Law)

(i) First, equate the y-components of (7.22)), to give the reaction via

0 = R−mg so that we have R = mg.

(ii) Next, resolve in the x-direction to give

mẍ = −f = −µR (using Coulomb’s Law)

Hence, the motion is described by

ẍ(t) = −µg. (7.23)

With the initial condition ẋ(0) = v0, we can integrate (7.23) to get

ẋ(t) = −µgt+ v0.

If the particle comes to rest at t = T , then ẋ(T ) = 0. Hence 0 = −µgT + v0, or T =
v0
µg

. 2

At this point the friction force immediately drops to zero and the brick remains at rest. Isn’t

friction fun! You too can be a tribologist. .
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8 Motion under Central Forces.

8.1 Central forces

A central force is a generalisation of the gravitational force which we considered in Chapter 6.

In this Chapter we will consider the types of motion that we are likely to see under a central

force. The most commonly encountered such motion is a periodic elliptical orbit (as described

by Kepler’s laws of motion), however we can also see motion along a hyperbola and motion in a

straight line. Indeed one of the great breakthroughs in mechanics (usually attributed to Newton,

although others such as Hooke and Halley can claim credit for it) was realising that the same

force which pulled objects down to the Earth in what seemed to be straight lines when dropped,

could also produce elliptical orbits when looking at planets going around the Sun. It is essential

to study central forces if you want to be a rocket scientist (see Moodle for several ways to be a

rocket scientist).

Consider a particle of mass m at P with nonzero position vector x =
−−→
OP relative to the origin

at O. (For planetary motion we will assume that O is the location of the Sun.)

Figure 15: An attracting central force

Definition 8.1 F(x) is a central force if it is always directed towards (or away from) O, and

its magnitude depends only on the distance r = ‖x‖ = ‖−−→OP‖.
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All central forces can be written in the form

F(x) = f(r) x̂ =
f(r)

r
x,

where x̂ = x/r is a unit vector in the direction of x, and f(r) a scalar function.

The central force is attractive towards O if f(r) < 0, or repulsive away from O if f(r) > 0.

Example 1: If a particle of mass m is in orbit about a planet of mass M with its centre at O,

then gravitational force between them is an attractive central force with

f(r) = − µm
r2

, µ = GM.

Example 2:. If a mass at point P is on the end of a spring which is fastened at one end to

O and at the other end to P (think of P being a bungee jumper at the end of a bungee) then

there is a central elastic force between O and P . This is given by Hooke’s law and we have.

f(r) = −kr.

The elastic force is an example of a derived force and is a result of the combined molectular

forces in the spring. Robert Hooke was a contemporary of Newton and (like me) was a Gresham

Professor of Geometry.

Example 3: The electrostatic force between two charged particles at points P1 and P2 has

f(r) =
K q1 mq2

r2

where q1 and q2 are the electric charges of the points at P1 and P2, and K > 0 is a physical

constant. In this force particles which have the same charge repel (which is quite unlike gravity),

and particles which have opposite charges attract. The above is called Coulomb’s law of elec-

trostatics, and was discovered by the same Coulomb as for the friction law. This force is much

stronger than the gravitational force, and it is the force which keeps molecules (and therefore

our bodies) together. It is one of the three fundamental forces of nature.

8.2 Motion under the action of central forces

Applying Newton’s Second law, the equation of motion of the point at P is of the form:

mẍ = F(x) =
f(r)

r
x. (8.1)
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Notation: In this section we assume that the particle has mass m = 1, and so from now on the

term m won’t explicitly enter into the analysis. (An alternative way of thinking of this is that

we assume the central force is a force “per unit mass”. There is no loss in generality, since in

our analysis f(r) is arbitrary and so can be replaced by mf(r) to this effect.) So

ẍ =
f(r)

r
x. (8.2)

8.3 Properties of the motion:

Property 1: Equation (8.2) describes motion in a plane.

Proof: This is a consequence of conservation of the angular momentum h = x× ẋ in a central

force. This follows because

ḣ =
d

dt
(x× ẋ) = ẋ× ẋ + x× ẍ = x× ẍ.

But

x× ẍ = x× f(r)

r
x = 0.

Thus

h is a constant. (8.3)

If we take the dot product of (8.3) with x then

x.h = x.x× ẋ = [x,x, ẋ] = 0

∴ x.h = 0.

If h 6= 0 this is the equation of plane, Π say, perpendicular to h and containing the origin. Then

x(t) ∈ Π, for all t i.e. the motion is in the plane Π.

In the special case of h = 0, (8.3) x× ẋ = 0, and so ẋ is parallel to x, and we have motion along

a line (and hence in any plane containing this line).

NOTE In the case of the Solar system all of the planets orbit in a plane. This plane is called

the ecliptic

Motion in the plane

Since motion under the action of a central force is in a plane (the orbital plane Π) it is 2-

Dimensional, and we can therefor we can use polar coordinates in the plane to describe the way
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that it moves. With k, the unit vector in the h direction, choose the polar coordinates on Π so

that er, eθ, k form a right-handed system. Hence (8.3) can be written as

x× ẋ = hk, h =: ‖h‖.

Crucially a central force only acts in the direction of er.

There is NO component of the force in the direction of eθ

Hence there is no acceleration in the direction of eθ.

Property 2: For motion under any central force, the quantity h = r2θ̇ = constant.

First, recall that in general

x = rer

ẋ = ṙer + rθ̇eθ

ẍ =
(
r̈ − rθ̇2

)
er +

(
rθ̈ + 2ṙθ̇

)
eθ.

But from the above, we have that there is no acceleration in the eθ direction. It follows that

rθ̈ + 2ṙθ̇ = 0.
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But, a bit of calculus shows us that

rθ̈ + 2ṙθ̇ =
1

r

d

dt

(
r2θ̇
)
.

Hence we have
d

dt

(
r2θ̇
)

= 0.

It follows that

r2θ̇ = h (8.4)

where h (the scalar angular momentum) is a constant.

As we have seen earlier, this is precisely K2 (Kepler’s equal areas law).

We can now see that this law is true for any central force, not only for gravitation.

Property 3 : The orbit equation.

With ẍ =
(
r̈ − rθ̇2

)
er and

f(r)

r
x = f(r)er, then ẍ =

f(r)

r
x, implies

r̈ − rθ̇2 = f(r),

or, since r2θ̇ = h, we have,

r̈ − h2

r3
= f(r) . (8.5)

This is a 2nd order nonlinear ODE for r(t) which we can combine with the first order ODE for

θ in (8.4) to find the orbit (r(t), θ(t)) . In general we cannot solve this, except for special forms

of the function f(r). Fortunately the inverse square law force is one of these special cases.

Property 4: Conservation of Energy

If we multiply the orbit equation (8.5) by ṙ we have

ṙr̈ − h2ṙ

r3
= f(r)ṙ.

Now
d

dt

(
ṙ2
)

= 2ṙr̈,
d

dt

(
1

r2

)
= −2

ṙ

r3
and

d

dt

∫
f(r) dt = f(r)ṙ.
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Hence, we can integrate (8.5) once to obtain

1

2
ṙ2 +

h2

2r2
−
∫
f(r) dr = E, (8.6)

for some constant E. This can be regarded as an equation describing the conservation of the

energy E.

8.4 Finding the orbit

Now we return to the question of finding the orbit (= the trajectory of the particle). We seek

to eliminate t in the differential equations (8.4,8.5) to obtain r = r(θ). To do this we make the

following change of variable:

r =
1

u
, u = u(θ),

which makes sense only if

θ̇ 6= 0,

since otherwise θ is constant. Now,

ṙ =
d

dt

(
u−1

)
=

d

dθ

(
u−1

) dθ
dt

= − 1

u2
du

dθ
θ̇ = − du

dθ
r2θ̇︸︷︷︸
=h

= −hdu
dθ
.

So, again using θ̇ =
h

r2
= hu2,

r̈ =
d

dt
ṙ = θ̇

dṙ

dθ
= − θ̇ h d

dθ

(
du

dθ

)
= −h2u2 d

2u

dθ2
.

Hence (8.5) becomes

−h2u2 d
2u

dθ2
− h2u3 = f(u−1),

or,
d2u

dθ2
+ u = − f(u−1)

h2u2
, assuming (h 6= 0). (8.7)

Definition 8.2 Equation (8.7) is called the orbit equation. It holds provided θ̇ 6= 0 (or, equiv-

alently, h 6= 0).
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8.5 Orbits under an inverse square law

Usually, (8.7) will be nonlinear and essentially impossible to solve, but in the case of an inverse

square law force it reduces to a linear equation which we can solve easily. This is a major

fluke. We didn’t deserve to be so lucky!! From this we can derive Kepler’s three laws

from first principles.

Consider, for example, the Gravitational inverse square law force

f(r) = − µ

r2
, so that f(u−1) = −µu2.

Equation (8.7) then becomes
d2u

dθ2
+ u =

µ

h2
. (8.8)

This is a 2nd order linear (yes linear!!!) ODE with exact (yes exact!!!) solution (student exercise)

u(θ) = A cos(θ) +B sin(θ) +
µ

h2
,

where A,B are arbitrary constants. Funky man! Thus

1

r
= u = C cos(θ − θ0) +

µ

h2
, (8.9)

where C, θ0 are alternative arbitrary constants. (We can choose C ≥ 0, with A = C cos(θ0), B =

C sin(θ0).) We are also free to choose the line θ = 0 (that is, the x-axis), so without loss of

generality, we take θ0 = 0. Also, we can choose

C =
µe

h2
, e > 0,

so that e = Ch2/µ. Therefore,
h2/µ

r
= 1 + e cos θ

thus we have

r(θ) =
l

1 + e cos θ
, with l =

h2

µ
. (8.10)

Take a look at this. Does it remind you of something? We looked at this equation in Section 5.

It is exactly the polar equation of a conic section. Another gigantic fluke.

If e = 0 the orbit is a circle, which we look at next, If 0 < e < 1 the orbit is an ellipse. If e > 1

the orbit is a hyperbola. Only the ellipse (and the circle) lead to bounded orbits in which the

planet goes round the Sun periodically.
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Thus we have proven Kepler’s first law for an inverse square law central force.

Yay!!. Aren’t we clever!

NOTE Newton was the first person to prove this (with a bit of help from Halley and Hooke).

In his book the Principia he gave a purely geometrical proof (even though he has used calculus

to do it originally).

Having proven Kepler’s First and Second laws from first principles, it remains for us to prove

Kepler’s Third law.

We saw in Chapter 5 equation (5.16) that if T is the period of the planet motion and a is the

size of the semi-major axis, h is the angular momentum and l is as above then

T 2 =

(
4π2l

h2

)
a3.

But from (8.10) we now know that l = h2/µ. Substituting we have

T 2 =
4π2

µ
a3. (8.11)

Thus T 2 is exactly proportional to a3 and the constant of proportionality is 4π2/µ. Hence we

have proved Kepler’s Third Law. Yay again!

NOTE In astronomical units based around the Earth, T = 1 (year) and a = 1. In these units

we see that µ = 4π2.

For the example of motion under an inverse cube law which does not obey Keplers Third Law,

see example Sheet 10.

8.6 Circular orbits

For motion under a central force it is possible to have circular orbits. For a particle P to be in

a circular orbit about a point at O (such as the centre of the Earth), we must have r ≡ a, a

constant, and this simplifies the equations considerably.

Recall that the basic equations of motion under a central force are (8.4) and (8.5):

r2θ̇ = h, r̈ − h2

r3
= f(r),
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with h and f(r) given. If r = a =constant, then ṙ = r̈ = 0. Hence

θ̇ =
h

a2
= a constant, ω say,

and,

h2 + a3f(a) = 0, h = a2ω. (8.12)

This implies

aω2 + f(a) = 0, (8.13)

which can only have a solution if f(a) < 0 (i.e. in the case of attraction). In this case,

ω =

(− f(a)

a

)1/2

,

i.e. a circular orbit does exist for any a with f(a) < 0 with the above given ω.

For example, for gravity

f(r) = −µ/r2, µ > 0

there exists a unique circular orbit for any a with

θ̇ ≡ ω =
( µ
a3

)1/2
.

The velocity v of a particle on this orbit is given by

v = aθ̇ =
(µ
a

)1/2
(8.14)
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Example: A Low Earth Orbit Suppose that a satellite orbits close to the Earth so that a is

close to R = 6371 km the radius of the Earth. From the previous study of the gravitational force,

we know that if M is the mass of the Earth, G is the Gravitational constant, and g = 9.81 ms−2

is the acceleration due to gravity at the Earth’s surface, then

µ = GM and g =
µ

R2
so that µ = gR2.

Substituting a = R into (8.14) we have

v =
√
gR = 7905 ms−1 = 7.9 kms−1.

Such a satellite takes 1.4 hours to orbit the Earth. Typically to achieve this orbit, a rocket will

launch vertically from the Earth and then turn over to insert the satellite into the orbit. The

launch will make use of the boost of 0.5 kms−1 given by the Earth’s rotation. See Figure 8.6.

The very high orbital speed shows you why space craft on reentry into the Earth’s atmosphere

have to be specially protected to avoid burning up.

8.7 Escape velocity

We will now study the exmaple of a rocket (of unit mass m = 1) which takes off vertically (ie.

radially in the direction er from the surface of a planet (e.g. the Earth) of radius R with speed

v0. Thus, ẋ(0) = v0er, and from ẋ = ṙer + rθ̇eθ the initial conditions are:

r = R, ṙ = v0, θ = 0, θ̇ = 0, at t = 0.
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For the case of Newtonian gravitation,

ẍ =
f(r)

r
x = − µ

r3
x

with, as before

f(r) = − µ

r2
, µ = GM = gR2.

In polar coordinates r2θ̇ = h, and the orbit equation (8.5) becomes

r̈ − h2

r3
= − µ

r2
. (8.15)

The initial conditions give:

h = r2(0) θ̇(0) = R2 × 0 = 0,

and so r2(t)θ̇(t) = 0. Therefore, for r 6= 0,

θ(t) = constant = 0,
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since we take θ(0) = 0. Hence motion is always in the radial direction. Since h = 0, (8.15) gives,

the following differential equation for r.

r̈ = − µ

r2
.

We have already seen this equation. To solve it, we multiply both sides by ṙ and integrate. This

gives the energy equation
ṙ2

2
=
µ

r
+ E,

where the energy E is a constant. From the initial conditions

E =
1

2
v20 −

µ

R
,

so, if v = ṙ we have

v2(r) =
2µ

r
+ v20 −

2µ

R
. (8.16)

Note that v(r) decreases with r.

We no consider the following two cases:

(i) v20 <
2µ

R
.

Equation (8.16) is

0 ≤ v2(r) =
2µ

r︸︷︷︸
→0 as r→∞

+ v20 −
2µ

R︸ ︷︷ ︸
<0

.

This implies

r ≤ 2µR

2µ− v20R
=: rmax,

with v2 = 0 at r = rmax and v2 > 0 for r < rmax.

Thus r cannot exceed rmax, since then v2 would be negative. Thus, the rocket travels out

to a maximum distance of r = rmax and then returns to the planet. It cannot therefore

escape the planet’s gravitational attraction.

(ii) v20 ≥
2µ

R
.

In this case

v2 =
2µ

r︸︷︷︸
>0

+ v20 −
2µ

R︸ ︷︷ ︸
≥0

> 0, ∀r,

and v is never zero. Thus the rocket never stops and r keeps increasing indefinitely, i.e.

the rocket escapes the planet and can reach the distant stars. There the rocket crew can
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seek out new life and new civilisations, to boldly go where no Bath mathematics student

has gone before.

Conclusion: To escape the planet the initial speed v0 must be greater than (or equal to)

vesc :=

√
2µ

R
=

√
2MG

R
.

Definition 8.3 The escape speed is the speed vesc, such that for v0 ≥ vesc a particle escapes

the gravitational attraction of the planet. Similarly, the escape velocity is vesc = vesc er.

For the earth vesc ≈ 11.2kms−1. This is a factor of
√

2 greater than the speed for a low Earth

Orbit.

8.8 * Black Holes

Consider a star and assume that its radius satisfies

R <
2MG

c2
,
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where c is the speed of light (c ' 3× 108kms−1). Since G and c are universal constants, this is

a condition relating the radius of the star to its mass. Rearranging, we have

c <

√
2MG

R
,

so the escape speed is greater than the speed of light. Since not even light can escape from such

a star, it will appear invisible at a distance greater than rmax. Such a star is called a black

hole. The value
2MG

c2
is called the “Schwarzschild radius”. [For a planet with the mass of our

sun to be a black hole R must be less than 1cm!]

A rough definition of a black hole is as follows: A black hole is an object in space that has

collapsed under its own gravitational forces to such an extent that its escape speed is equal to

the speed of light. Black holes are believed to be formed in the gravitational collapse of massive

stars at the end of their life. They seem to be very common in the Universe, and massive black

hols lie at the centre of galxies such as our own. The existence of black holes was first postulated

by Laplace in 1798! (The above simplified analysis assumes of course that light also satisfies

the Newton’s laws of mechanics: the actual physical mechanism is more subtle, referring to

Einstein’s Theory of General Relativity and cosmology which we do not discuss here.)
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8.9 *Hyperbolic Orbits

If a satellite approaches a planet at a velocity higher than the escape speed then it will go past

the planet on a hyperbolic orbit. This is described by the polar equation

r =
l

1 + e cos(θ)
, with e > 1, l =

h2

µ
.

A typical motion has the satellite approaching from r = ∞, having a closest approach when

r = l/(1 + e), and then departing to r = ∞. The lines of approach and departure are the

asymptotes of the hyperbola which are lines at the angle θ = ±θ∞ where

cos(θ∞) = −1/e.

It follows from the orbit formula that

ṙ =
l e sin(θ) θ̇

(1 + e cos(θ))2
=
e r2 θ̇ sin(θ)

l
=
µ e sin(θ)

h
.

Thus at r =∞ we have a speed v∞ = |ṙ| where

v∞ =
µ

h
tan (θ∞) .

If we project the asymptote from infinity then its closest perpendicular distance from the planet

is b. See Figure 16. If follows from the definition of the angular momentum (Exercise, check

Figure 16: A typical hyperbolic orbit of a body (such as a comet or a satellite) around the Sun

this) that h = bv∞. Hence

tan(θ∞) =
b v2∞
µ

.

Thus if we know v∞ and b we can calculate θ∞. The satellite is then deflected around the planet

through an angle of 2θ∞.
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This effect is used to great use on long range satellite missions to distant planets in the Solar

system. In particular, the satellites have sling-shot orbits when they are defelected around bodies

such as Jupiter, and use the gravitational pull of this body to accelerate them on their orbit.

An example is given by Voyager probes to Uranus and Neptune which were deflected around

Jupiter and Saturn, before ending up on Star Trek the Motion Picture.

Figure 17: The sling-shot orbits of the Voyager probes.
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