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1. Let V be a vector space over F. Here is a proof that Ov = 0 for
all v.e V. First note that 0 + 0 = 0 (Field Axiom 3). Therefore
(04 0)v = 0v. Now by Vector Space Axiom 7 we have Ov + 0v = Ov.
Now, by Vector Space Axiom 4 the vector Ov has an additive inverse
—0v. It follows that

(0v 4+ 0v) + —0v = 0v + —0v.

Now rebracket the left hand side using Vector Space Axiom 2. There-
fore
0v + (0v + —0v) = Ov + —0v.

Now on both sides we have the opportunity to use the definition of
an additive inverse so O0v + 0 = 0. Now by Vector Space Axiom 3 we
deduce that

Ov =0.

Now, using this as a model, and quoting this result if necessary, prove
that if ve V, then (—1)v = —v.

Solution By the definition of inverses, 1 + —1 = 0. Therefore (1 +
—1)v = 0v. We apply Vector Space Axiom 7, and the result justified
in the above proof, to see that 1v + (—1)v = 0. Now 1lv = v by
Vector Space Axiom 9. We add the additive inverse of v to each side
so —v+ (v+ (=1)v) = 0+ —v. We rebracket the left side using Vector
Space Axiom 2, and use the definition of 0 on the right, so (—v +
v) + (—1)v) = —v. Now by the definition of additive inverses we have
—v+v =050 0+ (—1)v) = —v. Finally the definition of 0 yields
(—=1)v) = —v as required.



2. Let V be a vector space over F'. Suppose that U is a subset of V. Show
that U is a subspace of V if and only if the following three conditions
are satisfied:

(a) U #0.
(b) If x € U and A € F, then \x € U.
(c) If x, y e U, then x+y € U.

Solution The two conditions for U to be a suspace are (a) that U # ()
and (b) that U be closed under arbitrary linear combinations. First
assume (i), (ii) and (iii). Now (i) is the same as (a) so (a) holds. Now
suppose that u, v € U and A\, u € F. Then Au,uv € U by (ii) and
Au+ pv € U by (iii). Conversely we assume that (a) and (b) hold.
Now (i) is the same as (a) so (i) holds. Now choosing A =1 and p =0
we obtain (ii). Finally choosing A = u = 1 we obtain (iii).

3. Consider the usual Cartesian description of the plane as R? (with per-
pendicular axes). This collection of ordered pairs is a vector space over
R in a natural way as discussed in lectures. In each case you should
justify your answer.

(a) Prove that the ordered pairs corresponding a straight line through
the origin form a subspace.
Solution Each straight line through the origin is a set of the
form L = {(x,y) | az + by = 0} for suitable choice of constants
a,b € R. Note that (0,0) € L # (). It remains to demonstrate
closure under linear combinations. Suppose that u, v € L with
u= (e, f) and v = (g, h). Now if A\, u € R, then

AX + piy = (Ae + pg, Af + ph)
and
a(Ne + p1g) +bAf + ph) = Mae +bf) + p(ag +bh) = A0+ p0 =0

and so Ax + puy € L. Thus L is a subspace.

(b) Consider the straight line S = {(x,1) | x € R}. Is this a subspace?
Solution No. (1,1) € S but 2(1,1) = (2,2) ¢ S.



(c) Consider the circle C = {(z,y) | 2* + (y — 1)? = 1}. Is this a
subspace?
Solution Certainly not. (1,1) € C but (2,2) =2(1,1) £ C.

(d) Prove that Z = {(0,0)} is a subspace.
Solution Suppose that x,y € Zsox =y =0. If \,u € R, then
Ax+puy =0€ Z so Z <R2

(a) Prove that 0 is not a subspace.
Solution This is true by definition.

4. Describe as many different subspaces of R3 as you can find.
Solution It should be possible to spot 0, each line through the origin,
each plane through the origin, and the whole space. In fact there are
no other subspaces, but at this stage no proof is available.

5. Let R[X] denote the set of polynomials in X which have coefficients in
R. This set has a natural vector space structure over R. Which of the
following are subspaces of R[X], and why?

(a) {f | f € R[X], f(42) = 0}.
Solution Let the set be S. The zero polynomial satisfies the
condition so S # (). Suppose that f,g € S and \,u € R. Let

h=MAf+ ug so
h(42) = A\f(42) + pg(42) =0+0=0

so S is a subspace.

(b) {/ [ feR[X], f(42) = 1}.
Solution The constant polynomial 1 is in this set but 2 =2 -1
is not, so it cannot be a subspace.

(c) {f | fe€R[X], [ has at most two real roots }.
Solution This set is not a subspace because 1, —1 are in the set
(these constant polynomials have no rela roots) but 0 = 1+ (—1)
has infinitely many real roots (all real numbers are roots).

(d) {f| feR[X],degf <n} wheren € NU{0}. Let the set be S, for
each possible n € NU{0}. Note that the degree of the zero polyno-
mial is —o0, a symbol deemed to be smaller than all integers.



Solution Each S, is a subspace. This is because the zero poly-
nomial is in each S,,, and if f,g € S, and A\, u € R, then

deg(Af + pg) < max{deg(\f), deg(pg)} < max{n,n} =n.
We are done.

{f| feRX] f(X)—-Xf(X)+ f(X) =0} where a dash in the
exponent indicates differentiation with respect to X.

Solution Let the ste be S. The zero polynomial satisfies the
differential equation so S # (). Suppose that f,g € S and \, u € R.
Let h = \f + ug so

W' — X0+ h=(\f4pg)" — XA +pg) + A+ pg
=M =X 4 ) g = Xg +9)=0+0=0

so S is a subspace.

{f | f(X)? = f(X?)}.

Solution Let the set be S. Observe that X € S. However
3X ¢ S because (3X)%? =9X? £ 3X?. Thus S is not closed under
scalar multiplication so cannot be a subspace.

6. Suppose that V is a vector space and that vi,vso,..., v, € V. Let

=1

)\ieRforalllgign}.

Show that U is a subspace of V.
Solution By choosing the scalars to be all 0, we deduce that 0 € U #
(). Now suppose that x,y € U, so there are scalars §; and ¢; such that

and

SO

n
X = E ein‘
=1

Y=Y @i
=1

X+y= Z(@Z —i—goi)vi e U.

=1

Thus U is a subspace.



7. Suppose that U, W are subspaces of V' and that UUW s also a subspace
of V.. Prove that either U C W or W C U. Suppose (for contradiction)
that neither U € W nor W C U. Thus there is w € W — U and
u e U —W. Consider x = u+ w. Now U UW is a subspace of V' so
x e UUW. If x € U then w = x — u € U which is false. If x € W
then u = x —w € W which is false. This is the required contradiction,

so we are done.



