Algebra 1; MA20008; Sheet 2 Solutions

G.C.Smith@bath.ac.uk

19-x-2004

1. Suppose that U and V are vector spaces over the same field F, and that W is a subspace of V. Let $\alpha: U \rightarrow V$ be a linear map. Show that $Y=\{\mathrm{x} \mid \mathrm{x} \in U, \alpha(\mathrm{x}) \in V\}$ is a subspace of U.
Solution $\alpha(\mathbf{0})=\mathbf{0} \in W$ so $Y \neq \emptyset$. Suppose that $\mathbf{x}, \mathbf{y} \in Y$ and $\lambda, \mu \in F$, then $\alpha(\lambda \mathbf{x}+\mu \mathbf{y})=\lambda \alpha(\mathbf{x})+\mu \alpha(\mathbf{y}) \in W$. Therefore $Y \leq U$.
2. Suppose that U and V are vector spaces over the same field F, and that we have linear maps $\alpha: U \longrightarrow V$ and $\beta: U \longrightarrow V$. Show that $Z=\{\mathrm{x} \mid \mathrm{x} \in U, \alpha(\mathrm{x})=\beta(\mathrm{x})\}$ is a subspace of U.
Solution Note that $\mathbf{0} \in Z \neq \emptyset$. Now suppose that $\mathrm{x}, \mathrm{y} \in Z$ and $\lambda, \mu \in F$, then

$$
\alpha(\lambda \mathbf{x}+\mu \mathbf{y})=\lambda \alpha(\mathbf{x})+\mu \alpha(\mathbf{y})=\lambda \beta(\mathbf{x})+\mu \beta(\mathbf{y})=\beta(\lambda \mathbf{x}+\mu \mathbf{y})
$$

so $Z \leq U$.
3. Let \mathbb{C} be the complex numbers, viewed as a vector space over \mathbb{R}. We have shown that the map $\varphi: \mathbb{C} \longrightarrow \mathbb{C}$ defined by complex conjugation is a linear map. Let n be a natural number, and define θ_{n} to be multiplication by $e^{\frac{2 \pi i}{n}}$; more formally $\theta_{n}: \mathbb{C} \longrightarrow \mathbb{C}$ with $\theta_{n}(z)=e^{\frac{2 \pi i}{n}} z$ for all $z \in \mathbb{C}$.
(a) Show that each map θ_{n} is linear.

Solution In fact multiplication by any fixed complex number is a linear map. This is another way of viewing the distributive law of multiplication over addition.
(b) How many different maps can you get by composing the maps θ_{4} and θ_{6} ? (For example, $\theta_{4} \theta_{4} \theta_{6} \theta_{6} \theta_{4}$ is one such composition.)

Solution There are 12 maps that can be obtained. Each such map is a rotation of the complex plane (Argand diagram) about the origin which preserves the vertices of the regular 12-gon with centre 0 , and one vertex at 1 . There are clearly 12 such maps, and each can be obtained since $\theta_{4} \theta_{6}^{5}$ is rotation through $\pi / 6$, and this map has 12 different positive powers which are all the possible rotations respecting this regular 12-gon,
(c) How many different maps can you get by composing the maps θ_{5} and φ ?
Solution The answer is 10 . These are actually the rigid symmetries of the regular pentagon (5-gon) with centre 0 and a vertex at 1 (rotations and reflections).
(d) How many different maps can you get by composing the maps θ_{4}, θ_{6} and φ ? There are 24 maps that can be obtained.
Solution The answer is 24 , the rigid symmetries of the obvious regular dodecagon (12-gon), reflections and rotations.
4. Let V we a vector space over a field F. We define a line as follows. Suppose that $\mathrm{a}, \mathrm{b} \in V$ with $\mathrm{b} \neq 0$. The set

$$
L=\{\mathbf{r} \mid \mathbf{r}=\mathbf{a}+t \mathbf{b}, t \in F\}
$$

is a line. Suppose that U is also a vector space over F and that

$$
\alpha: V \longrightarrow U
$$

is a linear map. Show that if $\mathrm{b} \notin$ Ker α, then

$$
K=\{\alpha(\mathbf{r}) \mid \mathbf{r} \in L\}
$$

is a line. What happens if $\mathbf{b}=\mathbf{0}$?

Solution

$$
\begin{gathered}
\{\alpha(\mathbf{r}) \mid \mathbf{r} \in L\}=\{\mathbf{r} \mid \mathbf{r}=\alpha(\mathbf{a})+\alpha(t \mathbf{b}), t \in F\} \\
=\{\mathbf{r} \mid \mathbf{r}=\alpha(\mathbf{a})+t \alpha(\mathbf{b}), t \in F\}
\end{gathered}
$$

which is a line. If $\mathbf{b}=\mathbf{0}$ or more generally if $\mathbf{b} \in \operatorname{Ker} \alpha$, then we get a set consisting of a single point instead.
5. Regard \mathbb{R}^{n} as a vector space over \mathbb{R}. Define a map $\mu: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ by $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(x_{2}, x_{3}, \ldots, x_{n}, 0\right)$ for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
(a) Show that μ is a linear map.

Solution This is entirely routine. Suppose that $\lambda, \theta \in \mathbb{R}$ and $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. Now

$$
\begin{gathered}
\mu(\lambda \mathbf{x}+\theta \mathbf{y})=\lambda\left(x_{2}, x_{3}, \ldots, x_{n}, 0\right)+\theta\left(y_{2}, y_{3}, \ldots, y_{n}, 0\right) \\
=\left(\lambda x_{2}+\theta y_{2}, \lambda x_{3}+\theta y_{3}, \ldots, \lambda x_{n}+\theta y_{n}, 0\right),
\end{gathered}
$$

whereas

$$
\begin{aligned}
\lambda \mu(\mathbf{x}) & +\theta \mu(\mathbf{y})=\lambda\left(x_{2}, x_{3}, \ldots, x_{n}, 0\right)+\theta\left(y_{2}, y_{3}, \ldots, y_{n}, 0\right) \\
& =\left(\lambda x_{2}+\theta y_{2}, \lambda x_{3}+\theta y_{3}, \ldots, \lambda x_{n}+\theta y_{n}, 0\right) .
\end{aligned}
$$

We are done.
(b) Show that μ^{n} is the zero map (μ^{n} denotes the map obtained by composing n copies of μ).
Solution Induct on r to show that

$$
\operatorname{Im} \mu^{r}=\left\{\left(y_{1}, y_{2}, \ldots, y_{n-r}, 0, \ldots, 0\right) \mid y_{i} \in \mathbb{R} \text { for all } i\right\} .
$$

We omit the details.
(c) Show that μ^{n-1} is not the zero map.

Solution This follows from the argument above.
6. Let V be a vector spaces, and suppose that α and β are both projections onto subspaces of V with suitable kernels. Suppose also that $\alpha \beta=\beta \alpha$. Show that $\alpha \beta$ is a projection.
Solution We are given that $\alpha, \beta: V \longrightarrow V$ are linear maps which commute and satisfy $\alpha \beta=\beta \alpha$. Moreover $\alpha^{2}=\alpha$ and $\beta^{2}=\beta$. (we allow a slight notational abuse here, and inflate the codomains of α and β to V from the given subspaces of V. Now $(\alpha \beta)^{2}=\alpha \beta \alpha \beta=\alpha^{2} \beta^{2}=\alpha \beta$. We have used the fact that α an β are projections so $\alpha^{2}=\alpha$ and $\beta^{2}=\beta$, and commutativity. Now we proved in lectures that $(\alpha \beta)^{2}=\alpha \beta$ forces $\alpha \beta$ to be a projection, so we are done.

