Algebra 1; MA20008; Sheet 2 Solutions

G.C.Smith@bath.ac.uk

19-x-2004

- Suppose that U and V are vector spaces over the same field F, and that W is a subspace of V. Let α : U → V be a linear map. Show that Y = {x | x ∈ U, α(x) ∈ V} is a subspace of U.
 Solution α(0) = 0 ∈ W so Y ≠ Ø. Suppose that x, y ∈ Y and λ, μ ∈ F, then α(λx + μy) = λα(x) + μα(y) ∈ W. Therefore Y ≤ U.
- Suppose that U and V are vector spaces over the same field F, and that we have linear maps α : U → V and β : U → V. Show that Z = {x | x ∈ U, α(x) = β(x)} is a subspace of U.
 Solution Note that 0 ∈ Z ≠ Ø. Now suppose that x, y ∈ Z and λ, μ ∈ F, then

$$\alpha(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda \alpha(\mathbf{x}) + \mu \alpha(\mathbf{y}) = \lambda \beta(\mathbf{x}) + \mu \beta(\mathbf{y}) = \beta(\lambda \mathbf{x} + \mu \mathbf{y})$$

so $Z \leq U$.

- 3. Let \mathbb{C} be the complex numbers, viewed as a vector space over \mathbb{R} . We have shown that the map $\varphi : \mathbb{C} \longrightarrow \mathbb{C}$ defined by complex conjugation is a linear map. Let n be a natural number, and define θ_n to be multiplication by $e^{\frac{2\pi i}{n}}$; more formally $\theta_n : \mathbb{C} \longrightarrow \mathbb{C}$ with $\theta_n(z) = e^{\frac{2\pi i}{n}z}$ for all $z \in \mathbb{C}$.
 - (a) Show that each map θ_n is linear. Solution In fact multiplication by any fixed complex number is a linear map. This is another way of viewing the distributive law of multiplication over addition.
 - (b) How many different maps can you get by composing the maps θ_4 and θ_6 ? (For example, $\theta_4\theta_4\theta_6\theta_6\theta_4$ is one such composition.)

Solution There are 12 maps that can be obtained. Each such map is a rotation of the complex plane (Argand diagram) about the origin which preserves the vertices of the regular 12-gon with centre 0, and one vertex at 1. There are clearly 12 such maps, and each can be obtained since $\theta_4 \theta_6^5$ is rotation through $\pi/6$, and this map has 12 different positive powers which are all the possible rotations respecting this regular 12-gon,

- (c) How many different maps can you get by composing the maps θ₅ and φ?
 Solution The answer is 10. These are actually the rigid symmetries of the regular pentagon (5-gon) with centre 0 and a vertex at 1 (rotations and reflections).
- (d) How many different maps can you get by composing the maps θ₄, θ₆ and φ? There are 24 maps that can be obtained.
 Solution The answer is 24, the rigid symmetries of the obvious regular dodecagon (12-gon), reflections and rotations.
- 4. Let V we a vector space over a field F. We define a line as follows. Suppose that $\mathbf{a}, \mathbf{b} \in V$ with $\mathbf{b} \neq \mathbf{0}$. The set

$$L = \{\mathbf{r} \mid \mathbf{r} = \mathbf{a} + t\mathbf{b}, \ t \in F\}$$

is a line. Suppose that U is also a vector space over F and that

 $\alpha: V \longrightarrow U$

is a linear map. Show that if $\mathbf{b} \notin Ker \alpha$, then

$$K = \{ \alpha(\mathbf{r}) \mid \mathbf{r} \in L \}$$

is a line. What happens if $\mathbf{b} = \mathbf{0}$? Solution

$$\{\alpha(\mathbf{r}) \mid \mathbf{r} \in L\} = \{\mathbf{r} \mid \mathbf{r} = \alpha(\mathbf{a}) + \alpha(t\mathbf{b}), \ t \in F\}$$
$$= \{\mathbf{r} \mid \mathbf{r} = \alpha(\mathbf{a}) + t\alpha(\mathbf{b}), \ t \in F\}$$

which is a line. If $\mathbf{b} = \mathbf{0}$ or more generally if $\mathbf{b} \in \text{Ker } \alpha$, then we get a set consisting of a single point instead.

- 5. Regard \mathbb{R}^n as a vector space over \mathbb{R} . Define a map $\mu : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ by $(x_1, x_2, \ldots, x_n) \mapsto (x_2, x_3, \ldots, x_n, 0)$ for all $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$.
 - (a) Show that μ is a linear map.

Solution This is entirely routine. Suppose that $\lambda, \theta \in \mathbb{R}$ and $\mathbf{x} = (x_1, x_2, \dots, x_n), \ \mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$. Now

$$\mu(\lambda \mathbf{x} + \theta \mathbf{y}) = \lambda(x_2, x_3, \dots, x_n, 0) + \theta(y_2, y_3, \dots, y_n, 0)$$
$$= (\lambda x_2 + \theta y_2, \lambda x_3 + \theta y_3, \dots, \lambda x_n + \theta y_n, 0),$$

whereas

$$\lambda \mu(\mathbf{x}) + \theta \mu(\mathbf{y}) = \lambda(x_2, x_3, \dots, x_n, 0) + \theta(y_2, y_3, \dots, y_n, 0)$$
$$= (\lambda x_2 + \theta y_2, \lambda x_3 + \theta y_3, \dots, \lambda x_n + \theta y_n, 0).$$

We are done.

(b) Show that μⁿ is the zero map (μⁿ denotes the map obtained by composing n copies of μ).
Solution Induct on r to show that

Im
$$\mu^r = \{(y_1, y_2, \dots, y_{n-r}, 0, \dots, 0) \mid y_i \in \mathbb{R} \text{ for all } i\}.$$

We omit the details.

- (c) Show that μ^{n-1} is not the zero map. Solution This follows from the argument above.
- 6. Let V be a vector spaces, and suppose that α and β are both projections onto subspaces of V with suitable kernels. Suppose also that $\alpha\beta = \beta\alpha$. Show that $\alpha\beta$ is a projection.

Solution We are given that $\alpha, \beta : V \longrightarrow V$ are linear maps which commute and satisfy $\alpha\beta = \beta\alpha$. Moreover $\alpha^2 = \alpha$ and $\beta^2 = \beta$. (we allow a slight notational abuse here, and inflate the codomains of α and β to V from the given subspaces of V). Now $(\alpha\beta)^2 = \alpha\beta\alpha\beta = \alpha^2\beta^2 = \alpha\beta$. We have used the fact that α an β are projections so $\alpha^2 = \alpha$ and $\beta^2 = \beta$, and commutativity. Now we proved in lectures that $(\alpha\beta)^2 = \alpha\beta$ forces $\alpha\beta$ to be a projection, so we are done.