Algebra 1; MA20008; Sheet 3

G.C.Smith@bath.ac.uk

25-x-2004

1. Suppose that V is a vector space over F, and that $S \subseteq V$. Let \overline{S} be the intersection of those subspaces of V which contain the subset S, or put formally

$$\overline{S} = \bigcap \{ U \mid U \le V, S \subseteq U \}.$$

Show that $\overline{S} = \langle S \rangle$.

Solution: We have $S \subseteq \langle S \rangle \leq V$. Now $\langle S \rangle$ is therefore one of the sets being intersected in the definition of \overline{S} . Therefore $\overline{S} \subseteq \langle S \rangle$. Conversely if $S \subseteq U \leq V$ and $\mathbf{v} \in \langle S \rangle$, then $\mathbf{v} \in U$ since U is closed under the formation of linear combinations. Therefore $\langle S \rangle \subseteq \overline{S}$. Since we have both inclusions it follows that $\overline{S} = \langle S \rangle$.

2. Let V be a vector space over F and $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_n} \in V$. Suppose that whenever $\theta_1, \ldots, \theta_n, \psi_1, \ldots, \psi_n \in F$ and $\sum_{i=1}^n \theta_i \mathbf{v_i} = \sum_{i=i}^n \psi_i \mathbf{v_i}$, then necessarily $\lambda_i = \mu_i$ for each $i, 1 \leq i \leq n$. Show that $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_n} \in V$ is linearly independent.

Solution: It suffices to choose $\psi_i = 0$ for every *i*, and we obtain the condition for linear independence.

- 3. Consider $V = \mathbb{R}$ as a vector space over \mathbb{Q} .
 - (a) Show that $1, \sqrt{2}, \sqrt{3}$ are linearly independent.

Solution: It is first year work to show that $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{6}$ are irrational, and we assume that you can do this. Suppose that $a+b\sqrt{2}+c\sqrt{3}=0$ for rational a, b and c. Therefore $(b\sqrt{2}+c\sqrt{3})^2 \in \mathbb{Q}$, so $bc\sqrt{6} \in \mathbb{Q}$. Now bc = 0 else $\sqrt{6}$ would be rational. If only one of b and c were 0, then $\sqrt{2}$ or $\sqrt{3}$ would be rational, which it isn't. Therefore b = c = 0, so a = 0 and we are done.

- (b) Let α = e^{πi}/₃. Which lists of the form 1, α, ..., αⁿ are linearly independent? Justify your answer.
 Solution: α is a root of X³+1 = (X+1)(X²-X+1) but not of X+1 so α is a root of X²-X+1. Thus 1-α+α² = 0 so 1, α, α² is a linearly dependent list, as is 1, α, ..., αⁿ whenever n ≥ 2. Also 1 is linearly independent, and 1, α is linearly independent, since a non-trivial linear relation would force α ∈ ℝ, which is false.
- (c) Suppose that $1, \beta, \beta^2, \ldots, \beta^n$ are linearly independent. Show that $1, (\beta + 1), (\beta + 1)^2, \ldots, (\beta + 1)^n$ are linearly independent. Solution: Suppose, for contradiction, that these powers of $1 + \beta$ are linearly dependent. Thus there is a non-zero polynomial f (or f(X)) with rational coefficients so that $f(1+\beta) = 0$. Now β will be a root of h := f(X+1), and deg $h = \deg f$ (and indeed the leading coefficients co-incide). Therefore h is not the zero polynomial and the given powers of β satisfy a non-trivial linear relation. However, we are given that these powers of β are linearly independent over \mathbb{Q} , so this is absurd. We have the required contradiction.
- 4. Suppose that X and Y are both linearly independent subsets of V. Does it follow that X ∩ Y is linearly independent? What about X ∪ Y?
 Solution: A subset of a l.i. set of vectors is l.i. for formal reasons, and X ∩ Y ⊆ X, so we are done. However, the same is not true for the formation of unions. Let V = F = ℝ. Let X = {1}, Y = {2} which are both l.i., but X ∪ Y = {1,2} which is l.d. because 2·1+(-1)·2 = 0.
- 5. Suppose that $V = U \oplus W$. We are given a sets of vectors $X \subseteq U$ and $Y \subseteq W$. Is $X \cup Y$ necessarily a linearly independent set of vectors? Solution: We have proved that a direct sum yields uniqueness of decomposition, so if $\mathbf{v} \in V$ and $\mathbf{v} = \mathbf{u_1} + \mathbf{w_1} = \mathbf{u_2} + \mathbf{w_2}$ for $\mathbf{u_1}, \mathbf{u_2} \in U$ and $\mathbf{w_1}, \mathbf{w_2} \in W$, then $\mathbf{u_1} = \mathbf{u_2}$ and $\mathbf{w_1} = \mathbf{w_2}$. Now suppose that we have scalars λ_i, θ_j so that

$$\sum_{i=1}^m \lambda_i \mathbf{u_i} + \sum_{j=1}^n \theta_j \mathbf{w_j} = \mathbf{0}.$$

Here $\mathbf{u_1}, \ldots, \mathbf{u_m} \in X$ and $\mathbf{v_1}, \ldots, \mathbf{v_n} \in Y$. The uniqueness of expres-

sion, compared to $\mathbf{0} + \mathbf{0} = \mathbf{0}$, ensures that both

$$\sum_{i=1}^m \lambda_i \mathbf{u_i} = \mathbf{0}$$

and

$$\sum_{i=1}^n heta_j \mathbf{w_j} = \mathbf{0}$$

The l.i. of both X and Y forces all scalars to vanish, and we are done.

6. Suppose that $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ is a linearly independent list of vectors in the vector space V. We are given $\mathbf{w} \in V$. Does it follow that

$$\mathbf{v_1} + \mathbf{w}, \mathbf{v_2} + \mathbf{w}, \dots, \mathbf{v_n} + \mathbf{w}$$

are linearly independent?

Solution: No. Choose $\mathbf{w} = -\mathbf{v_1}$ and the zero vector occurs in the list.

7. Suppose that $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_n}$ is a linearly dependent list of vectors in the vector space V. We are given $\mathbf{w} \in V$. Does it follow that

$$\mathbf{v_1} + \mathbf{w}, \mathbf{v_2} + \mathbf{w}, \dots, \mathbf{v_n} + \mathbf{w}$$

is linearly dependent?

Solution: No. Let $V = \mathbb{R}$, $F = \mathbb{R}$. Let n = 1 and $\mathbf{v_1} = \mathbf{0}$. Let $\mathbf{w} = 1$.

- 8. Let $V = \mathbb{R}^3$ viewed as vector space over \mathbb{R} . Let $\mathbf{v_1}, \ldots, \mathbf{v_8}$ be the position vectors of the vertices of a cube.
 - (a) Let

$$A = \left\{ \sum_{i} \lambda_i \mathbf{v_i} \mid 0 \le \lambda_i \le 1 \text{ for all } i, \sum_{i} \lambda_i = 1 \right\}.$$

Describe the set A, viewed as a collection of position vectors, geometrically.

Solution: The given position vectors point to the points inside and on the surface of the cube.

(b) Let

$$B = \left\{ \sum_{i} \lambda_i \mathbf{v_i} \mid \lambda_i \ge 0 \text{ for all } i, \right\}.$$

Under what circumstances is $B = \mathbb{R}^{3}$? Under what circumstances is B a closed half space (i.e. one side of a plane and all the points on that plane)? What other shapes can arise?

Solution: We have $B = \mathbb{R}^3$ exactly when the origin is strictly inside the cube. If the origin is in the interior of a face, then B is a half-space. If the origin is in the interior of an edge, then B is the intersection of two half-spaces defined by perpendicular planes. If the origin is at a vertex of the cube, then B is the intersection of three half-spaces defined by pairwise perpendicular planes (also known as an octant). If the origin is strictly outside the cube, then B will be an infinite cone with finitely many planar faces.