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1. Suppose that V is a vector space over F , and that S ⊆ V . Let S be the
intersection of those subspaces of V which contain the subset S, or put
formally

S =
⋂

{U | U ≤ V, S ⊆ U}.
Show that S = 〈S〉.
Solution: We have S ⊆ 〈S〉 ≤ V . Now 〈S〉 is therefore one of the sets
being intersected in the definition of S. Therefore S ⊆ 〈S〉. Conversely
if S ⊆ U ≤ V and v ∈ 〈S〉, then v ∈ U since U is closed under the
formation of linear combinations. Therefore 〈S〉 ⊆ S. Since we have
both inclusions it follows that S = 〈S〉.

2. Let V be a vector space over F and v1,v2, . . . ,vn ∈ V . Suppose that
whenever θ1, . . . , θn, ψ1, . . . , ψn ∈ F and

∑n
i=1 θivi =

∑n
i=i ψivi, then

necessarily λi = µi for each i, 1 ≤ i ≤ n. Show that v1,v2, . . . ,vn ∈ V
is linearly independent.
Solution: It suffices to choose ψi = 0 for every i, and we obtain the
condition for linear independence.

3. Consider V = R as a vector space over Q.

(a) Show that 1,
√

2,
√

3 are linearly independent.
Solution: It is first year work to show that

√
2,

√
3 and

√
6

are irrational, and we assume that you can do this. Suppose that
a+b

√
2+c

√
3 = 0 for rational a, b and c. Therefore (b

√
2+c

√
3)2 ∈

Q, so bc
√

6 ∈ Q. Now bc = 0 else
√

6 would be rational. If only
one of b and c were 0, then

√
2 or

√
3 would be rational, which it

isn’t. Therefore b = c = 0, so a = 0 and we are done.
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(b) Let α = e
πi
3 . Which lists of the form 1, α, . . . , αn are linearly

independent? Justify your answer.
Solution: α is a root of X3 +1 = (X+1)(X2−X+1) but not of
X+1 so α is a root of X2−X+1. Thus 1−α+α2 = 0 so 1, α, α2 is
a linearly dependent list, as is 1, α, . . . , αn whenever n ≥ 2. Also
1 is linearly independent, and 1, α is linearly independent, since a
non-trivial linear relation would force α ∈ R, which is false.

(c) Suppose that 1, β, β2, . . . , βn are linearly independent. Show that
1, (β + 1), (β + 1)2, . . . , (β + 1)n are linearly independent.
Solution: Suppose, for contradiction, that these powers of 1+β
are linearly dependent. Thus there is a non-zero polynomial f (or
f(X)) with rational coefficients so that f(1+β) = 0. Now β will be
a root of h := f(X+1), and deg h = deg f (and indeed the leading
coefficients co-incide). Therefore h is not the zero polynomial and
the given powers of β satisfy a non-trivial linear relation. However,
we are given that these powers of β are linearly independent over
Q, so this is absurd. We have the required contradiction.

4. Suppose that X and Y are both linearly independent subsets of V . Does
it follow that X ∩ Y is linearly independent? What about X ∪ Y ?
Solution: A subset of a l.i. set of vectors is l.i. for formal reasons,
and X ∩Y ⊆ X, so we are done. However, the same is not true for the
formation of unions. Let V = F = R. Let X = {1}, Y = {2} which
are both l.i., but X∪Y = {1, 2} which is l.d. because 2·1+(−1)·2 = 0.

5. Suppose that V = U ⊕W . We are given a sets of vectors X ⊆ U and
Y ⊆W . Is X ∪ Y necessarily a linearly independent set of vectors?
Solution: We have proved that a direct sum yields uniqueness of
decomposition, so if v ∈ V and v = u1 + w1 = u2 +w2 for u1,u2 ∈ U
and w1,w2 ∈ W , then u1 = u2 and w1 = w2. Now suppose that we
have scalars λi, θj so that

m∑
i=1

λiui +

n∑
j=1

θjwj = 0.

Here u1, . . . ,um ∈ X and v1, . . . ,vn ∈ Y . The uniqueness of expres-
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sion, compared to 0 + 0 = 0, ensures that both

m∑
i=1

λiui = 0

and
n∑

i=1

θjwj = 0.

The l.i. of both X and Y forces all scalars to vanish, and we are done.

6. Suppose that v1,v2, . . . ,vn is a linearly independent list of vectors in
the vector space V . We are given w ∈ V . Does it follow that

v1 + w,v2 + w, . . . ,vn + w

are linearly independent?
Solution: No. Choose w = −v1 and the zero vector occurs in the
list.

7. Suppose that v1,v2, . . . ,vn is a linearly dependent list of vectors in the
vector space V . We are given w ∈ V . Does it follow that

v1 + w,v2 + w, . . . ,vn + w

is linearly dependent?
Solution: No. Let V = R, F = R. Let n = 1 and v1 = 0. Let w = 1.

8. Let V = R3 viewed as vector space over R. Let v1, . . . ,v8 be the position
vectors of the vertices of a cube.

(a) Let

A =

{∑
i

λivi | 0 ≤ λi ≤ 1 for all i,
∑

i

λi = 1

}
.

Describe the set A, viewed as a collection of position vectors, ge-
ometrically.
Solution: The given position vectors point to the points inside
and on the surface of the cube.
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(b) Let

B =

{∑
i

λivi | λi ≥ 0 for all i,

}
.

Under what circumstances is B = R3? Under what circumstances
is B a closed half space (i.e. one side of a plane and all the points
on that plane)? What other shapes can arise?
Solution: We have B = R3 exactly when the origin is strictly
inside the cube. If the origin is in the interior of a face, then B is a
half-space. If the origin is in the interior of an edge, then B is the
intersection of two half-spaces defined by perpendicular planes. If
the origin is at a vertex of the cube, then B is the intersection
of three half-spaces defined by pairwise perpendicular planes (also
known as an octant). If the origin is strictly outside the cube,
then B will be an infinite cone with finitely many planar faces.
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