Algebra 1; MA20008; Sheet 3

G.C.Smith@bath.ac.uk

$25-\mathrm{x}-2004$

1. Suppose that V is a vector space over F, and that $S \subseteq V$. Let \bar{S} be the intersection of those subspaces of V which contain the subset S, or put formally

$$
\bar{S}=\bigcap\{U \mid U \leq V, S \subseteq U\}
$$

Show that $\bar{S}=\langle S\rangle$.
Solution: We have $S \subseteq\langle S\rangle \leq V$. Now $\langle S\rangle$ is therefore one of the sets being intersected in the definition of \bar{S}. Therefore $\bar{S} \subseteq\langle S\rangle$. Conversely if $S \subseteq U \leq V$ and $\mathbf{v} \in\langle S\rangle$, then $\mathbf{v} \in U$ since U is closed under the formation of linear combinations. Therefore $\langle S\rangle \subseteq \bar{S}$. Since we have both inclusions it follows that $\bar{S}=\langle S\rangle$.
2. Let V be a vector space over F and $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}} \in V$. Suppose that whenever $\theta_{1}, \ldots, \theta_{n}, \psi_{1}, \ldots, \psi_{n} \in F$ and $\sum_{i=1}^{n} \theta_{i} \mathbf{v}_{\mathbf{i}}=\sum_{i=i}^{n} \psi_{i} \mathbf{v}_{\mathbf{i}}$, then necessarily $\lambda_{i}=\mu_{i}$ for each $i, 1 \leq i \leq n$. Show that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}} \in V$ is linearly independent.
Solution: It suffices to choose $\psi_{i}=0$ for every i, and we obtain the condition for linear independence.
3. Consider $V=\mathbb{R}$ as a vector space over \mathbb{Q}.
(a) Show that 1, $\sqrt{2}, \sqrt{3}$ are linearly independent.

Solution: It is first year work to show that $\sqrt{2}, \sqrt{3}$ and $\sqrt{6}$ are irrational, and we assume that you can do this. Suppose that $a+b \sqrt{2}+c \sqrt{3}=0$ for rational a, b and c. Therefore $(b \sqrt{2}+c \sqrt{3})^{2} \in$ \mathbb{Q}, so $b c \sqrt{6} \in \mathbb{Q}$. Now $b c=0$ else $\sqrt{6}$ would be rational. If only one of b and c were 0 , then $\sqrt{2}$ or $\sqrt{3}$ would be rational, which it isn't. Therefore $b=c=0$, so $a=0$ and we are done.
(b) Let $\alpha=e^{\frac{\pi i}{3}}$. Which lists of the form $1, \alpha, \ldots, \alpha^{n}$ are linearly independent? Justify your answer.
Solution: α is a root of $X^{3}+1=(X+1)\left(X^{2}-X+1\right)$ but not of $X+1$ so α is a root of $X^{2}-X+1$. Thus $1-\alpha+\alpha^{2}=0$ so $1, \alpha, \alpha^{2}$ is a linearly dependent list, as is $1, \alpha, \ldots, \alpha^{n}$ whenever $n \geq 2$. Also 1 is linearly independent, and $1, \alpha$ is linearly independent, since a non-trivial linear relation would force $\alpha \in \mathbb{R}$, which is false.
(c) Suppose that $1, \beta, \beta^{2}, \ldots, \beta^{n}$ are linearly independent. Show that $1,(\beta+1),(\beta+1)^{2}, \ldots,(\beta+1)^{n}$ are linearly independent.
Solution: Suppose, for contradiction, that these powers of $1+\beta$ are linearly dependent. Thus there is a non-zero polynomial f (or $f(X))$ with rational coefficients so that $f(1+\beta)=0$. Now β will be a root of $h:=f(X+1)$, and $\operatorname{deg} h=\operatorname{deg} f$ (and indeed the leading coefficients co-incide). Therefore h is not the zero polynomial and the given powers of β satisfy a non-trivial linear relation. However, we are given that these powers of β are linearly independent over \mathbb{Q}, so this is absurd. We have the required contradiction.
4. Suppose that X and Y are both linearly independent subsets of V. Does it follow that $X \cap Y$ is linearly independent? What about $X \cup Y$?
Solution: A subset of a l.i. set of vectors is l.i. for formal reasons, and $X \cap Y \subseteq X$, so we are done. However, the same is not true for the formation of unions. Let $V=F=\mathbb{R}$. Let $X=\{1\}, Y=\{2\}$ which are both l.i., but $X \cup Y=\{1,2\}$ which is l.d. because $2 \cdot 1+(-1) \cdot 2=0$.
5. Suppose that $V=U \oplus W$. We are given a sets of vectors $X \subseteq U$ and $Y \subseteq W$. Is $X \cup Y$ necessarily a linearly independent set of vectors?
Solution: We have proved that a direct sum yields uniqueness of decomposition, so if $\mathbf{v} \in V$ and $\mathbf{v}=\mathbf{u}_{\mathbf{1}}+\mathbf{w}_{\mathbf{1}}=\mathbf{u}_{\mathbf{2}}+\mathbf{w}_{\mathbf{2}}$ for $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}} \in U$ and $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} \in W$, then $\mathbf{u}_{\mathbf{1}}=\mathbf{u}_{\mathbf{2}}$ and $\mathbf{w}_{\mathbf{1}}=\mathbf{w}_{\mathbf{2}}$. Now suppose that we have scalars λ_{i}, θ_{j} so that

$$
\sum_{i=1}^{m} \lambda_{i} \mathbf{u}_{\mathbf{i}}+\sum_{j=1}^{n} \theta_{j} \mathbf{w}_{\mathbf{j}}=\mathbf{0}
$$

Here $\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{m}} \in X$ and $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}} \in Y$. The uniqueness of expres-
sion, compared to $\mathbf{0}+\mathbf{0}=\mathbf{0}$, ensures that both

$$
\sum_{i=1}^{m} \lambda_{i} \mathbf{u}_{\mathbf{i}}=\mathbf{0}
$$

and

$$
\sum_{i=1}^{n} \theta_{j} \mathbf{w}_{\mathbf{j}}=\mathbf{0}
$$

The l.i. of both X and Y forces all scalars to vanish, and we are done.
6. Suppose that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ is a linearly independent list of vectors in the vector space V. We are given $\mathbf{w} \in V$. Does it follow that

$$
\mathbf{v}_{\mathbf{1}}+\mathbf{w}, \mathbf{v}_{\mathbf{2}}+\mathbf{w}, \ldots, \mathbf{v}_{\mathbf{n}}+\mathbf{w}
$$

are linearly independent?
Solution: No. Choose $\mathbf{w}=-\mathbf{v}_{\mathbf{1}}$ and the zero vector occurs in the list.
7. Suppose that $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$ is a linearly dependent list of vectors in the vector space V. We are given $\mathbf{w} \in V$. Does it follow that

$$
\mathbf{v}_{\mathbf{1}}+\mathbf{w}, \mathbf{v}_{\mathbf{2}}+\mathbf{w}, \ldots, \mathbf{v}_{\mathbf{n}}+\mathbf{w}
$$

is linearly dependent?
Solution: No. Let $V=\mathbb{R}, F=\mathbb{R}$. Let $n=1$ and $\mathbf{v}_{\mathbf{1}}=\mathbf{0}$. Let $\mathbf{w}=1$.
8. Let $V=\mathbb{R}^{3}$ viewed as vector space over \mathbb{R}. Let $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{8}}$ be the position vectors of the vertices of a cube.
(a) Let

$$
A=\left\{\sum_{i} \lambda_{i} \mathbf{v}_{\mathbf{i}} \mid 0 \leq \lambda_{i} \leq 1 \text { for all } i, \sum_{i} \lambda_{i}=1\right\}
$$

Describe the set A, viewed as a collection of position vectors, geometrically.
Solution: The given position vectors point to the points inside and on the surface of the cube.
(b) Let

$$
B=\left\{\sum_{i} \lambda_{i} \mathbf{v}_{\mathbf{i}} \mid \lambda_{i} \geq 0 \text { for all } i,\right\}
$$

Under what circumstances is $B=\mathbb{R}^{3}$? Under what circumstances is B a closed half space (i.e. one side of a plane and all the points on that plane)? What other shapes can arise?
Solution: We have $B=\mathbb{R}^{3}$ exactly when the origin is strictly inside the cube. If the origin is in the interior of a face, then B is a half-space. If the origin is in the interior of an edge, then B is the intersection of two half-spaces defined by perpendicular planes. If the origin is at a vertex of the cube, then B is the intersection of three half-spaces defined by pairwise perpendicular planes (also known as an octant). If the origin is strictly outside the cube, then B will be an infinite cone with finitely many planar faces.

