Algebra 1; MA20008; Sheet 4 Solutions

G.C.Smith@bath.ac.uk

2-xi-2004

- Suppose that n is a natural number or 0, and F is a field. Show that there is a vector space over F of dimension n.
 Solution The zero space has basis Ø and so has dimension |Ø| = 0. If n > 0, then Fⁿ has dimension n.
- Suppose that V is a vector space with subspaces U and W both of dimension n < ∞. Does it follow that V is finite dimensional? Does it follow that V has dimension n? Does it follow that U = W? In each case you should supply a reason for your answer.
 Solution The answers are not not to illustrate all three points.

Solution The answers are no, no and no. To illustrate all three points, let F be a field and let V = F[X] be the set of polynomials in X with coefficients in F. This V is not a vector space of finite dimension. Let U be the subset of V consisting of polynomials of degree at most 1. Let W be the subset of V consisting of polynomials of degree at most 2 but which have constant term 0. Now $U \neq W$, dim $U = \dim W = 2$ but dim $V \neq 2$.

3. Let V be a vector space of dimension n. Suppose that V_0, V_1, \ldots, V_m are subspaces of V with

$$V_0 \leq V_1 \leq \cdots \leq V_m.$$

(a) Suppose that m > n. Show that there is $i \in \{1, 2, ..., m\}$ such that $V_i = V_{i-1}$.

Solution The dimensions of the spaces V_0, V_1, \ldots, V_m are weakly increasing. If m > n, then two spaces V_i and V_{i-1} must have the same dimension, and therefore (theorem in lectures) $V_{i-1} = V_i$.

(b) Suppose that $m \leq n$. Show that it may be that the spaces

$$V_0, V_1, \ldots, V_m$$

are distinct.

Solution Let $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_n}$. Let V_j be the span of $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_j}$. This does the job.

- 4. Suppose that $\alpha : U \longrightarrow W$ is a linear map between vector spaces over the same field. Let $\mathbf{x_1}, \mathbf{x_2}, \ldots, \mathbf{x_n}$ be vectors in U.
 - (a) Suppose that $U = \langle \mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n} \rangle$ and α is surjective. Prove that $W = \langle \alpha(\mathbf{x_1}), \alpha(\mathbf{x_2}), \dots, \alpha(\mathbf{x_n}) \rangle$. Solution Suppose that $\mathbf{w} \in W$. Since α is surjective there is $\mathbf{u} \in U$ such that $\alpha(\mathbf{u}) = \mathbf{w}$. Now $\mathbf{u} = \sum_i \lambda \mathbf{x_i}$ so $\mathbf{w} = \alpha \left(\sum_i \lambda_i \mathbf{x_i} \right) = \sum_i \lambda_i \alpha(\mathbf{x_i})$.
 - (b) Suppose that $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}$ are linearly independent and α is injective. Show that $\alpha(\mathbf{x_1}), \alpha(\mathbf{x_2}), \dots, \alpha(\mathbf{x_n})$ are linearly independent. Solution Suppose that $\sum_i \lambda_i \alpha(\mathbf{x_i}) = \mathbf{0}$. Therefore $\alpha(\sum_i \lambda_i \mathbf{x_i}) = \mathbf{0}$. Now by injectivity $\sum_i \lambda_i \mathbf{x_i} = \mathbf{0}$. However, the $\mathbf{x_i}$ are linearly independent, so each λ_i is 0.
- 5. Let $\zeta = e^{\frac{2\pi i}{5}} \in \mathbb{C}$.
 - (a) Suppose that we view C as a vector space over Q. Show that 1, ζ, ζ², ζ³ are linearly independent.
 Solution ζ is a root of X⁴ + X³ + X² + X + 1. However, ζ is not a root of any rational polynomial of smaller degree. To see this, note that a smallest degree non-zero rational polynomial having α as a root must divide X⁴ + X³ + X² + X + 1. First eliminate the possibility of a linear factor, and then a quadratic factor.
 - (b) Suppose that we view C as a vector space over R. Show that 1, ζ, ζ², ζ³ are linearly dependent.
 Solution ζ = ζ⁴ = ζ⁻¹. Now (X − ζ)(X − ζ) is a real polynomial of degree 2 which has ζ as a root.
- 6. Let V be a vector space with subspaces U, W such that U and W are both finite dimensional. Let $\mathbf{u_1}, \mathbf{u_2}, \ldots, \mathbf{u_m}$ be a basis of U and $\mathbf{w_1}, \mathbf{w_2}, \ldots, \mathbf{w_n}$ be a basis of W.

- (a) Show that U + W is finite dimensional. Solution Certainly $U + W = \langle \mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}, \mathbf{w_1}, \mathbf{w_2}, \dots, \mathbf{w_n} \rangle$, so U + W has a finite spanning set and therefore a finite basis.
- (b) Show that $\mathbf{u_1}, \mathbf{u_2}, \ldots, \mathbf{u_m}, \mathbf{w_1}, \mathbf{w_2}, \ldots, \mathbf{w_n}$ need not be a basis of U + W.

Solution Well, perhaps $\mathbf{u}_1 = \mathbf{w}_1$. That would do.

(c) Suppose that $U + W = U \oplus W$. Show that

$$u_1, u_2, \ldots, u_m, w_1, w_2, \ldots, w_n$$

is a basis of U + W.

Solution Spanning is not an issue; linear independence is. Suppose that there are scalars λ_i , μ_i such that $\sigma_i(\lambda_i \mathbf{u_i}) + \sigma_j(\mu_j \mathbf{w_j}) = \mathbf{0}$. Since $U + W = U \oplus W$ it follows that $\sigma_i(\lambda_i \mathbf{u_i}) = \mathbf{0}$ and $\sigma_i \mu_j \mathbf{w_j} = \mathbf{0}$. Now λ_i and μ_j are 0 for every *i* and *j* by the linear independence of the relevant sequences.

- (d) Suppose that $\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}, \mathbf{w_1}, \mathbf{w_2}, \dots, \mathbf{w_n}$ is a basis of U + W. Show that $U + W = U \oplus W$. Solution It suffices to show that $U \cap W = 0$. Suppose not, then there is $\mathbf{v} \in U \cap W$ with $\mathbf{v} \neq \mathbf{0}$. Now $\mathbf{v} \in U$ so $\mathbf{v} = \sum \theta_i \mathbf{u_i}$ and $\mathbf{v} = \sum \psi_j \mathbf{u_j}$. This yields a non-trivial linear relation $\sum \theta_i \mathbf{u_i} - \sum \psi_j \mathbf{w_j}$ among the vectors $\mathbf{u_i}$ and $\mathbf{w_i}$, which cannot therefore be linearly independent.
- 7. Let I be a set. Let V be the set of real valued functions on I; more formally

$$V = \{f | f : I \longrightarrow \mathbb{R}\}.$$

Define addition on V by (f + h)(x) := f(x) + g(x) for all $x \in I$. If $\lambda \in \mathbb{R}$ and $f \in V$ we define $\lambda \cdot f \in V$ by $(\lambda \cdot f)(x) = (\lambda)(f(x))$ where the final multiplication is just the product (in \mathbb{R}).

- (a) Check that V is now a vector space over ℝ.
 Solution This is routine.
- (b) For each i ∈ I, define a function δ_i ∈ V where δ_i(x) = δ_{i,x} (Krönecker delta). Thus δ_i(i) = 1 and δ_i(x) = 0 if x ≠ i. Show that the vectors δ_i are linearly independent.
 Solution Suppose that λ_i are scalars (all but finitely many of

which are 0). Then $\sum_{i}^{\prime} \lambda_{i} \delta_{i} = 0$. Choose any $j \in I$; then λ_{i} are scalars (all but finitely many of which are 0). Then $\sum_{i}^{\prime} \lambda_{i} \delta_{i}(j) = 0$ so $\lambda_{j} = 0$. Thus these maps are linearly independent.

- (c) Let $W = \langle \delta_i : i \in I \rangle$ be the span of all the δ_i . Show that the vectors δ_i form a basis of W (in that they are a linearly independent spanning set for W). Well they are linearly independent by the previous answer, and course they span W by the design of W.
- (d) Show that W = V if and only if I is finite. W is the subset of V consisting of functions of finite support, i.e. functions which take non-zero values at only finitely many elements of the domain. The two subsets co-incide if and only if I is finite.
- (e) Give an explicit example of a vector space with an clearly describable uncountable basis (no set theoretic metaphysics allowed).
 Solution See part (c).