Algebra 1; MA20008; Sheet 4 Solutions

G.C.Smith@bath.ac.uk
2 -xi-2004

1. Suppose that n is a natural number or 0 , and F is a field. Show that there is a vector space over F of dimension n.
Solution The zero space has basis \emptyset and so has dimension $|\emptyset|=0$. If $n>0$, then F^{n} has dimension n.
2. Suppose that V is a vector space with subspaces U and W both of dimension $n<\infty$. Does it follow that V is finite dimensional? Does it follow that V has dimension n? Does it follow that $U=W$? In each case you should supply a reason for your answer.
Solution The answers are no, no and no. To illustrate all three points, let F be a field and let $V=F[X]$ be the set of polynomials in X with coefficients in F. This V is not a vector space of finite dimension. Let U be the subset of V consisting of polynomials of degree at most 1 . Let W be the subset of V consisting of polynomials of degree at most 2 but which have constant term 0 . Now $U \neq W, \operatorname{dim} U=\operatorname{dim} W=2$ but $\operatorname{dim} V \neq 2$.
3. Let V be a vector space of dimension n. Suppose that $V_{0}, V_{1}, \ldots, V_{m}$ are subspaces of V with

$$
V_{0} \leq V_{1} \leq \cdots \leq V_{m} .
$$

(a) Suppose that $m>n$. Show that there is $i \in\{1,2, \ldots, m\}$ such that $V_{i}=V_{i-1}$.
Solution The dimensions of the spaces $V_{0}, V_{1}, \ldots, V_{m}$ are weakly increasing. If $m>n$, then two spaces V_{i} and V_{i-1} must have the same dimension, and therefore (theorem in lectures) $V_{i-1}=V_{i}$.
(b) Suppose that $m \leq n$. Show that it may be that the spaces

$$
V_{0}, V_{1}, \ldots, V_{m}
$$

are distinct.
Solution Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}$. Let V_{j} be the span of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{j}}$. This does the job.
4. Suppose that $\alpha: U \longrightarrow W$ is a linear map between vector spaces over the same field. Let $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}$ be vectors in U.
(a) Suppose that $U=\left\langle\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}\right\rangle$ and α is surjective. Prove that $W=\left\langle\alpha\left(\mathbf{x}_{1}\right), \alpha\left(\mathbf{x}_{\mathbf{2}}\right), \ldots, \alpha\left(\mathbf{x}_{\mathbf{n}}\right)\right\rangle$.
Solution Suppose that $\mathbf{w} \in W$. Since α is surjective there is $\mathbf{u} \in U$ sich that $\alpha(\mathbf{u})=\mathbf{w}$. Now $\mathbf{u}=\sum_{i} \lambda \mathbf{x}_{\mathbf{i}}$ so $\mathbf{w}=\alpha\left(\sum_{i} \lambda_{i} \mathbf{x}_{\mathbf{i}}\right)=$ $\sum_{i} \lambda_{i} \alpha\left(\mathbf{x}_{\mathbf{i}}\right)$.
(b) Suppose that $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}$ are linearly independent and α is injective. Show that $\alpha\left(\mathbf{x}_{\mathbf{1}}\right), \alpha\left(\mathbf{x}_{\mathbf{2}}\right), \ldots, \alpha\left(\mathbf{x}_{\mathbf{n}}\right)$ are linearly independent. Solution Suppose that $\sum_{i} \lambda_{i} \alpha\left(\mathbf{x}_{\mathbf{i}}\right)=\mathbf{0}$. Therefore $\alpha\left(\sum_{i} \lambda_{i} \mathbf{x}_{\mathbf{i}}\right)=$ $\mathbf{0}$. Now by injectivity $\sum_{i} \lambda_{i} \mathbf{x}_{\mathbf{i}}=\mathbf{0}$. However, the $\mathbf{x}_{\mathbf{i}}$ are linearly independent, so each λ_{i} is 0 .
5. Let $\zeta=e^{\frac{2 \pi i}{5}} \in \mathbb{C}$.
(a) Suppose that we view \mathbb{C} as a vector space over \mathbb{Q}. Show that $1, \zeta, \zeta^{2}, \zeta^{3}$ are linearly independent.
Solution ζ is a root of $X^{4}+X^{3}+X^{2}+X+1$. However, ζ is not a root of any rational polynomial of smaller degree. To see this, note that a smallest degree non-zero rational polynomial having α as a root must divide $X^{4}+X^{3}+X^{2}+X+1$. First eliminate the possibility of a linear factor, and then a quadratic factor.
(b) Suppose that we view \mathbb{C} as a vector space over \mathbb{R}. Show that $1, \zeta, \zeta^{2}, \zeta^{3}$ are linearly dependent.
Solution $\bar{\zeta}=\zeta^{4}=\zeta^{-1}$. Now $(X-\zeta)(X-\bar{\zeta})$ is a real polynomial of degree 2 which has ζ as a root.
6. Let V be a vector space with subspaces U, W such that U and W are both finite dimensional. Let $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{m}}$ be a basis of U and $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{n}}$ be a basis of W.
(a) Show that $U+W$ is finite dimensional.

Solution Certainly $U+W=\left\langle\mathbf{u}_{1}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{m}}, \mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{n}}\right\rangle$, so $U+W$ has a finite spanning set and therefore a finite basis.
(b) Show that $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{m}}, \mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{n}}$ need not be a basis of $U+W$.
Solution Well, perhaps $\mathbf{u}_{\mathbf{1}}=\mathbf{w}_{\mathbf{1}}$. That would do.
(c) Suppose that $U+W=U \oplus W$. Show that

$$
\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{m}}, \mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{\mathbf{n}}
$$

is a basis of $U+W$.
Solution Spanning is not an issue; linear independence is. Suppose that there are scalars λ_{i}, μ_{i} such that $\sigma_{i}\left(\lambda_{i} \mathbf{u}_{\mathbf{i}}\right)+\sigma_{j}\left(\mu_{j} \mathbf{w}_{\mathbf{j}}\right)=\mathbf{0}$. Since $U+W=U \oplus W$ it follows that $\sigma_{i}\left(\lambda_{i} \mathbf{u}_{\mathbf{i}}\right)=\mathbf{0}$ and $\sigma_{i} \mu_{j} \mathbf{w}_{\mathbf{j}}=\mathbf{0}$. Now λ_{i} and μ_{j} are 0 for every i and j by the linear independence of the relevant sequences.
(d) Suppose that $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{m}}, \mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\mathbf{n}}$ is a basis of $U+W$. Show that $U+W=U \oplus W$.
Solution It suffices to show that $U \cap W=0$. Suppose not, then there is $\mathbf{v} \in U \cap W$ with $\mathbf{v} \neq \mathbf{0}$. Now $\mathbf{v} \in U$ so $\mathbf{v}=\sum \theta_{i} \mathbf{u}_{\mathbf{i}}$ and $\mathbf{v}=$ $\sum \psi_{j} \mathbf{u}_{\mathbf{j}}$. This yields a non-trivial linear relation $\sum \theta_{i} \mathbf{u}_{\mathbf{i}}-\sum \psi_{j} \mathbf{w}_{\mathbf{j}}$ among the vectors $\mathbf{u}_{\mathbf{i}}$ and $\mathbf{w}_{\mathbf{i}}$, which cannot therefore be linearly independent.
7. Let I be a set. Let V be the set of real valued functions on I; more formally

$$
V=\{f \mid f: I \longrightarrow \mathbb{R}\} .
$$

Define addition on V by $(f+h)(x):=f(x)+g(x)$ for all $x \in I$. If $\lambda \in \mathbb{R}$ and $f \in V$ we define $\lambda \cdot f \in V$ by $(\lambda \cdot f)(x)=(\lambda)(f(x))$ where the final multiplication is just the product (in \mathbb{R}).
(a) Check that V is now a vector space over \mathbb{R}.

Solution This is routine.
(b) For each $i \in I$, define a function $\delta_{i} \in V$ where $\delta_{i}(x)=\delta_{i, x}$ (Krönecker delta). Thus $\delta_{i}(i)=1$ and $\delta_{i}(x)=0$ if $x \neq i$. Show that the vectors δ_{i} are linearly independent.
Solution Suppose that λ_{i} are scalars (all but finitely many of
which are 0). Then $\sum_{i}^{\prime} \lambda_{i} \delta_{i}=0$. Choose any $j \in I_{i}$ then λ_{i} are scalars (all but finitely many of which are 0). Then $\left.\sum_{i}^{\prime} \lambda_{i} \delta_{i}\right)(j)=0$ so $\lambda_{j}=0$. Thus these maps are linearly independent.
(c) Let $W=\left\langle\delta_{i}: i \in I\right\rangle$ be the span of all the δ_{i}. Show that the vectors δ_{i} form a basis of W (in that they are a linearly independent spanning set for W). Well they are linearly independent by the previous answer, and course they span W by the design of W.
(d) Show that $W=V$ if and only if I is finite. W is the subset of V consisting of functions of finite support, i.e. functions which take non-zero values at only finitely many elements of the domain. The two subsets co-incide if and only if I is finite.
(e) Give an explicit example of a vector space with an clearly describable uncountable basis (no set theoretic metaphysics allowed).
Solution See part (c).

