MA20008 Algebra 1, 2004, Sheet 5

Geoff Smith, http://www.bath.ac.uk/~masgcs

- 1. Let V be a vector space of dimension n.
 - (a) Suppose that we have subspaces

$$0 = V_0 < V_1 < V_2 \dots < V_n = V$$

with dim $V_i = i$ for every i = 0, 1, ..., n. For each i > 0 choose $\mathbf{v_i} \in V_i$ but $\mathbf{v_i} \notin V_{i-1}$. Show that

$$\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$$

is a basis of V.

Solution It suffices to demonstrate linear independence. Suppose, for contradiction, that

$$\sum_{i=1}^r \lambda_i \mathbf{v_i}$$

with $\lambda_r \neq 0$. Then

$$\mathbf{v_r} = -\lambda_r^{-1} \left(\sum_{i=1}^{r-1} \lambda_i \mathbf{v_i} \right)$$

so $\mathbf{v}_{\mathbf{r}} \in V_{r-1}$, a contradiction.

(b) Suppose that

$$\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$$

is a basis of V. Show that there are subspaces

$$0 = V_0 < V_1 < V_2 \cdots < V_n = V$$

with dim $V_i = i$ for every i = 0, 1, ..., n such that $\mathbf{v_i} \in V_i$ but $\mathbf{v_i} \notin V_{i-1}$ for every i > 0.

Solution Let $V_i = \langle \mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_i} \rangle$. The linear independence of these vectors ensures that dim $V_i = i$.

- 2. Let V be a vector space of dimension n. Suppose that $\alpha : V \longrightarrow V$ is a linear map.
 - (a) Show that $V \ge Im \alpha \ge Im \alpha^2 \ge ... \ge 0$. Observation: Im α^r denotes the map defined by composing r copies of α . **Solution** Suppose that $\mathbf{v} \in Im \alpha^{r+1}$, so there is $\mathbf{w} \in V$ such that $\mathbf{v} = \alpha^{r+1}(\mathbf{w}) = \alpha^r(\alpha((\mathbf{w})) \in Im \alpha^r)$.
 - (b) Show that $0 \leq Ker \alpha \leq Ker \alpha^2 \leq \cdots \leq V$. Solution Suppose that $\mathbf{v} \in Ker \alpha^r$, then $\alpha^r(\mathbf{v}) = \mathbf{0}$ so $\alpha^{r+1}(\mathbf{v}) = \alpha(\mathbf{0}) = \mathbf{0}$. Therefore $\mathbf{v} \in Ker \alpha^{r+1}$.
 - (c) Suppose that r is a natural number and $\operatorname{Im} \alpha^r = \operatorname{Im} \alpha^{r+1}$. Show that $\operatorname{Im} \alpha^t = \operatorname{Im} \alpha^r$ for all natural numbers $t \ge r$. Solution For all $\mathbf{v} \in V$ we have $\alpha^r(\mathbf{v}) = \alpha^{r+1}(\mathbf{v_1})$ for some $\mathbf{v_1} \in V$. Now $\alpha^{r+1}(\mathbf{v_1}) = \alpha(\alpha^r(\mathbf{v_1})) = \alpha(\alpha^{r+1}(\mathbf{v_2}))$ for some $\mathbf{v_2} \in V$. Continuing in this way we have $\alpha^r(\mathbf{v}) = \alpha^{r+i}(\mathbf{v_i})$ for some $\mathbf{v_i} \in V$ for every positive *i*. Therefore $\operatorname{Im} \alpha^r \le \operatorname{Im} \alpha^{r+i}$ for all positive *i*. However we established that $\operatorname{Im} \alpha^{r+i} \le \operatorname{Im} \alpha^r$ in 2(a). We are done.
 - (d) Let V be a vector space of dimension n. Suppose that $\alpha : V \longrightarrow V$ is a linear map such that $\alpha^2 = 0$ (the zero map). Show that the nullity ν_{α} satisfies $2\nu_{\alpha} \ge n$.

Solution Im $\alpha \leq$ Ker α so $\rho_{\alpha} \leq \nu_{\alpha}$. The rank-nullity theorem asserts that $\rho_{\alpha} + \nu_{\alpha} = n$. Therefore $\nu_{\alpha} + \nu_{\alpha} \geq n$ and we are done.

- (e) Suppose that there is a natural number m such that α^m is the zero map 0. Prove that αⁿ is 0.
 Solution This follows from parts (a) and (c) and observing that the dimension of Im αⁱ is no more that n i.
- 3. Suppose that V is a vector space of dimension n and that $\alpha : V \longrightarrow V$ is a linear map. Suppose that α^3 is 0, the zero map. Show that $\nu_{\alpha} \ge n/3$ where ν_{α} denotes the nullity of α . Hint: let $V_0 = V$, $V_1 = \text{Im } \alpha$ and $V_2 = \text{Im } \alpha^2$. Let $\alpha_1 : V \longrightarrow V_1$ and $\alpha_2 : V_1 \longrightarrow V_2$ be the maps defined by $\alpha_i(\mathbf{v}) = \alpha(\mathbf{v})$ for all $\mathbf{v} \in V_{i-1}$. Deploy the rank nullity theorem.

Solution Let ρ, ν denote the rank and nullity of α . Also let ρ_i, ν_i denote the rank and nullity of α_i . Now $n = \nu_1 + \rho_1$, $\rho_1 = \nu_2 + \rho_2$. Also $\nu_1 = \nu$ and $\nu_2 \leq \nu$. Moreover $\rho_2 \leq \nu$ so $3\nu \geq n$ and we are done.

- 4. Let V be a finite dimensional vector space, with W, X, Y and Z all subspaces of V.
 - (a) Show that

$$\dim(X \cap Y) + \dim((X + Y) \cap Z)$$

=
$$\dim(Y \cap Z) + \dim((Y + Z) \cap X)$$

=
$$\dim(Z \cap X) + \dim((Z + X) \cap Y).$$

Solution $\dim(X+Y+Z) = \dim((X+Y)+Z) = \dim(X+Y) + \dim Z - \dim((X+Y)\cap Z) = \dim X + \dim Y + \dim Z - \dim(X\cap Y) - \dim((X+Y)\cap Z)$. Permute the subspaces and we are done.

(b) Show that

$$\dim(W \cap X) + \dim(Y \cap Z) + \dim((W + X) \cap (Y + Z))$$

=
$$\dim(W \cap Y) + \dim(X \cap Z) + \dim((W + Y) \cap (X + Z))$$

=
$$\dim(W \cap Z) + \dim(X \cap Y) + \dim((W + Z) \cap (X + Y))$$

Solution W + X + Y + Z = (W + X) + (Y + Z) = (W + Y) + (X + Z) = (W + Z) + (X + Y). Take dimensions and you are done.

Hint: this question is not hard. You need an idea. Please do not start picking bases; that way madness lies.