MA20008 Algebra 1, 2004, Sheet 5

Geoff Smith, http://www.bath.ac.uk/~masgcs

1. Let V be a vector space of dimension n.
(a) Suppose that we have subspaces

$$
0=V_{0}<V_{1}<V_{2} \cdots<V_{n}=V
$$

with $\operatorname{dim} V_{i}=i$ for every $i=0,1, \ldots, n$. For each $i>0$ choose $\mathbf{v}_{\mathbf{i}} \in V_{i}$ but $\mathbf{v}_{\mathbf{i}} \notin V_{i-1}$. Show that

$$
\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathrm{n}}
$$

is a basis of V.
Solution It suffices to demonstrate linear independence. Suppose, for contradiction, that

$$
\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{\mathbf{i}}
$$

with $\lambda_{r} \neq 0$. Then

$$
\mathbf{v}_{\mathbf{r}}=-\lambda_{r}^{-1}\left(\sum_{i=1}^{r-1} \lambda_{i} \mathbf{v}_{\mathbf{i}}\right)
$$

so $\mathbf{v}_{\mathbf{r}} \in V_{r-1}$, a contradiction.
(b) Suppose that

$$
\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}
$$

is a basis of V. Show that there are subspaces

$$
0=V_{0}<V_{1}<V_{2} \cdots<V_{n}=V
$$

with $\operatorname{dim} V_{i}=i$ for every $i=0,1, \ldots, n$ such that $\mathbf{v}_{\mathbf{i}} \in V_{i}$ but $\mathbf{v}_{\mathbf{i}} \notin V_{i-1}$ for every $i>0$.
Solution Let $V_{i}=\left\langle\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{i}}\right\rangle$. The linear independence of these vectors ensures that $\operatorname{dim} V_{i}=i$.
2. Let V be a vector space of dimension n. Suppose that $\alpha: V \longrightarrow V$ is a linear map.
(a) Show that $V \geq \operatorname{Im} \alpha \geq \operatorname{Im} \alpha^{2} \geq \ldots \geq 0$. Observation: $\operatorname{Im} \alpha^{r}$ denotes the map defined by composing r copies of α.
Solution Suppose that $\mathbf{v} \in \operatorname{Im} \alpha^{r+1}$, so there is $\mathbf{w} \in V$ such that $\mathbf{v}=\alpha^{r+1}(\mathbf{w})=\alpha^{r}\left(\alpha((\mathbf{w})) \in \operatorname{Im} \alpha^{r}\right.$.
(b) Show that $0 \leq \operatorname{Ker} \alpha \leq \operatorname{Ker} \alpha^{2} \leq \cdots \leq V$.

Solution Suppose that $\mathbf{v} \in \operatorname{Ker} \alpha^{r}$, then $\alpha^{r}(\mathbf{v})=\mathbf{0}$ so $\alpha^{r+1}(\mathbf{v})=$ $\alpha(\mathbf{0})=\mathbf{0}$. Therefore $\mathbf{v} \in \operatorname{Ker} \alpha^{r+1}$.
(c) Suppose that r is a natural number and $\operatorname{Im} \alpha^{r}=\operatorname{Im} \alpha^{r+1}$. Show that $\operatorname{Im} \alpha^{t}=\operatorname{Im} \alpha^{r}$ for all natural numbers $t \geq r$.
Solution For all $\mathbf{v} \in V$ we have $\alpha^{r}(\mathbf{v})=\alpha^{r+1}\left(\mathbf{v}_{\mathbf{1}}\right)$ for some $\mathbf{v}_{\mathbf{1}} \in V$. Now $\alpha^{r+1}\left(\mathbf{v}_{\mathbf{1}}\right)=\alpha\left(\alpha^{r}\left(\mathbf{v}_{\mathbf{1}}\right)\right)=\alpha\left(\alpha^{r+1}\left(\mathbf{v}_{\mathbf{2}}\right)\right)$ for some $\mathbf{v}_{\mathbf{2}} \in V$. Continuing in this way we have $\alpha^{r}(\mathbf{v})=\alpha^{r+i}\left(\mathbf{v}_{\mathbf{i}}\right)$ for some $\mathbf{v}_{\mathbf{i}} \in V$ for every positive i. Therefore $\operatorname{Im} \alpha^{r} \leq \operatorname{Im} \alpha^{r+i}$ for all positive i. However we established that $\operatorname{Im} \alpha^{r+i} \leq \operatorname{Im} \alpha^{r}$ in 2(a). We are done.
(d) Let V be a vector space of dimension n. Suppose that $\alpha: V \longrightarrow V$ is a linear map such that $\alpha^{2}=0$ (the zero map). Show that the nullity ν_{α} satisfies $2 \nu_{\alpha} \geq n$.
Solution $\operatorname{Im} \alpha \leq \operatorname{Ker} \alpha$ so $\rho_{\alpha} \leq \nu_{\alpha}$. The rank-nullity theorem asserts that $\rho_{\alpha}+\nu_{\alpha}=n$. Therefore $\nu_{\alpha}+\nu_{\alpha} \geq n$ and we are done.
(e) Suppose that there is a natural number m such that α^{m} is the zero map 0. Prove that α^{n} is 0 .
Solution This follows from parts (a) and (c) and observing that the dimension of $\operatorname{Im} \alpha^{i}$ is no more that $n-i$.
3. Suppose that V is a vector space of dimension n and that $\alpha: V \longrightarrow V$ is a linear map. Suppose that α^{3} is 0 , the zero map. Show that $\nu_{\alpha} \geq n / 3$ where ν_{α} denotes the nullity of α. Hint: let $V_{0}=V, V_{1}=\operatorname{Im} \alpha$ and $V_{2}=\operatorname{Im} \alpha^{2}$. Let $\alpha_{1}: V \longrightarrow V_{1}$ and $\alpha_{2}: V_{1} \longrightarrow V_{2}$ be the maps defined by $\alpha_{i}(\mathbf{v})=\alpha(\mathbf{v})$ for all $\mathbf{v} \in V_{i-1}$. Deploy the rank nullity theorem.
Solution Let ρ, ν denote the rank and nullity of α. Also let ρ_{i}, ν_{i} denote the rank and nullity of α_{i}. Now $n=\nu_{1}+\rho_{1}, \rho_{1}=\nu_{2}+\rho_{2}$. Also $\nu_{1}=\nu$ and $\nu_{2} \leq \nu$. Moreover $\rho_{2} \leq \nu$ so $3 \nu \geq n$ and we are done.
4. Let V be a finite dimensional vector space, with W, X, Y and Z all subspaces of V.
(a) Show that

$$
\begin{aligned}
& \operatorname{dim}(X \cap Y)+\operatorname{dim}((X+Y) \cap Z) \\
= & \operatorname{dim}(Y \cap Z)+\operatorname{dim}((Y+Z) \cap X) \\
= & \operatorname{dim}(Z \cap X)+\operatorname{dim}((Z+X) \cap Y) .
\end{aligned}
$$

Solution $\operatorname{dim}(X+Y+Z)=\operatorname{dim}((X+Y)+Z)=\operatorname{dim}(X+Y)+$ $\operatorname{dim} Z-\operatorname{dim}((X+Y) \cap Z)=\operatorname{dim} X+\operatorname{dim} Y+\operatorname{dim} Z-\operatorname{dim}(X \cap$ $Y)-\operatorname{dim}((X+Y) \cap Z)$. Permute the subspaces and we are done.
(b) Show that

$$
\begin{aligned}
& \operatorname{dim}(W \cap X)+\operatorname{dim}(Y \cap Z)+\operatorname{dim}((W+X) \cap(Y+Z)) \\
= & \operatorname{dim}(W \cap Y)+\operatorname{dim}(X \cap Z)+\operatorname{dim}((W+Y) \cap(X+Z)) \\
= & \operatorname{dim}(W \cap Z)+\operatorname{dim}(X \cap Y)+\operatorname{dim}((W+Z) \cap(X+Y))
\end{aligned}
$$

Solution $W+X+Y+Z=(W+X)+(Y+Z)=(W+Y)+$ $(X+Z)=(W+Z)+(X+Y)$. Take dimensions and you are done.

Hint: this question is not hard. You need an idea. Please do not start picking bases; that way madness lies.

