MA20008 Algebra 1, 2004, Sheet 6 Solutions

Geoff Smith, http://www.bath.ac.uk/~masgcs

- 1. Let V be a vector space of dimension n. Suppose that $\alpha : V \to V$ is a linear map. Show that the following are equivalent.
 - (a) α is injective.
 - (b) α is bijective.
 - (c) α is surjective.
 - (d) There is a basis $\mathbf{v_1}, \ldots, \mathbf{v_n}$ of V such that $\alpha(\mathbf{v_1}), \ldots, \alpha(\mathbf{v_n})$ is a basis of V.
 - (e) For every basis $\mathbf{v_1}, \ldots, \mathbf{v_n}$ of V, the vectors $\alpha(\mathbf{v_1}), \ldots, \alpha(\mathbf{v_n})$ also form a basis of V.

Solution The rank nullity theorem tells us that α is injective if and only if it is surjective. Therefore (a), (b) and (c) are equivalent. Now (c) implies (e) since a spanning set must map to a spanning set, and a spanning set of size *n* must be a basis. Certainly (e) implies (d). However, condition (d) forces the image of α to include a spanning set, and so (c) is forced. We are done.

2. Suppose that

$$X = \left(\begin{array}{cc} A & B \\ 0 & C \end{array}\right)$$

is a 2r by 2r matrix built from the four r by r matrices A, B, C and the zero matrix 0. Suppose that X has an inverse matrix. Describe that matrix in terms of A, B, C and 0.

Solution Let the inverse matrix be of the shape

$$Y = \left(\begin{array}{cc} D & E \\ F & G \end{array}\right)$$

where D, E, F and G are r by r matrices. Now

- (a) $AD + BF = I_r$,
- (b) AE + BG = 0,
- (c) CF = 0 and
- (d) $CG = I_r$.

From (d) $G = C^{-1}$. From (c) and premultiplication by C^{-1} we obtain F = 0. Next (a) forces $D = A^{-1}$ and (b) implies that $AE + BC^{-1} = 0$ so $E = -A^{-1}BC^{-1}$.

3. The matrix

$$F = \left(\begin{array}{rr} 1 & 1\\ 1 & 0 \end{array}\right)$$

has entries in the Field F_7 , the integers modulo 7. Calculate

- (a) F^2 .
- (b) F^5 .
- (c) F^{1000} .
- (d)

$$\sum_{i=0}^{999} F^i$$

where F^0 denotes the identity matrix.

Solution For integers $n \ge 0$ define the Fibonacci sequence mod 7 via $F_0 = 0$ and $F_1 = 1$ where $F_0, F_1 \in \mathbb{Z}_7$. Then inductively $F_n = F_{n-1} + F_{n-2}$ whenever $n \ge 2$. Thus

 $(F_n) = 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, \dots$

Thus $F_{16} = 0$ and $F_{17} = 1$ so (F_n) is periodic with fundamental period 16. Now

$$F^n = \left(\begin{array}{cc} F_{n+1} & F_n \\ F_n & F_{n-1} \end{array}\right)$$

by induction on n. Therefore

(a)

$$F^{2} = \left(\begin{array}{cc} F_{3} & F_{2} \\ F_{2} & F_{1} \end{array}\right) = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right).$$

$$F^{5} = \left(\begin{array}{cc} F_{6} & F_{5} \\ F_{5} & F_{4} \end{array}\right) = \left(\begin{array}{cc} 1 & 5 \\ 5 & 3 \end{array}\right)$$

(c)

$$F^{1000} = \begin{pmatrix} F_{1001} & F_{1000} \\ F_{1000} & F_{999} \end{pmatrix} = \begin{pmatrix} F_9 & F_8 \\ F_8 & F_7 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}$$

(d) The matrix

$$F = \left(\begin{array}{cc} 1 & 1\\ 1 & 0 \end{array}\right)$$

has entries in \mathbb{Q} , Let I denote the 2 by 2 identity matrix. Show that I and F are linearly independent but that I, F and F² are linearly dependent elements of the vector space of 2 by 2 matrices with rational entries (with scalars in \mathbb{Q}).

Solution By inspection or from the Fibonacci recurrence $F^2 = F + 1$ so $F^2 - F - 1$ is a non-trivial linear relation among 1, F and F^2 . Suppose that $\lambda, \mu \in \mathbb{Q}$ and $\lambda I + \mu F = 0$ then

- i. $\lambda + \mu = 0$,
- ii. $\mu = 0$,
- iii. $\lambda + \mu = 0$ and
- iv. 0 + 0 = 0.

by inspecting the four positions in turn. These equations force $\lambda = \mu = 0$ as required.

- 4. Suppose that $\alpha, \beta: V \longrightarrow V$ are a pair of commuting linear maps.
 - (a) Prove that both $Im \alpha$ and $Ker \alpha$ are β -invariant spaces. **Solution** Suppose that $\mathbf{v} \in Im \alpha$ so there is $\mathbf{u} \in V$ such that $\alpha(\mathbf{u}) = \mathbf{v}$. Now $\beta(\mathbf{v}) = \beta(\alpha(\mathbf{u})) = \alpha(\beta(\mathbf{u})) \in Im \alpha$. ON the other hand, suppose that $\mathbf{x} \in Ker \alpha$, then $\alpha(\beta(\mathbf{x})) = \beta(\alpha(\mathbf{x})) = \beta(\mathbf{0}) = \mathbf{0}$. Thus $\beta(\mathbf{x}) \in Ker \alpha$ as required.
 - (b) Prove that $\operatorname{Im} \alpha + \operatorname{Im} \beta$ is both α -invariant and β -invariant. Solution Each of $\operatorname{Im} \alpha$ and $\operatorname{Im} \beta$ is both α -invariant and β -invariant. It follows that their sum has the same property, because if $\mathbf{x} \in \operatorname{Im} \alpha$ and $\mathbf{y} \in \operatorname{Im} \beta$, then $\alpha(\mathbf{x} + \mathbf{y}) = \alpha(\mathbf{x}) + \alpha(\mathbf{y})$

which is the sum of two vectors, the first of which is in Im α and the second in Im β . The sum of subspaces is also β -invariant by symmetry.

(c) Prove that $\operatorname{Im} \alpha \cap \operatorname{Im} \beta$ is both α -invariant and β -invariant. Solution This is a formality. If \mathbf{x} is in the intersection, then $\alpha(\mathbf{x}) \in \operatorname{Im} \alpha$ and $\alpha(\mathbf{x}) \in \operatorname{Im} \beta$ so $\alpha(\mathbf{x}) \in \operatorname{Im} \alpha \cap \operatorname{Im} \beta$. The same holds for β by symmetry.