MA20008 Algebra 1, 2004, Sheet 6 Solutions

Geoff Smith, http://www.bath.ac.uk/~masgcs

1. Let V be a vector space of dimension n. Suppose that $\alpha: V \rightarrow V$ is a linear map. Show that the following are equivalent.
(a) α is injective.
(b) α is bijective.
(c) α is surjective.
(d) There is a basis $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ of V such that $\alpha\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, \alpha\left(\mathbf{v}_{\mathbf{n}}\right)$ is a basis of V.
(e) For every basis $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}$ of V, the vectors $\alpha\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, \alpha\left(\mathbf{v}_{\mathbf{n}}\right)$ also form a basis of V.

Solution The rank nullity theorem tells us that α is injective if and only if it is surjective. Therefore (a), (b) and (c) are equivalent. Now (c) implies (e) since a spanning set must map to a spanning set, and a spanning set of size n must be a basis. Certainly (e) implies (d). However, condition (d) forces the image of α to include a spanning set, and so (c) is forced. We are done.
2. Suppose that

$$
X=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)
$$

is a $2 r$ by $2 r$ matrix built from the four r by r matrices A, B, C and the zero matrix 0 . Suppose that X has an inverse matrix. Describe that matrix in terms of A, B, C and 0 .
Solution Let the inverse matrix be of the shape

$$
Y=\left(\begin{array}{ll}
D & E \\
F & G
\end{array}\right)
$$

where D, E, F and G are r by r matrices. Now
(a) $A D+B F=I_{r}$,
(b) $A E+B G=0$,
(c) $C F=0$ and
(d) $C G=I_{r}$.

From (d) $G=C^{-1}$. From (c) and premultiplication by C^{-1} we obtain $F=0$. Next (a) forces $D=A^{-1}$ an d (b) implies that $A E+B C^{-1}=0$ so $E=-A^{-1} B C^{-1}$.
3. The matrix

$$
F=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

has entries in the Field F_{7}, the integers modulo 7. Calculate
(a) F^{2}.
(b) F^{5}.
(c) F^{1000}.
(d)

$$
\sum_{i=0}^{999} F^{i}
$$

where F^{0} denotes the identity matrix.
Solution For integers $n \geq 0$ define the Fibonacci sequence mod 7 via $F_{0}=0$ and $F_{1}=1$ where $F_{0}, F_{1} \in \mathbb{Z}_{7}$. Then inductively $F_{n}=$ $F_{n-1}+F_{n-2}$ whenever $n \geq 2$. Thus

$$
\left(F_{n}\right)=0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1, \ldots
$$

Thus $F_{16}=0$ and $F_{17}=1$ so $\left(F_{n}\right)$ is periodic with fundamental period 16. Now

$$
F^{n}=\left(\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right)
$$

by induction on n. Therefore
(a)

$$
F^{2}=\left(\begin{array}{ll}
F_{3} & F_{2} \\
F_{2} & F_{1}
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) .
$$

(b)

$$
F^{5}=\left(\begin{array}{ll}
F_{6} & F_{5} \\
F_{5} & F_{4}
\end{array}\right)=\left(\begin{array}{ll}
1 & 5 \\
5 & 3
\end{array}\right) .
$$

(c)

$$
F^{1000}=\left(\begin{array}{cc}
F_{1001} & F_{1000} \\
F_{1000} & F_{999}
\end{array}\right)=\left(\begin{array}{ll}
F_{9} & F_{8} \\
F_{8} & F_{7}
\end{array}\right)=\left(\begin{array}{cc}
6 & 0 \\
0 & 6
\end{array}\right) .
$$

(d) The matrix

$$
F=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

has entries in \mathbb{Q}, Let I denote the 2 by 2 identity matrix. Show that I and F are linearly independent but that I, F and F^{2} are linearly dependent elements of the vector space of 2 by 2 matrices with rational entries (with scalars in \mathbb{Q}).
Solution By inspection or from the Fibonacci recurrence $F^{2}=$ $F+1$ so $F^{2}-F-1$ is a non-trivial linear relation among $1, F$ and F^{2}. Suppose that $\lambda, \mu \in \mathbb{Q}$ and $\lambda I+\mu F=0$ then
i. $\lambda+\mu=0$,
ii. $\mu=0$,
iii. $\lambda+\mu=0$ and
iv. $0+0=0$.
by inspecting the four positions in turn. These equations force $\lambda=\mu=0$ as required.
4. Suppose that $\alpha, \beta: V \longrightarrow V$ are a pair of commuting linear maps.
(a) Prove that both Im α and Ker α are β-invariant spaces.

Solution Suppose that $\mathbf{v} \in \operatorname{Im} \alpha$ so there is $\mathbf{u} \in V$ such that $\alpha(\mathbf{u})=\mathbf{v}$. Now $\beta(\mathbf{v})=\beta(\alpha(\mathbf{u}))=\alpha(\beta(\mathbf{u})) \in \operatorname{Im} \alpha$. ON the other hand, suppose that $\mathbf{x} \in \operatorname{Ker} \alpha$, then $\alpha(\beta(\mathbf{x}))=\beta(\alpha(\mathbf{x}))=\beta(\mathbf{0})=$ $\mathbf{0}$. Thus $\beta(\mathbf{x}) \in \operatorname{Ker} \alpha$ as required.
(b) Prove that Im $\alpha+\operatorname{Im} \beta$ is both α-invariant and β-invariant.

Solution Each of $\operatorname{Im} \alpha$ and $\operatorname{Im} \beta$ is both α-invariant and β invariant. It follows that their sum has the same property, because if $\mathbf{x} \in \operatorname{Im} \alpha$ and $\mathbf{y} \in \operatorname{Im} \beta$, then $\alpha(\mathbf{x}+\mathbf{y})=\alpha(\mathbf{x})+\alpha(\mathbf{y})$
which is the sum of two vectors, the first of which is in $\operatorname{Im} \alpha$ and the second in $\operatorname{Im} \beta$. The sum of subspaces is also β-invariant by symmetry.
(c) Prove that Im $\alpha \cap \operatorname{Im} \beta$ is both α-invariant and β-invariant. Solution This is a formality. If \mathbf{x} is in the intersection, then $\alpha(\mathbf{x}) \in \operatorname{Im} \alpha$ and $\alpha(\mathbf{x}) \in \operatorname{Im} \beta$ so $\alpha(\mathbf{x}) \in \operatorname{Im} \alpha \cap \operatorname{Im} \beta$. The same holds for β by symmetry.

