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1. Suppose that V is a finite dimensional vector space over a field F , and
that α : V −→ V is a linear map. Suppose that e1, e2, . . . , en is a
basis of V such that each subspace 〈ei〉 is α-invariant. Prove that the
matrix of α with respect to this basis (in both domain and codomain) is
diagonal.
Solution For each i we have α(ei) = λiei for some scalar λi ∈ F . It
follows that the matrix of α with respect to this basis is




λ1 0 0 . . .
0 λ2 0 . . .
0 0 λ3 . . .
. . . . . .
. . . . λn−1 0
. . . . 0 λn




.

2. We consider the ordinary inner product on R2 or R3 defined as the
“dot” or “scalar” product. Let the vertices of triangle ABC have posi-
tion vectors a,b and c respectively.

(a) Show that the point G with position vector 1
3
(a + b + c) lies on

each median (a line joining a vertex to the midpoint of the opposite
side). Conclude that the medians are concurrent (at a point G
which is called the centroid of 4ABC).
Solution The position vector of the point 2

3
of the way down the

median from A is a+ 2
3
(1

2
(b+c)−a) = 1

3
(a+b+c). By symmetry

this point G is on all three medians, which must therefore be
concurrent.

(b) The altitude of 4ABC through A is the straight line through A
which is perpendicular to BC. Show that a point P is on this

1



altitude if and only if the position vector r of P satisfies (r − a) ·
(b− c) = 0.
Solution The equation specifies that the lines AP and BC are
perpendicular, or that A = P . This is the required altitude.

(c) Now we insist that the origin is the circumcentre O of 4ABC.
Thus there is a quantity R such that

a · a = b · b = c · c = R2.

Show that the point H with position vector a+b+c is on all three
altitudes. Deduce that the three altitudes of 4ABC are concurrent
at H. The point H is called the orthocentre of 4ABC .
Solution H is on the altitude from A because (a+b+c−a)·(b−
c) = (b + c) · (b− c) = b ·b− c · c = R2−R2 = 0. By symmetry
H is on all three altitudes which are therefore concurrent.

(d) Deduce that the three points O, G and H are colinear, and that the
distances are such that |OH| = 3|OG|. The line through O and
H is called the Euler line of 4ABC .
Solution We know that OH = 3OG because OH = a + b + c
and OG = 1

3
(a + b + c).

(e) Let L be the midpoint of BC and M be the midpoint of AH. Let
N be the midpoint of LM . Find the position vector of N (with the
origin still at O).
Solution ON = 1

4
(a + a + b + c) + 1

4
(b + c) = 1

2
(a + b + c).

(f) Deduce that N is the midpoint of OH so that O, G, N, H are col-
inear and the ratios of lengths are

|OG| : |GN | : |NH| = 2 : 1 : 3.

Solution This is because

OG =
1

3
(a + b + c),

ON =
1

2
(a + b + c)

and
OH = a + b + c.



(g) Show that |LM | = R. LM = 1
2
(a + a + b + c) − 1

2
(b + c) = 1

2
a.

Now the length of a is R, so |LM | = 1
2
R.

(h) Deduce that the circle with centre N and radius R/2 goes through
the following nine interesting points: the midpoints of the sides of
4ABC, the feet of the altitudes of 4ABC and the three points
which are midway between H and each of the three vertices A, B
and C. This is the ‘nine-point circle’ or ‘Feuerbach circle’.
Solution We have shown that the circle with centre N and radius
1
2
R has LM as a diameter. Let the line AL intersect the line

BC at D. Now \LDM is a right angle, so by the converse of
the “angle in a semicircle” theorem, this circle passes through D.
The position vector of N reveals that this is the same circle if we
cyclically permute A, B and C , and the result follows.

3. Let ABCD be a cyclic quadrilateral. A maltitude is a straight line
through the midpoint of a side which is perpendicular to the opposite
side. Show that the four maltitudes are concurrent.
Solution The maltitude from the midpoint of AB which is perpen-
dicular to CD has equation

(r − 1

2
(a + b)) · (c − d).

Now the point P with position vector

1

2
(a + b + c + d).

The symmetry of this position vector ensures that this point is on all
four maltitudes.

4. Suppose that V is an inner product space, with inner product denoted
by 〈 , 〉. Suppose that U and W are subspaces of V .

(a) Show that (U + W )⊥ = (U ∪ W )⊥ = U⊥ ∩ W⊥.
Solution The second equality is a formality. As for the first,
both inclusions are formailities.

(b) Suppose that U ≤ W . Show that W⊥ ≤ U⊥.
Solution This is a formality.



5. Suppose that V is an inner product space of dimension n, and 0 6= v ∈
V . Prove that dim({v}⊥) = n − 1.
Solution Consider the map θ : V −→ F defined by x 7→ (x,v). This
is a linear map, and is not the zero map since θ(v) = (v,v) 6= 0. It
is linear, and F is 1-dimensional, so θ is surjective. The rank-nullity
theorem applies and we are done.


