MA20008 Algebra 1, 2004, Sheet 8 Solutions

Geoff Smith, http://www.bath.ac.uk/~masgcs

1. Suppose that V is a finite dimensional vector space over a field F, and that $\alpha: V \longrightarrow V$ is a linear map. Suppose that $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \ldots, \mathbf{e}_{\mathbf{n}}$ is a basis of V such that each subspace $\left\langle\mathbf{e}_{\mathbf{i}}\right\rangle$ is α-invariant. Prove that the matrix of α with respect to this basis (in both domain and codomain) is diagonal.
Solution For each i we have $\alpha\left(\mathbf{e}_{\mathbf{i}}\right)=\lambda_{i} \mathbf{e}_{\mathbf{i}}$ for some scalar $\lambda_{i} \in F$. It follows that the matrix of α with respect to this basis is

$$
\left(\begin{array}{cccccc}
\lambda_{1} & 0 & 0 & . & . & . \\
0 & \lambda_{2} & 0 & . & . & \cdot \\
0 & 0 & \lambda_{3} & \cdot & . & . \\
\cdot & \cdot & \cdot & \cdot & . & . \\
. & \cdot & \cdot & . & \lambda_{n-1} & 0 \\
\cdot & \cdot & \cdot & . & 0 & \lambda_{n}
\end{array}\right)
$$

2. We consider the ordinary inner product on $\mathbb{R} 2$ or $\mathbb{R} 3$ defined as the "dot" or "scalar" product. Let the vertices of triangle ABC have position vectors \mathbf{a}, \mathbf{b} and \mathbf{c} respectively.
(a) Show that the point G with position vector $\frac{1}{3}(\mathbf{a}+\mathbf{b}+\mathbf{c})$ lies on each median (a line joining a vertex to the midpoint of the opposite side). Conclude that the medians are concurrent (at a point G which is called the centroid of $\triangle A B C)$.
Solution The position vector of the point $\frac{2}{3}$ of the way down the median from A is $\mathbf{a}+\frac{2}{3}\left(\frac{1}{2}(\mathbf{b}+\mathbf{c})-\mathbf{a}\right)=\frac{1}{3}(\mathbf{a}+\mathbf{b}+\mathbf{c})$. By symmetry this point G is on all three medians, which must therefore be concurrent.
(b) The altitude of $\triangle A B C$ through A is the straight line through A which is perpendicular to $B C$. Show that a point P is on this
altitude if and only if the position vector \mathbf{r} of P satisfies $(\mathbf{r}-\mathbf{a})$. $(\mathbf{b}-\mathbf{c})=0$.
Solution The equation specifies that the lines $A P$ and $B C$ are perpendicular, or that $A=P$. This is the required altitude.
(c) Now we insist that the origin is the circumcentre O of $\triangle A B C$. Thus there is a quantity R such that

$$
\mathbf{a} \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{b}=\mathbf{c} \cdot \mathbf{c}=R 2 .
$$

Show that the point H with position vector $\mathbf{a}+\mathbf{b}+\mathbf{c}$ is on all three altitudes. Deduce that the three altitudes of $\triangle A B C$ are concurrent at H. The point H is called the orthocentre of $\triangle A B C$.
Solution H is on the altitude from A because $(\mathbf{a}+\mathbf{b}+\mathbf{c}-\mathbf{a}) \cdot(\mathbf{b}-$ $\mathbf{c})=(\mathbf{b}+\mathbf{c}) \cdot(\mathbf{b}-\mathbf{c})=\mathbf{b} \cdot \mathbf{b}-\mathbf{c} \cdot \mathbf{c}=R 2-R 2=0$. By symmetry H is on all three altitudes which are therefore concurrent.
(d) Deduce that the three points O, G and H are colinear, and that the distances are such that $|O H|=3|O G|$. The line through O and H is called the Euler line of $\triangle A B C$.
Solution We know that $\overline{O H}=3 \overline{O G}$ because $\overline{O H}=\mathbf{a}+\mathbf{b}+\mathbf{c}$ and $\overline{O G}=\frac{1}{3}(\mathbf{a}+\mathbf{b}+\mathbf{c})$.
(e) Let L be the midpoint of $B C$ and M be the midpoint of $A H$. Let N be the midpoint of LM. Find the position vector of N (with the origin still at O).
Solution $\overline{O N}=\frac{1}{4}(\mathbf{a}+\mathbf{a}+\mathbf{b}+\mathbf{c})+\frac{1}{4}(\mathbf{b}+\mathbf{c})=\frac{1}{2}(\mathbf{a}+\mathbf{b}+\mathbf{c})$.
(f) Deduce that N is the midpoint of $O H$ so that O, G, N, H are colinear and the ratios of lengths are

$$
|O G|:|G N|:|N H|=2: 1: 3 .
$$

Solution This is because

$$
\begin{aligned}
& \overline{O G}=\frac{1}{3}(\mathbf{a}+\mathbf{b}+\mathbf{c}), \\
& \overline{O N}=\frac{1}{2}(\mathbf{a}+\mathbf{b}+\mathbf{c})
\end{aligned}
$$

and

$$
\overline{O H}=\mathbf{a}+\mathbf{b}+\mathbf{c} .
$$

(g) Show that $|L M|=R . \overline{L M}=\frac{1}{2}(\mathbf{a}+\mathbf{a}+\mathbf{b}+\mathbf{c})-\frac{1}{2}(\mathbf{b}+\mathbf{c})=\frac{1}{2} \mathbf{a}$.

Now the length of \mathbf{a} is R, so $|L M|=\frac{1}{2} R$.
(h) Deduce that the circle with centre N and radius $R / 2$ goes through the following nine interesting points: the midpoints of the sides of $\triangle A B C$, the feet of the altitudes of $\triangle A B C$ and the three points which are midway between H and each of the three vertices A, B and C. This is the 'nine-point circle' or 'Feuerbach circle'.
Solution We have shown that the circle with centre N and radius $\frac{1}{2} R$ has $L M$ as a diameter. Let the line $A L$ intersect the line $B C$ at D. Now $\angle L D M$ is a right angle, so by the converse of the "angle in a semicircle" theorem, this circle passes through D. The position vector of N reveals that this is the same circle if we cyclically permute A, B and C, and the result follows.
3. Let $A B C D$ be a cyclic quadrilateral. A maltitude is a straight line through the midpoint of a side which is perpendicular to the opposite side. Show that the four maltitudes are concurrent.
Solution The maltitude from the midpoint of $A B$ which is perpendicular to $C D$ has equation

$$
\left(\mathbf{r}-\frac{1}{2}(\mathbf{a}+\mathbf{b})\right) \cdot(\mathbf{c}-\mathbf{d}) .
$$

Now the point P with position vector

$$
\frac{1}{2}(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}) .
$$

The symmetry of this position vector ensures that this point is on all four maltitudes.
4. Suppose that V is an inner product space, with inner product denoted by \langle,$\rangle . Suppose that U$ and W are subspaces of V.
(a) Show that $(U+W)^{\perp}=(U \cup W)^{\perp}=U^{\perp} \cap W^{\perp}$.

Solution The second equality is a formality. As for the first, both inclusions are formailities.
(b) Suppose that $U \leq W$. Show that $W^{\perp} \leq U^{\perp}$.

Solution This is a formality.
5. Suppose that V is an inner product space of dimension n, and $\mathbf{0} \neq \mathbf{v} \in$ V. Prove that $\operatorname{dim}\left(\{\mathbf{v}\}^{\perp}\right)=n-1$.
Solution Consider the map $\theta: V \longrightarrow F$ defined by $\mathbf{x} \mapsto(\mathbf{x}, \mathbf{v})$. This is a linear map, and is not the zero map since $\theta(\mathbf{v})=(\mathbf{v}, \mathbf{v}) \neq 0$. It is linear, and F is 1-dimensional, so θ is surjective. The rank-nullity theorem applies and we are done.

