MA20008 Algebra 1, 2004, Sheet 9

Geoff Smith, http://www.bath.ac.uk/~masgcs

1. Let U be the set of polynomials in the variable X with coefficients in \mathbb{R} . We define an inner product $\langle \ , \ \rangle$ on U via

$$\langle f, h \rangle = \int_0^1 f h \ dX.$$

Thus U is a vector space of \mathbb{R} in the natural way. Let V be the subspace of U consisting of polynomials of degree at most 3. Given the basis $1, X, X^2, X^3$, run the Gram-Schmidt algorithm to produce an orthonormal basis of V.

Solution $e_1 = 1$, $e_2 = 2\sqrt{3}X - \sqrt{3}$, $e_3 = 6\sqrt{5}X^2 - 6\sqrt{5}X + \sqrt{5}$, $e_4 = ?$.

2. Let V be an inner product space with orthonormal basis $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$. If the Gram-Schmidt algorithm is used to modify this basis, what is the output?

Solution The output will be the input.

3. Let V be an inner product space with orthonormal basis $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_n}$. We obtain another basis $\mathbf{v_n}, \mathbf{v_{n-1}}, \ldots, \mathbf{v_1}$ by reversing the order of the vectors. Run the Gram-Schmidt algorithm on each of these bases in turn. Is it true that the output orthonormal bases are the reverse of each other?

Solution Not necessarily. For example we consider the standard inner product on \mathbb{R}^2 . Let $\mathbf{v_1} = (1,0)$ and $\mathbf{v_2} = (1,1)$. If we run G-S on this basis we get the output (1,0),(0,1). On the other hand the reverse basis yields output $\frac{1}{\sqrt{2}}(1,1),\frac{1}{\sqrt{2}}(1,-1)$.

4. For r = 0, 1, 2 define functions $f_r : \mathbb{R} \longrightarrow \mathbb{R}$ by $f_r : \theta \mapsto \cos r\theta$ for all real numbers θ . The collection of all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ has a natural vector space structure. Let V be the subspace spanned by

 f_0, f_1, f_2 . Define an inner product on V via $\langle f, h \rangle = \frac{1}{2\pi} \int_0^{2\pi} fh \ d\theta$. Run Gram-Schmidt to obtain an orthonormal basis of V.

Solution $e_1 = f_0 = 1, e_2 = \sqrt{2}f_1 = \sqrt{2}\cos\theta, e_2 = ?$

5. Suppose that $\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}$ is an orthonormal basis of the inner product space V. Let $U_r = \langle \mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_r} \rangle$. Suppose that $\mathbf{v} \in V$. Show that among all vectors $\mathbf{x} \in U_r$, the one which minimizes $||\mathbf{v} - \mathbf{x}||$ is $\sum_{i=1}^r \langle \mathbf{v}, \mathbf{e_i} \rangle \mathbf{e_i}$.

Solution Let $\mathbf{u} = \sum_{i=1}^r \langle \mathbf{v}, \mathbf{e_i} \rangle \mathbf{e_i}$. Now if $\mathbf{x} \in U_r$, let $\mathbf{y} = -\mathbf{u} + \mathbf{x} \in U_r$. Now

$$\begin{split} ||\mathbf{v} - \mathbf{x}||^2 \langle \mathbf{v} - \mathbf{x}, \mathbf{v} - \mathbf{x} \rangle \\ &= \langle \mathbf{v} - \mathbf{u} - \mathbf{y}, \mathbf{v} - \mathbf{u} - \mathbf{y} \rangle = ||\mathbf{v} - \mathbf{u}||^2 + ||\mathbf{y}||^2 \ge ||\mathbf{v} - \mathbf{u}||^2. \end{split}$$

6. Suppose that V is an inner product space of dimension n, and α : V → V is a linear map. Suppose that α carries some orthonormal basis to an orthonormal basis. Show that α carries each orthonormal basis to an orthonormal basis.

Solution There is an orthonormal basis e_1, e_2, \ldots, e_n such that

$$\langle \alpha(\mathbf{e_i}), \alpha(\mathbf{e_i}) \rangle = \delta_{ii}.$$

Now if $\mathbf{v}, \mathbf{w} \in V$, then $\mathbf{v} = \sum_{k} a_k \mathbf{e_k}$ and $\mathbf{w} = \sum_{l} b_l \mathbf{e_l}$ for suitable constants a_k and b_l . Now

$$\langle \alpha(\mathbf{v}), \alpha(\mathbf{w}) \rangle = \langle \alpha(\sum_{k} a_{k} \mathbf{e_{k}}), \alpha(\sum_{l} b_{l} \mathbf{e_{l}}) \rangle$$

$$= \sum_{k} \sum_{l} a_{k} \overline{b_{l}} \langle \alpha(\mathbf{e_{k}}), \alpha(\mathbf{e_{l}}) \rangle$$

$$= \sum_{k} \sum_{l} a_{k} \overline{b_{l}} \langle \mathbf{e_{k}}, \mathbf{e_{l}} \rangle$$

$$= \langle \sum_{k} a_{k} \mathbf{e_{k}}, \sum_{l} b_{l} \mathbf{e_{l}} \rangle$$

$$= \langle \mathbf{v}, \mathbf{w} \rangle.$$

Thus α preserves the inner product, and so will carry any orthonormal basis to an orthonormal basis.